JPS6143477A - Manufacture of mos transistor - Google Patents

Manufacture of mos transistor

Info

Publication number
JPS6143477A
JPS6143477A JP16491384A JP16491384A JPS6143477A JP S6143477 A JPS6143477 A JP S6143477A JP 16491384 A JP16491384 A JP 16491384A JP 16491384 A JP16491384 A JP 16491384A JP S6143477 A JPS6143477 A JP S6143477A
Authority
JP
Japan
Prior art keywords
film
layer
region
psg
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16491384A
Other languages
Japanese (ja)
Inventor
Takashi Azuma
吾妻 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16491384A priority Critical patent/JPS6143477A/en
Publication of JPS6143477A publication Critical patent/JPS6143477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To prevent the collapse of an LDD structure by forming an N<-> layer of a source region by phosphorus diffusion from a side-wall PSG and forming an N<+> layer of a source and drain region by the subsequent ion implantation. CONSTITUTION:On a P type silicon wafer 11, an SiO2 film 12 for gate, a refractory metal thin film 13, and an Si3N4 film 14 are formed in order and nextly a gate region is patterned by etching. Subsequently a side-wall PSG film 15 of the gate region is formed. Next, an SiO2 film 16 is formed by thermal oxidation in the region which is not covered with the film 15, which is used as the film preventing damages during N<+> ion implantation process. In this case, a thin N<-> layer 17 is formed on a surface of the wafer 11. Next, after N<+> impurities are implanted, the desired N<-> layer 18 is formed on the wafer 11 right under the film 15 and an N<+> layer 19 is formed in the N<+> ion implantation region. Then the film 14 is removed to obtain a MOSFET.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明はMOS)ランジスタの製造方法に係わり、特に
ソース、ドレイン構造の形成方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method of manufacturing a MOS transistor, and particularly to a method of forming a source and drain structure.

〔発明の背景〕[Background of the invention]

近年、MO8L8Iが高集積化するに伴なってそのゲー
ト寸法がますます微小化し、サブミクロンの領域に入っ
ている。そして、このサブミクロン寸法を有するMOS
トランジスタは、しきい値電圧がショートチャンネル効
果によりその絶対値の制御が困難となるとともに、ホッ
トキャリアの影響を受けて信頼性の点から不安定となる
問題があった。
In recent years, as MO8L8I has become highly integrated, its gate dimensions have become smaller and smaller, entering the submicron range. And MOS with this submicron dimension
Transistors have had problems in that it is difficult to control the absolute value of the threshold voltage due to the short channel effect, and the reliability is unstable due to the influence of hot carriers.

このような問題のうち、ホットキャリアの影響を改善し
たものとしては、第1図に要部断面図で示すようなLD
D (Lightly Doped Draln )構
造が例えば、K、 5aito at al、” A 
new 5hort channsl MO8FETw
ith lightly doped Drain” 
電子通信連合大会、PP。
Among these problems, an LD as shown in the cross-sectional view of the main part in Figure 1 has been developed to improve the influence of hot carriers.
D (Lightly Doped Draln) structure is, for example, K, 5aito at al, "A
new 5hort channel MO8FETw
ith lightly doped Drain”
Electronic Communications Union Conference, PP.

220、4月、1978.などにより提案されている。220, April, 1978. It has been proposed by et al.

すなわち同図において、P形シリコンウェハ1上に形成
されたソース領域2およびドレイン領域3には、それぞ
れN−i?’d4とNJN5とが共存し、N−754は
ゲート電極6に接触する領域に形成されている。
That is, in the figure, a source region 2 and a drain region 3 formed on a P-type silicon wafer 1 each have N-i? 'd4 and NJN5 coexist, and N-754 is formed in a region in contact with gate electrode 6.

なお、TはP形シリコンウェハ1上に形成された酸化膜
、8はゲート電極6の側壁に形成されたサイドウオール
5i02膜である。
Note that T is an oxide film formed on the P-type silicon wafer 1, and 8 is a sidewall 5i02 film formed on the side wall of the gate electrode 6.

このように植成されるショートチャンネルMOSトラン
ジスタは、まずP形シリコンウェハ1上にゲート’Pl
!6t−フォトレジスト加工した後、これをマスクとし
て自己3ぼ金的にN−/彊4’tイオン打込みによって
形成し、次にサイドウオール8102膜8をCVD法に
よるデポジッションとそれに続く異方性エツチング(例
えば反応性イオンエツチングRI E)法によって形成
した後、これをマスクとして8層5を再度イオン打込み
Kよ層形成する。
The short channel MOS transistor implanted in this way is first formed with a gate 'Pl' on a P-type silicon wafer 1.
! After processing the 6T-photoresist, this is used as a mask to form a self-containing N-/4't ion implantation process, and then a sidewall 8102 film 8 is deposited using the CVD method, followed by anisotropic deposition. After forming by etching (for example, reactive ion etching RIE), the eight layers 5 are again formed by ion implantation using this as a mask.

しかしながら、イオン打込み磯のイオンビームの打込み
方向は、必らずしもP形シリコンウェハ1の平面に対し
て垂直ではない。すなわち、イオン打込み機の形式や種
類が異なった場合、あるいは同一形のイオン打込みイ棧
でも製作年度が異なる場合には、打込み方向はイオン打
込み機によって2度ないし3度またはそれ以上異なるの
が普通である。これはイオン打込みm9作工程において
この程度の変動が生じてしまうことに起因している。
However, the implantation direction of the ion beam in the ion implantation rock is not necessarily perpendicular to the plane of the P-type silicon wafer 1. In other words, if the model or type of ion implanter is different, or if the same type of ion implanter is manufactured in different years, the implantation direction usually differs by two or three degrees or more depending on the ion implanter. It is. This is due to the fact that this degree of variation occurs during the ion implantation m9 manufacturing process.

したがってミこのようなイオン打込み機が用いられた場
合、例えば最初のN−イオン打込み機とそれに続くNイ
オノ打込み機とが互いに異なった形式のイオン打込み機
である場合または同一形式でも製作年度の異なるイオン
打込み機である場合には、第2図に示すような不都合が
生じてくる。すなわち、まずN−イオン打込み機による
打込み方向がN方向である場合、ゲート電極6の右側に
おいて、その影によシ、領域Sで示されるN一層の打込
まれない領域が生ずる。次にNイオノ打込み機による打
込み方向がP方向である場合は、8層5はゲート電極6
の右側においてN一層4と重なるのみで領域Sの空隙が
生じてしまう。また第3図に示すようにP方向の角度が
緩い場合においてはN層N5はN−M4上にオーバーラ
ツプし、ゲート内部     □に食い込むことKなる
。この結呆、ゲート領域の左側はN−領域となっている
が、右側はN領域となシ、LDD構造から外れるとと忙
なる。つまシ非対称のL D D 4+IJ造となって
しまう。
Therefore, if such an ion implanter is used, for example, if the first N-ion implanter and the subsequent N-ion implanter are of different types, or even if they are the same type but manufactured in different years. In the case of an ion implanter, problems as shown in FIG. 2 arise. That is, first, when the direction of implantation by the N-ion implanter is the N direction, a region where N is not implanted is created on the right side of the gate electrode 6 due to its shadow, which is indicated by region S. Next, when the implanting direction by the N ion implanter is the P direction, the 8th layer 5 is the gate electrode 6.
On the right side of the layer N, a gap in the region S is created by only overlapping with the layer 4. Further, as shown in FIG. 3, when the angle in the P direction is gentle, the N layer N5 overlaps N-M4 and digs into the inside of the gate. As a result, the left side of the gate region is an N-region, but the right side is an N-region, which becomes busy when it deviates from the LDD structure. It ended up being an LDD 4+IJ construction with asymmetrical tabs.

〔発明の目的〕[Purpose of the invention]

したがって本発明は[j0述した従来の問題に鑑みてな
されたものであり、その目的とするところはL D D
 jii造に対する2反の打込みプロセスにおいて各々
の打込み角j!◆−が反対符号である場合に発生するL
DDも4造の崩れ全防止することのできるMOS トラ
ンジスタの製造方法を提供することにある。
Therefore, the present invention has been made in view of the conventional problems mentioned above, and its purpose is to
In the two-turn driving process for jii structure, each driving angle j! ◆L that occurs when - has the opposite sign
The object of the present invention is to provide a method of manufacturing a MOS transistor that can completely prevent the collapse of DD.

〔発明の概要〕[Summary of the invention]

このような目的を達成するために不発明は、ソース領域
のN−/黙をサイドウオールPSGからの燐拡散によっ
て形成し、ソース・ドレイン領域のN層層をそれに続く
イオン打込みによって形成するものである。
In order to achieve such an object, the present invention is to form an N layer in the source region by phosphorus diffusion from the sidewall PSG, and to form an N layer in the source/drain region by subsequent ion implantation. be.

すなわち、LDD474造のN一層形成を、ゲート領域
のサイドウオールPSG(燐を含むLPCVD 5iO
z )膜からの燐の拡散によって行ない、それに続< 
N層層のみをイオン打込みによって行なう方法である。
That is, the formation of a single layer of N in the LDD 474 structure is replaced by the sidewall PSG (LPCVD 5iO containing phosphorus) in the gate region.
z) by diffusion of phosphorus from the membrane, followed by <
This is a method in which only the N layer is implanted by ions.

この場合、イオン打込みはN層のみであるから、イオン
打込みの互いの方向差に基づいてN一層と1層とのゲー
ト領域端部における重ね合わせ不整合を防止することが
できる。
In this case, since ions are implanted only into the N layer, it is possible to prevent overlay mismatch between the N layer and the first layer at the edge of the gate region based on the difference in direction of ion implantation.

〔発明の実施例〕[Embodiments of the invention]

次に図面を用いて本発明の実施例を詳細に説明する。 Next, embodiments of the present invention will be described in detail using the drawings.

第4図(11)〜(g)は本発明によるMOS)ランジ
スタの製造方法の一例を説明するための要部断面工程図
である。同図において、まず同図(、)に示すようにP
形シリコンウェハ11上に図示しない素子間の分離用絶
縁としてのロコス(LOCO8)酸化[4’を形成した
後、ゲート用8102膜12.リフラクトリ−金属(例
えば、タングステンなど)8M13およびSi3N4膜
14を通常用いられる手段にょシ順次形成する。この場
合、リフラクトリ−金属薄膜1316.2000〜40
00 A me 、 S 13N4膜14は約500^
程度の厚さである。次に同図(b)に示すようにゲート
フォトレジスト処理およびエツチング加工法によ勺51
3N4膜14とリフラクトリ−金属薄r+免13 <エ
ツチングしゲート領域をパターニングする。引き続き同
図(C)に示すようにゲート用5IOz膜12kHF処
理により除去し、ゲート領域以外のP形シリコンウェハ
11のシリコン面を露出させる。続いて同図(d)に示
すようにPSG ’i LPCVD法によって全面にデ
ボジツションし、異方性エツチング(RIE)によって
ゲート領域のサイドウオールにPSG膜15を形成させ
る。この場合、 PEG膜15の燐濃度は後に形成すべ
きN−層の濃度によシ適宜決めることができる。次に同
図(、)に示すようにサイドウオールPSG15に覆わ
れていない領域に熱酸化によシ厚さ200〜500 X
程度の810z膜16を形成させて後のN+イオンイン
プラテーション工程の損傷防止膜とする。この場合、サ
イドウオールPSG膜15からの拡散によってP形シリ
コンウェハ11の表面には薄いN−7iN7が形成され
る。引き続き同図(f)に示すようにA5等のN+不純
物をイオンインプラチージョン法によって打込んだ後、
約1000℃程度の熱処理を行ってサイドウオールPS
G膜15直下のP形シリコンウェハ11には所望のN一
層18がサイドウオールPSG膜15からの燐拡散によ
って形成され、Nイオノ打込み領域には8層19がそれ
ぞれ形成される。次にリフラクトリ−金属薄膜13上の
Si3N4膜14を燐酸などによシ除去して同図(g)
に示すようなMOS )ランジスタが完成される。
FIGS. 4(11) to 4(g) are cross-sectional process diagrams of essential parts for explaining an example of a method for manufacturing a MOS transistor according to the present invention. In the figure, first, as shown in the figure (,), P
After forming LOCO8 oxide [4'] as insulation for separating elements (not shown) on the shaped silicon wafer 11, a gate 8102 film 12. A refractory metal (eg, tungsten, etc.) 8M 13 and a Si3N4 film 14 are sequentially formed by commonly used means. In this case, refractory metal thin film 1316.2000~40
00 A me, S 13N4 film 14 is about 500^
It is about the same thickness. Next, as shown in FIG.
3N4 film 14 and refractory metal thin layer 13 are etched to pattern the gate region. Subsequently, as shown in FIG. 5C, the 5IOz film for the gate is removed by 12kHF treatment to expose the silicon surface of the P-type silicon wafer 11 other than the gate region. Subsequently, as shown in FIG. 2D, the entire surface is deposited by the PSG'i LPCVD method, and a PSG film 15 is formed on the sidewalls of the gate region by anisotropic etching (RIE). In this case, the phosphorus concentration of the PEG film 15 can be appropriately determined depending on the concentration of the N- layer to be formed later. Next, as shown in the same figure (,), the area not covered by the sidewall PSG15 is thermally oxidized to a thickness of 200 to 500×.
An 810z film 16 of about 100% is formed to serve as a damage prevention film for the subsequent N+ ion implantation process. In this case, thin N-7iN7 is formed on the surface of the P-type silicon wafer 11 by diffusion from the sidewall PSG film 15. Subsequently, as shown in the same figure (f), after implanting N+ impurities such as A5 by the ion implantation method,
Sidewall PS is heat treated at approximately 1000℃.
A desired N layer 18 is formed on the P type silicon wafer 11 directly under the G film 15 by phosphorus diffusion from the sidewall PSG film 15, and eight layers 19 are formed in each of the N ion implantation regions. Next, the Si3N4 film 14 on the refractory metal thin film 13 is removed using phosphoric acid or the like, as shown in the same figure (g).
A MOS transistor as shown in FIG. 1 is completed.

このような方法によれば、ゲート領域には、デボジツシ
ョンさせたサイドウオールPSG膜15の厚さのみの幅
を有するサイドウオールが形成され、これKよりてN一
層18が形成されるので、第2図。
According to this method, a sidewall having a width equal to the thickness of the deposited sidewall PSG film 15 is formed in the gate region, and since the N layer 18 is formed from K, the second figure.

第3図に示すよりなN一層4の欠落した間隙は生じない
。また、8層19はA8等のイオン打込みに多少の方向
性があってもN一層18の側面に形成されるので、LD
D構造が完成される。
A gap where the N layer 4 is missing as shown in FIG. 3 does not occur. In addition, even if the ion implantation of A8 or the like has some directionality, the 8th layer 19 is formed on the side surface of the N layer 18, so the LD
D structure is completed.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ゲート領域の側壁
にサイドウオールPSG膜を設け、このPSGからの燐
拡散によってN一層を形成し、ソース・ドレイン領域は
それに続くNイオノ打込みによってN層を形成すること
によシ、イオン打込み機の諸条件に全く左右されること
なく、品質、信頼性の高いLDD#;4造を有するMO
Sトランジスタが生産性良く得られるという極めて優れ
た効果を有する。
As explained above, according to the present invention, a sidewall PSG film is provided on the sidewall of the gate region, a single N layer is formed by phosphorus diffusion from this PSG, and an N layer is formed in the source/drain region by subsequent N ion implantation. By forming an MO with a high quality and reliable LDD #4 structure, it is completely unaffected by the conditions of the ion implanter.
This has an extremely excellent effect in that S transistors can be obtained with high productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図ないし第3図は従来のLDD構造を有するMOS
トランジスタおよびその問題を説明するための要部断面
図、第4図(−)〜(g)は不発BAKよるMOSトラ
ンジスタの製造方法の一例を説明するための要部断面工
程図である。 11・・・−P形シリコンウェハ、12・#−・ゲート
用Si 02 ha、13・・・・す7ラクトリー金属
薄膜、14・・・・51sNa膜、15・・・Φサイド
ウオールPSG膜、16・・・11S102膜、1T・
・・・薄いN一層、1日・・・・N一層、19・・・・
N層。 第1図 第2図 第3図 第4図 +7i (b) (C)
Figures 1 to 3 show a MOS having a conventional LDD structure.
FIGS. 4(-) to 4(g) are cross-sectional views of main parts for explaining a transistor and its problems, and FIGS. 4(-) to (g) are cross-sectional process views of main parts for explaining an example of a method for manufacturing a MOS transistor using non-exploded BAK. 11...-P type silicon wafer, 12...Si02 ha for gate, 13...7 lacty metal thin film, 14...51sNa film, 15...Φ sidewall PSG film, 16...11S102 membrane, 1T・
...Thin N layer, 1 day...N layer, 19...
N layer. Figure 1 Figure 2 Figure 3 Figure 4 +7i (b) (C)

Claims (1)

【特許請求の範囲】[Claims]  第1導電形を有する半導体ウェハ上に素子間分離絶縁
膜および表面にリフラクトリー金属膜を有するゲート領
域を形成する工程と、前記ゲート領域を含む半導体ウェ
ハ全面にPSG層を被覆し異方性エッチングを施すこと
により該ゲート領域側面にPSG層のサイドウォールP
SG膜を形成する工程と、前記半導体ウェハのゲート領
域を除く領域に熱酸化膜を形成するとともに前記サイド
ウォールPSG膜の燐を拡散させ半導体ウェハに第1の
導電形と反対の第2導電形を有する半導体層を形成する
工程と、前記熱酸化膜に不純物を打込み半導体ウェハに
第1の導電形と反対の第3導電形を有する半導体層を形
成する工程と、前記半導体ウェハを加熱処理する工程と
を含むことを特徴としたMOSトランジスタの製造方法
A step of forming an element isolation insulating film and a gate region having a refractory metal film on the surface on a semiconductor wafer having a first conductivity type, and covering the entire surface of the semiconductor wafer including the gate region with a PSG layer and performing anisotropic etching. By applying this, a sidewall P of the PSG layer is formed on the side surface of the gate region.
a step of forming an SG film, and forming a thermal oxide film in a region of the semiconductor wafer other than the gate region, and diffusing phosphorus in the sidewall PSG film to give the semiconductor wafer a second conductivity type opposite to the first conductivity type. forming a semiconductor layer having a third conductivity type opposite to the first conductivity type on the semiconductor wafer by implanting an impurity into the thermal oxide film; and heating the semiconductor wafer. A method for manufacturing a MOS transistor, comprising the steps of:
JP16491384A 1984-08-08 1984-08-08 Manufacture of mos transistor Pending JPS6143477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16491384A JPS6143477A (en) 1984-08-08 1984-08-08 Manufacture of mos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16491384A JPS6143477A (en) 1984-08-08 1984-08-08 Manufacture of mos transistor

Publications (1)

Publication Number Publication Date
JPS6143477A true JPS6143477A (en) 1986-03-03

Family

ID=15802235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16491384A Pending JPS6143477A (en) 1984-08-08 1984-08-08 Manufacture of mos transistor

Country Status (1)

Country Link
JP (1) JPS6143477A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63249372A (en) * 1987-04-03 1988-10-17 Rohm Co Ltd Manufacture of field effect type transistor
JPS6432676A (en) * 1987-07-29 1989-02-02 Nec Corp Manufacture of insulated-gate field-effect transistor
JPH01134972A (en) * 1987-10-05 1989-05-26 Philips Gloeilampenfab:Nv Manufacture of semiconductor device
JPH0629308A (en) * 1991-04-10 1994-02-04 Gold Star Electron Co Ltd Ldd transistor and its manufacture
US5434440A (en) * 1992-05-29 1995-07-18 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5518945A (en) * 1995-05-05 1996-05-21 International Business Machines Corporation Method of making a diffused lightly doped drain device with built in etch stop
EP0798785A1 (en) * 1996-03-29 1997-10-01 STMicroelectronics S.r.l. High-voltage-resistant MOS transistor, and corresponding manufacturing process
US5698881A (en) * 1992-05-29 1997-12-16 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898203A (en) * 1909-12-11 1999-04-27 Kabushiki Kaisha Toshiba Semiconductor device having solid phase diffusion sources
JPS63249372A (en) * 1987-04-03 1988-10-17 Rohm Co Ltd Manufacture of field effect type transistor
JPS6432676A (en) * 1987-07-29 1989-02-02 Nec Corp Manufacture of insulated-gate field-effect transistor
JPH01134972A (en) * 1987-10-05 1989-05-26 Philips Gloeilampenfab:Nv Manufacture of semiconductor device
JP2547690B2 (en) * 1991-04-10 1996-10-23 エルジイ・セミコン・カンパニイ・リミテッド Method for manufacturing LDD transistor
JPH0629308A (en) * 1991-04-10 1994-02-04 Gold Star Electron Co Ltd Ldd transistor and its manufacture
US5434440A (en) * 1992-05-29 1995-07-18 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5698881A (en) * 1992-05-29 1997-12-16 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source
US5766965A (en) * 1992-05-29 1998-06-16 Yoshitomi; Takashi Semiconductor device and method of manufacturing the same
US5903027A (en) * 1992-05-29 1999-05-11 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source
US5518945A (en) * 1995-05-05 1996-05-21 International Business Machines Corporation Method of making a diffused lightly doped drain device with built in etch stop
EP0798785A1 (en) * 1996-03-29 1997-10-01 STMicroelectronics S.r.l. High-voltage-resistant MOS transistor, and corresponding manufacturing process
US5977591A (en) * 1996-03-29 1999-11-02 Sgs-Thomson Microelectronics S.R.L. High-voltage-resistant MOS transistor, and corresponding manufacturing process

Similar Documents

Publication Publication Date Title
US5300797A (en) Coplanar twin-well integrated circuit structure
JP2553699B2 (en) Method for manufacturing semiconductor device
JPS6143477A (en) Manufacture of mos transistor
JPH0456279A (en) Manufacture of semiconductor device
JP2001176983A (en) Semiconductor device and producing method therefor
JPS59119870A (en) Manufacture of semiconductor device
JPS62285468A (en) Manufacture of ldd field-effect transistor
JPS5986263A (en) Manufacture of semiconductor device
KR100537273B1 (en) Method for manufacturing semiconductor device
JP3055614B2 (en) Method of manufacturing semiconductor device and semiconductor device manufactured by the method
JPS6039868A (en) Manufacture of semiconductor device
KR940000986B1 (en) Manufacturing method of stack type cmos
JPS60226168A (en) Complementary mos semiconductor device
JPH01278777A (en) Manufacture of mosfet
JPS60226169A (en) Manufacture of semiconductor device
JPH10335482A (en) Semiconductor device and its manufacture
JPH0214788B2 (en)
JPH0445543A (en) Manufacture method of semiconductor device
JPS61214472A (en) Manufacture of semiconductor element
JPS61220372A (en) Manufacture of semiconductor device
JPS62147776A (en) Manufacture of semiconductor device
JPH0330307B2 (en)
JPH06204241A (en) Field effect transistor and manufacture thereof
JPH05259446A (en) Manufacture of semiconductor device
JPS6132578A (en) Manufacture of mos type semiconductor device