JPH0629308A - Ldd transistor and its manufacture - Google Patents

Ldd transistor and its manufacture

Info

Publication number
JPH0629308A
JPH0629308A JP4116768A JP11676892A JPH0629308A JP H0629308 A JPH0629308 A JP H0629308A JP 4116768 A JP4116768 A JP 4116768A JP 11676892 A JP11676892 A JP 11676892A JP H0629308 A JPH0629308 A JP H0629308A
Authority
JP
Japan
Prior art keywords
impurity diffusion
diffusion region
conductivity
type impurity
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4116768A
Other languages
Japanese (ja)
Other versions
JP2547690B2 (en
Inventor
Lee Yeun Hwang
リー・イョン・ハン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Goldstar Electron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goldstar Electron Co Ltd filed Critical Goldstar Electron Co Ltd
Publication of JPH0629308A publication Critical patent/JPH0629308A/en
Application granted granted Critical
Publication of JP2547690B2 publication Critical patent/JP2547690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: To provide an LDD transistor that is able to decrease hot carriers which are trapped by a strong electric field, and method of manufacture. CONSTITUTION: After forming a gate 12 with a general method on a P-type substrate 10, ions of a type different from that of the substrate is implanted and diffused, and low density source/drain region 14 is formed. BSG as the material being doped with an impurity of the same type as that of the substrate is vapor-deposited on the entire surface of the substrate, gate sidewall spacers 13 are formed by etching it, an impurity diffused region that is of the same type as that of the substrate is formed directly under the gate sidewall 13 in the low density source/drain region 14 applying a post-annealing step, the ions of types different from that of the substrate is implanted and then diffused, and high density source and drain regions 16 are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LDD(Lihtly
Doped Drain)の構造を有するトランジス
タの製造方法に関し、特にソース/ドレーン領域の近傍
の電界によるホットキャリアの影響を減少させたものの
製造方法に関する。
The present invention relates to an LDD (Lihtly).
The present invention relates to a method of manufacturing a transistor having a Doped Drain structure, and more particularly to a method of manufacturing a transistor in which the influence of hot carriers due to an electric field in the vicinity of a source / drain region is reduced.

【0002】[0002]

【従来の技術】従来、一般のLDD構造を有するN型ト
ランジスタの製造工程を図1乃至図4を参照して説明す
る。まず、図1のように、P型基板1上にゲート2を形
成し、図2のように、低濃度のソース/ドレーン領域を
形成するためのN- 型イオン注入を施す。ついで図3の
ように、ゲート側壁スペーサ3を形成し、熱工程を施し
て注入したN- 型イオンを基板に拡散させ、低濃度のソ
ース/ドレーン領域4を形成する。そして図4のよう
に、N+ 型イオン注入を施した後拡散させて高濃度のソ
ース/ドレーン領域5を形成する。
2. Description of the Related Art Conventionally, a manufacturing process of an N-type transistor having a general LDD structure will be described with reference to FIGS. First, as shown in FIG. 1, a gate 2 is formed on a P-type substrate 1, and N -type ion implantation for forming a low concentration source / drain region is performed as shown in FIG. Then, as shown in FIG. 3, gate side wall spacers 3 are formed, and a thermal process is performed to diffuse the implanted N type ions into the substrate to form low concentration source / drain regions 4. Then, as shown in FIG. 4, N + type ion implantation is performed and then diffused to form a high concentration source / drain region 5.

【0003】[0003]

【発明が解決しようとする課題】ソース/ドレーン領域
の近傍に集中される強い電界を減少させるために、従来
は前記のように高濃度のソースドレーン領域5と低濃度
のソースドレーン領域とを形成して、最終商品の信頼性
を改善していた。しかしながら、強い電界によるホット
キャリアが側壁スペーサを形成するLTO(Low T
emperature Oxide)膜にトラップされ
て電界が存在することとなり、これにより、そのホット
キャリアのゲート酸化膜の信頼性が低下する不都合があ
った。
In order to reduce the strong electric field concentrated near the source / drain regions, the high concentration source drain region 5 and the low concentration source drain region are conventionally formed as described above. And improved the reliability of the final product. However, hot carriers generated by a strong electric field form LTO (Low T
Since an electric field is trapped in the embossed oxide (Oxide Oxide) film, the reliability of the gate oxide film for the hot carriers is lowered.

【0004】本発明は、このような従来の技術の不都合
を解消するためのもので、強い電界によりトラップされ
るホットキャリアを減少できる改良されたLDDトラン
ジスタ及びその製造方法を提供するにある。
SUMMARY OF THE INVENTION The present invention is intended to solve the above disadvantages of the conventional technique, and provides an improved LDD transistor capable of reducing hot carriers trapped by a strong electric field and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】第1導電型の基板と,前
記基板上に形成されたゲート電極と,前記ゲート電極を
中心として両側の前記基板表面内に形成された低濃度の
第2導電型不純物拡散領域と,前記低濃度の第2導電型
不純物拡散領域のそれぞれに隣接して前記基板の表面内
に形成された高濃度の第2導電型不純物拡散領域と,前
記低濃度の第2導電型不純物拡散領域の上方に位置し、
かつゲート電極の両側に形成された側壁スペーサと,前
記低濃度の第2導電型不純物拡散領域の中、前記側壁ス
ペーサの直下に形成された第1導電型不純物拡散領域
と,からなるLDDトランジスタである。
A first conductivity type substrate, a gate electrode formed on the substrate, and a low-concentration second conductivity formed in the substrate surface on both sides of the gate electrode as a center. -Type impurity diffusion regions, high-concentration second conductivity-type impurity diffusion regions formed in the surface of the substrate adjacent to the low-concentration second conductivity-type impurity diffusion regions, and the low-concentration second impurities Located above the conductivity type impurity diffusion region,
An LDD transistor comprising side wall spacers formed on both sides of a gate electrode and a first conductivity type impurity diffusion region formed directly under the side wall spacer in the low concentration second conductivity type impurity diffusion region. is there.

【0006】本発明方法は、基板上に、通常の方法によ
りゲートを形成した後、基板と異なる型のイオン注入を
施した後拡散させ、低濃度のソース/ドレーン領域を形
成し、全面的に基板に同型の不純物がドーピングされた
物質,例えばBSG(Boron Silicate
Glass)を蒸着し、エッチングを施してゲート側壁
を形成し、ポストアニーリング工程を施して低濃度のソ
ース/ドレーン領域の中の前記ゲート側壁の直下に基板
と同型の不純物拡散領域を形成し、前記基板と異なる型
のイオン注入を施した後拡散させ、高濃度のソース/ド
レーン領域を形成するステップが含まれる。
According to the method of the present invention, a gate is formed on a substrate by an ordinary method, ion implantation of a type different from that of the substrate is performed, and then diffusion is performed to form a low concentration source / drain region, and the entire surface is formed. A substrate in which the same type of impurities are doped, for example, BSG (Boron Silicate)
And a gate sidewall is formed by etching, and a post-annealing process is performed to form an impurity diffusion region of the same type as the substrate just below the gate sidewall in the low concentration source / drain region. Implanting different types of ions from the substrate and then diffusing to form a high concentration source / drain region.

【0007】[0007]

【実施例】本発明を図5乃至図9を参照して詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to FIGS.

【0008】まず、図5のように、濃度が2×10
15(cm-3)であるP型基板10上に、ゲート酸化膜11
とゲート12を形成し、図6のように、低濃度のソース
/ドレーン領域を形成するために40keV のエネルギで
2×1013(cm-2)の燐イオンを注入する。一方、前記
ゲート12の下方の基板10には40keV のエネルギで
2×1013(cm-2)のドーズのBF2 を注入してチャン
ネル10aを形成する。
First, as shown in FIG. 5, the density is 2 × 10.
A gate oxide film 11 is formed on a P-type substrate 10 having a size of 15 (cm −3 ).
And a gate 12 are formed, and 2 × 10 13 (cm -2 ) of phosphorus ions are implanted at an energy of 40 keV to form a low concentration source / drain region as shown in FIG. On the other hand, the substrate 10 below the gate 12 is implanted with BF 2 at a dose of 2 × 10 13 (cm −2 ) at an energy of 40 keV to form a channel 10a.

【0009】そして図7のように、P型不純物であるホ
ウ素が6×1018(cm-3)の濃度でドーピングされたシ
リケートガラス(silicate glass,BS
G)を全面的に蒸着した後、リアクチブイオンエッチン
グ(Reactive Ion Etching,RI
E)法によりドライエッチングを施して1500Åの厚
さ(T)の側壁スペーサ13を形成し、熱工程を施して
注入された燐イオンを前記基板10に拡散させて低濃度
のソース/ドレーン領域14を形成する。
Then, as shown in FIG. 7, a silicate glass (BS) doped with boron, which is a P-type impurity, at a concentration of 6 × 10 18 (cm -3 ).
G) is deposited on the entire surface, and then reactive ion etching (RI) is performed.
Dry etching is performed by the method E) to form sidewall spacers 13 having a thickness (T) of 1500Å, and the phosphorus ions injected by a thermal process are diffused into the substrate 10 to form the low concentration source / drain regions 14; To form.

【0010】ついで図8のように、前記ホウ素がドーピ
ングされたゲート側壁13の濃度を向上させ、低濃度の
ソース/ドレーン領域14にホウ素を拡散させるための
ポストアニーリング(post anealing)工
程が施される。その際前記ゲート側壁スペーサ13の直
下の低濃度のソース/ドレーン領域14にホウ素が拡散
され、P型層15を形成させる。
Next, as shown in FIG. 8, a post annealing process is performed to increase the concentration of the boron-doped gate sidewall 13 and diffuse the boron into the low concentration source / drain regions 14. It At that time, boron is diffused into the low-concentration source / drain region 14 immediately below the gate sidewall spacer 13 to form a P-type layer 15.

【0011】その後、図9のように、60keV のエネル
ギで5×1015(cm-2)のドーズのひ素イオンを注入し
て高濃度のソース/ドレーン領域16を形成する。
After that, as shown in FIG. 9, arsenic ions with a dose of 5 × 10 15 (cm −2 ) are implanted at an energy of 60 keV to form a high concentration source / drain region 16.

【0012】以上のように、本発明によれば、LDD構
造のN型トランジスタにおいて、BSGによりゲート側
壁13を形成し、ポストアニーリングの時、ホウ素をゲ
ート側壁13を直下部分に拡散してP型層15を形成さ
せる。この時、このソース/ドレーン領域と反対型のP
型層15はホットキャリアがゲート酸化膜11とゲート
側壁13とに進出するのを沮止する。
As described above, according to the present invention, in the N-type transistor having the LDD structure, the gate sidewall 13 is formed by BSG, and at the time of post-annealing, boron is diffused to the portion directly below the gate sidewall 13 to form the P-type. Form layer 15. At this time, a P type opposite to the source / drain region
The mold layer 15 prevents hot carriers from advancing to the gate oxide film 11 and the gate sidewall 13.

【0013】すなわち、3価不純物であるホウ素は、5
価不純物である燐によって強い電界が発生するのを防ぐ
バッファの役割をするものであり、ホットキャリアがソ
ース領域からドレーン領域に強く流入することを沮止
し、ゲート酸化膜とゲート側壁とにトラップされること
を防ぐ。
That is, boron, which is a trivalent impurity, is 5
It acts as a buffer that prevents the generation of a strong electric field by phosphorus, which is a valent impurity, and prevents hot carriers from flowing strongly from the source region to the drain region, trapping them in the gate oxide film and the gate sidewall. To be prevented.

【0014】従来のLDDトランジスタと本発明による
LDDトランジスタとに対するシミュレーションの結果
は次の通りである。
The simulation results for the conventional LDD transistor and the LDD transistor according to the present invention are as follows.

【0015】まず、図10,11はインパクトイオン
(impact ion)のポテンシャル分布を示すグ
ラフであり、従来構造(図10)では、ゲート酸化膜に
インパクトイオンのポテンシャルが広く分布してホット
キャリアがゲート酸化膜にトラップされることが易くな
る。
First, FIGS. 10 and 11 are graphs showing the potential distribution of impact ions. In the conventional structure (FIG. 10), the potential of impact ions is widely distributed in the gate oxide film and hot carriers are generated in the gate. It is easily trapped in the oxide film.

【0016】逆に、本発明の構造(図11)では、側壁
スペーサの下方にホウ素が拡散されて形成されたP型層
のため、インパクトイオンのポテンシャルが狭く形成さ
れ、ホットキャリアがホウ素イオンと再結合してゲート
酸化膜へ進出することが減少する。したがって、素子特
性がよくなる。ここで、シミュレーション条件でVds
=3.3(Volts),Vgs=5(Volts)を
印加した。
On the contrary, in the structure of the present invention (FIG. 11), since the P-type layer is formed by diffusing boron below the side wall spacer, the potential of impact ions is narrowed, and the hot carriers are boron ions. Recombination and extension into the gate oxide film are reduced. Therefore, the device characteristics are improved. Here, Vds under simulation conditions
= 3.3 (Volts) and Vgs = 5 (Volts) were applied.

【0017】図12〜14は従来のLDDトランジスタ
と本発明によるLDDトランジスタとのLDD(図9
で、A−A′の部分)のドーピング輪郭を示し、比較し
たもので、図示のように、本発明によるLDDドーピン
グ輪郭(図13)では、従来のLDDドーピング輪郭
(図12)に比較して、側壁スペーサの濃度のため、屈
曲が現している、図14では、従来のものと本発明のL
DDドーピング輪郭とを同時に示したものである。
12 to 14 show LDDs of a conventional LDD transistor and an LDD transistor according to the present invention (see FIG. 9).
In FIG. 13, the LDD doping profile according to the present invention (FIG. 13) is compared with the conventional LDD doping profile (FIG. 12). , Due to the concentration of the side wall spacers, a bend appears. In FIG.
3 shows the DD doping profile at the same time.

【0018】図15〜17は従来のLDDトランジスタ
と本発明との特性を評価するパラメータに関するグラフ
である。各パラメータはゲートにバイアス電圧が印加さ
れる時、正孔によって基板に流れる電流(Isub )であ
る。従来の構造(図15)においてはゲート電圧(Vg
s)が1.8V印加される時、電流(Isub )の値が
1.506×10-6(Amphere/micron)
と最大になり、本発明の構造(図16)においては、ゲ
ート電圧(Vgs)が1.6V印加される時、電流(I
sub )の値が3.016×10-7(Amphere/m
icron)と最大になる。結局、側壁スペーサの下の
P型領域で多数のホットキャリアが再結合され、ドレイ
ン電界に衝突して発生する電子,正孔対の生成が少なく
なるので、基板に流れる電流の量も少くなくなる。本発
明によるシミュレーションの結果は従来のものより約1
/5位減少されるよい特性であることを示している。ま
た、この基板に流れる電流(Isub )は、ゲートにバイ
アス電圧が印加された状態での、ゲート電流を間接的に
測定するパラメータである。結局、これはホットキャリ
アにより、低下するゲート酸化膜の品質を評価するパラ
メータである。図17は従来のトランジスタと本発明の
トランジスタとの電流(Isub )を比較したものであ
る。
15 to 17 are graphs relating to parameters for evaluating the characteristics of the conventional LDD transistor and the present invention. Each parameter is a current (I sub ) flowing through the substrate by holes when a bias voltage is applied to the gate. In the conventional structure (FIG. 15), the gate voltage (Vg
s) is applied with 1.8 V, the value of current (I sub ) is 1.506 × 10 −6 (Amphere / micron)
In the structure of the present invention (FIG. 16), when the gate voltage (Vgs) is 1.6 V, the current (I
The value of sub ) is 3.016 × 10 -7 (Amphere / m
icron) and the maximum. Eventually, a large number of hot carriers are recombined in the P-type region under the sidewall spacers, and the number of electron-hole pairs generated by collision with the drain electric field is reduced, so that the amount of current flowing through the substrate is also small. The result of the simulation according to the present invention is about 1 than the conventional one.
It shows that it has a good characteristic of being reduced by / 5. The current (I sub ) flowing through this substrate is a parameter that indirectly measures the gate current when the bias voltage is applied to the gate. After all, this is a parameter for evaluating the quality of the gate oxide film which is deteriorated by hot carriers. FIG. 17 compares the current (I sub ) between the conventional transistor and the transistor of the present invention.

【0019】図18,19はLDDトランジスタの特性
を評価する他のパラメータを示すグラフである。各パラ
メータはゲートにバイアス電圧が印加される時、電子に
よってゲートに流れる電流(Ig)である。図示のよう
に、ゲート電圧(Vgs)が3.0V印加される時、従
来の構造(図18)においてはIgは1×10-15 (A
mphere/micron)であり、本発明の構造
(図19)においては、その値が3×10-18 (Amp
here/micron)になる。ここでも、従来の構
造による電流(Ig)より本発明の構造による電流(I
g)がずっと小さいことがわかる。
18 and 19 are graphs showing other parameters for evaluating the characteristics of the LDD transistor. Each parameter is a current (Ig) flowing through the gate by electrons when a bias voltage is applied to the gate. As shown in the figure, when a gate voltage (Vgs) of 3.0V is applied, Ig is 1 × 10 −15 (A) in the conventional structure (FIG. 18).
mphere / micron), and the value is 3 × 10 −18 (Amp) in the structure of the present invention (FIG. 19).
"here / micron)". Again, the current (Ig) according to the structure of the present invention is more
It turns out that g) is much smaller.

【0020】[0020]

【発明の効果】以上に説明したように、本発明によれ
ば、側壁スペーサの下方に基板と同型の不純物領域を形
成して強い電界によりゲート酸化膜とゲート側壁とにト
ラップされるホットキャリアが減少してトランジスタの
特性および信頼性が大きく向上する効果がある。
As described above, according to the present invention, the hot carriers trapped in the gate oxide film and the gate sidewall by the strong electric field are formed by forming the impurity region of the same type as the substrate below the sidewall spacer. There is an effect that the characteristics are reduced and the characteristics and reliability of the transistor are greatly improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のLDDトランジスタの製造工程断面図で
ある。
FIG. 1 is a cross-sectional view of manufacturing steps of a conventional LDD transistor.

【図2】従来のLDDトランジスタの製造工程断面図で
ある。
FIG. 2 is a cross-sectional view of manufacturing steps of a conventional LDD transistor.

【図3】従来のLDDトランジスタの製造工程断面図で
ある。
FIG. 3 is a cross-sectional view of manufacturing steps of a conventional LDD transistor.

【図4】従来のLDDトランジスタの製造工程断面図で
ある。
FIG. 4 is a cross-sectional view of manufacturing steps of a conventional LDD transistor.

【図5】本発明によるLDDトランジスタの製造工程断
面図である。
FIG. 5 is a cross-sectional view of the manufacturing process of the LDD transistor according to the present invention.

【図6】本発明によるLDDトランジスタの製造工程断
面図である。
FIG. 6 is a sectional view of a manufacturing process of an LDD transistor according to the present invention.

【図7】本発明によるLDDトランジスタの製造工程断
面図である。
FIG. 7 is a cross-sectional view of the manufacturing process of the LDD transistor according to the present invention.

【図8】本発明によるLDDトランジスタの製造工程断
面図である。
FIG. 8 is a sectional view of a manufacturing process of an LDD transistor according to the present invention.

【図9】本発明によるLDDトランジスタの製造工程断
面図である。
FIG. 9 is a cross-sectional view of the manufacturing process of the LDD transistor according to the present invention.

【図10】従来LDDトランジスタにおいてインパクト
イオンのポテンシャル分布図である。
FIG. 10 is a potential distribution diagram of impact ions in a conventional LDD transistor.

【図11】本発明によるLDDトランジスタにおいてイ
ンパクトイオンのポテンシャル分布図である。
FIG. 11 is a potential distribution diagram of impact ions in the LDD transistor according to the present invention.

【図12】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 12: Conventional LDD transistor and L according to the present invention
It is a DD transistor, a simulation result, and a comparison graph figure.

【図13】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 13: Conventional LDD transistor and L according to the present invention
It is a DD transistor, a simulation result, and a comparison graph figure.

【図14】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 14 is a conventional LDD transistor and L according to the present invention.
It is a DD transistor, a simulation result, and a comparison graph figure.

【図15】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 15 shows a conventional LDD transistor and L according to the present invention.
It is a DD transistor, a simulation result, and a comparison graph figure.

【図16】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 16 shows a conventional LDD transistor and L according to the present invention.
It is a DD transistor, a simulation result, and a comparison graph figure.

【図17】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 17: Conventional LDD transistor and L according to the present invention
It is a DD transistor, a simulation result, and a comparison graph figure.

【図18】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 18: Conventional LDD transistor and L according to the present invention
It is a DD transistor, a simulation result, and a comparison graph figure.

【図19】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 19 shows a conventional LDD transistor and L according to the present invention.
It is a DD transistor, a simulation result, and a comparison graph figure.

【符号の説明】[Explanation of symbols]

10 P型基板 13 側壁スペーサ 14 ソース/ドレーン領域 15 P型層 10 P-type substrate 13 Sidewall spacer 14 Source / drain region 15 P-type layer

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型の基板と, 前記基板上に形成されたゲート電極と, 前記ゲート電極を中心として両側の前記基板表面内に形
成された低濃度の第2導電型不純物拡散領域と, 前記低濃度の第2導電型不純物拡散領域のそれぞれに隣
接して前記基板の表面内に形成された高濃度の第2導電
型不純物拡散領域と, 前記低濃度の第2導電型不純物拡散領域の上方に位置
し、かつゲート電極の両側に形成された側壁スペーサ
と, 前記低濃度の第2導電型不純物拡散領域の中、前記側壁
スペーサの直下に形成された第1導電型不純物拡散領域
と, からなるLDDトランジスタ。
1. A first-conductivity-type substrate, a gate electrode formed on the substrate, and a low-concentration second-conductivity-type impurity diffusion region formed in the substrate surface on both sides of the gate electrode as a center. A high concentration second conductivity type impurity diffusion region formed in the surface of the substrate adjacent to each of the low concentration second conductivity type impurity diffusion regions; and a low concentration second conductivity type impurity diffusion region. Side wall spacers located above the region and formed on both sides of the gate electrode, and a first conductivity type impurity diffusion region formed immediately below the side wall spacer in the low concentration second conductivity type impurity diffusion region. And an LDD transistor.
【請求項2】 側壁スペーサの下方に形成された第1導
電型不純物拡散領域が前記低濃度の第2導電型不純物拡
散領域を外れない深さである請求項1に記載のLDDト
ランジスタ。
2. The LDD transistor according to claim 1, wherein the first conductivity type impurity diffusion region formed below the sidewall spacer has a depth that does not deviate from the low concentration second conductivity type impurity diffusion region.
【請求項3】 第1導電型の基板の上にゲート電極を形
成する過程と, 前記ゲート電極の両側の基板表面内に、第2導電型の低
濃度のイオンを注入した後拡散させて低濃度の第2導電
型不純物拡散領域を形成する過程と, 全表面にわたって第1導電型不純物がドーピングされた
物質を蒸着し、エッチングを施してゲート電極の側面に
側壁スペーサを形成する過程と, 前記側壁スペーサの下にある前記低濃度の第2導電型不
純物拡散領域に不純物を拡散させ、側壁スペーサの直下
に第1導電型不純物拡散領域を形成する過程と, 前記低濃度の第2導電型不純物拡散領域に隣接する箇所
に、第2導電型高濃度のイオンを注入した後拡散させて
高濃度の第2導電型不純物拡散領域を形成する過程と, が順次含まれることを特徴とするLDDトランジスタの
製造方法。
3. A process of forming a gate electrode on a substrate of the first conductivity type, and a step of implanting low concentration ions of the second conductivity type into the surface of the substrate on both sides of the gate electrode and then diffusing the ions to lower the concentration. A step of forming a second conductivity type impurity diffusion region having a high concentration, a step of depositing a material doped with the first conductivity type impurity over the entire surface, and performing etching to form a sidewall spacer on a side surface of the gate electrode; Diffusing impurities into the low-concentration second-conductivity-type impurity diffusion region below the sidewall spacer to form a first-conductivity-type impurity diffusion region immediately below the sidewall spacer; and the low-concentration second-conductivity-type impurity diffusion region. An LDD transistor including a step of forming a high-concentration second-conductivity-type impurity diffusion region by injecting second-conductivity-type high-concentration ions into a region adjacent to the diffusion region and then diffusing the ions. Method for producing a register.
【請求項4】 RIE法ドライエッチングを施して側壁
スペーサを形成することを特徴とする請求項3に記載の
LDDトランジスタの製造方法。
4. The method of manufacturing an LDD transistor according to claim 3, wherein the sidewall spacers are formed by performing RIE dry etching.
【請求項5】 側壁スペーサをBSGで形成することを
特徴とする請求項3に記載のLDDトランジスタの製造
方法。
5. The method of manufacturing an LDD transistor according to claim 3, wherein the sidewall spacer is formed of BSG.
【請求項6】 第2導電型基板を用いる場合、側壁スペ
ーサをPSGで形成することを特徴とする請求項3に記
載のLDDトランジスタの製造方法。
6. The method of manufacturing an LDD transistor according to claim 3, wherein the sidewall spacer is formed of PSG when the second conductivity type substrate is used.
【請求項7】 1500Åの厚さで、側壁スペーサを形
成することを特徴とする請求項3ないし6のいずれかに
記載のLDDトランジスタの製造方法。
7. The method of manufacturing an LDD transistor according to claim 3, wherein the sidewall spacer is formed with a thickness of 1500Å.
【請求項8】 第1導電型基板の不純物と第1導電型不
純物拡散領域の不純物は、同じ物質を用いることを特徴
とする請求項3に記載のLDDトランジスタの製造方
法。
8. The method of manufacturing an LDD transistor according to claim 3, wherein the impurities of the first conductivity type substrate and the impurities of the first conductivity type impurity diffusion region are made of the same material.
【請求項9】 第1導電型基板および第1導電型不純物
拡散領域に、ドーピングされた物質に反対型の不純物を
用いて低濃度及び高濃度の第2導電型不純物拡散領域を
形成することを特徴とする請求項3に記載のLDDトラ
ンジスタの製造方法。
9. A low-concentration and high-concentration second-conductivity-type impurity diffusion region is formed in the first-conductivity-type substrate and the first-conductivity-type impurity diffusion region by using an impurity of an opposite type to the doped material. The method for manufacturing an LDD transistor according to claim 3, wherein the LDD transistor is manufactured.
【請求項10】 40keV のエネルギで2×1013(cm
-2)のリンを注入して低濃度の第2導電型不純物拡散領
域を形成することを特徴とする請求項3又は9に記載の
LDDトランジスタの製造方法。
10. At an energy of 40 keV, 2 × 10 13 (cm
10. The method of manufacturing an LDD transistor according to claim 3, wherein the second concentration type impurity diffusion region having a low concentration is formed by implanting phosphorus of ( -2 ).
【請求項11】 60keV のエネルギで5×1015(cm
-2)のひ素を注入して高濃度の第2導電型不純物拡散領
域を形成することを特徴とする請求項3又は9に記載の
LDDトランジスタの製造方法。
11. The energy of 60 keV is 5 × 10 15 (cm
The method of manufacturing an LDD transistor according to claim 3 or 9, wherein arsenic of ( -2 ) is implanted to form a high-concentration second conductivity type impurity diffusion region.
【請求項12】 ポストアニーリング工程を施して側壁
スペーサの下方に第1導電型不純物拡散領域を形成する
ことを特徴とする請求項3に記載のLDDトランジスタ
の製造方法。
12. The method of manufacturing an LDD transistor according to claim 3, wherein a first annealing impurity diffusion region is formed below the sidewall spacer by performing a post annealing process.
【請求項13】 側壁スペーサの下方に形成する第1導
電型不純物拡散領域が、前記低濃度の第2導電型不純物
拡散領域を外れないように形成することを特徴とする請
求項3又は12に記載のLDDトランジスタの製造方
法。
13. The method according to claim 3, wherein the first-conductivity-type impurity diffusion region formed below the sidewall spacer is formed so as not to deviate from the low-concentration second-conductivity-type impurity diffusion region. A method for manufacturing the LDD transistor described.
JP4116768A 1991-04-10 1992-04-10 Method for manufacturing LDD transistor Expired - Fee Related JP2547690B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR5714/1991 1991-04-10
KR1019910005714A KR920020594A (en) 1991-04-10 1991-04-10 LDD transistor structure and manufacturing method

Publications (2)

Publication Number Publication Date
JPH0629308A true JPH0629308A (en) 1994-02-04
JP2547690B2 JP2547690B2 (en) 1996-10-23

Family

ID=19313084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116768A Expired - Fee Related JP2547690B2 (en) 1991-04-10 1992-04-10 Method for manufacturing LDD transistor

Country Status (4)

Country Link
JP (1) JP2547690B2 (en)
KR (1) KR920020594A (en)
DE (1) DE4211999C2 (en)
TW (1) TW268136B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518945A (en) * 1995-05-05 1996-05-21 International Business Machines Corporation Method of making a diffused lightly doped drain device with built in etch stop
US6339005B1 (en) * 1999-10-22 2002-01-15 International Business Machines Corporation Disposable spacer for symmetric and asymmetric Schottky contact to SOI MOSFET
US7732285B2 (en) * 2007-03-28 2010-06-08 Intel Corporation Semiconductor device having self-aligned epitaxial source and drain extensions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143477A (en) * 1984-08-08 1986-03-03 Hitachi Ltd Manufacture of mos transistor
JPS61214575A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Semiconductor integrated circuit device
JPH01309376A (en) * 1988-06-07 1989-12-13 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143477A (en) * 1984-08-08 1986-03-03 Hitachi Ltd Manufacture of mos transistor
JPS61214575A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Semiconductor integrated circuit device
JPH01309376A (en) * 1988-06-07 1989-12-13 Mitsubishi Electric Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
KR920020594A (en) 1992-11-21
JP2547690B2 (en) 1996-10-23
DE4211999A1 (en) 1992-10-15
DE4211999C2 (en) 1999-06-10
TW268136B (en) 1996-01-11

Similar Documents

Publication Publication Date Title
KR940005802B1 (en) Cmos semiconductor device and method of making the same
US6468843B2 (en) MIS semiconductor device having an LDD structure and a manufacturing method therefor
US6288433B1 (en) Field effect transistor having improved hot carrier immunity
JP2905808B2 (en) Semiconductor device and manufacturing method thereof
KR20000069811A (en) Well boosting threshold voltage rollup
KR0137625B1 (en) Structure and manufacture of semiconductor
JP2002025931A (en) Manufacture of semiconductor element
JPH09181307A (en) Semiconductor device and manufacturing method therefor
JP2558961B2 (en) Method for manufacturing semiconductor device
US4868618A (en) Ion implanted semiconductor device
US6297111B1 (en) Self-aligned channel transistor and method for making same
JPH05267327A (en) Misfet and its manufacture
JPH0629308A (en) Ldd transistor and its manufacture
JPH01307266A (en) Manufacture of semiconductor device
JP2703883B2 (en) MIS transistor and method of manufacturing the same
US5681771A (en) Method of manufacturing a LDD transistor in a semiconductor device
KR100333031B1 (en) P-channel mos transistor and manufacturing method of a semiconductor device
JPH02306663A (en) Manufacture of semiconductor device
JPH06260496A (en) Manufacture of semiconductor device
KR0147679B1 (en) Method for manufacturing semiconductor device
JPH07147399A (en) Semiconductor device
JP3126082B2 (en) Complementary transistor and method of manufacturing the same
JPH0818047A (en) Misfet and its manufacturing method
JPH098310A (en) Fabrication of semiconductor device
JPS6244697B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees