JP2547690B2 - Method for manufacturing LDD transistor - Google Patents

Method for manufacturing LDD transistor

Info

Publication number
JP2547690B2
JP2547690B2 JP4116768A JP11676892A JP2547690B2 JP 2547690 B2 JP2547690 B2 JP 2547690B2 JP 4116768 A JP4116768 A JP 4116768A JP 11676892 A JP11676892 A JP 11676892A JP 2547690 B2 JP2547690 B2 JP 2547690B2
Authority
JP
Japan
Prior art keywords
conductivity type
type impurity
diffusion region
manufacturing
impurity diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP4116768A
Other languages
Japanese (ja)
Other versions
JPH0629308A (en
Inventor
リー・イョン・ハン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Goldstar Electron Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goldstar Electron Co Ltd filed Critical Goldstar Electron Co Ltd
Publication of JPH0629308A publication Critical patent/JPH0629308A/en
Application granted granted Critical
Publication of JP2547690B2 publication Critical patent/JP2547690B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer
    • H01L21/2251Diffusion into or out of group IV semiconductors
    • H01L21/2254Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides
    • H01L21/2255Diffusion into or out of group IV semiconductors from or through or into an applied layer, e.g. photoresist, nitrides the applied layer comprising oxides only, e.g. P2O5, PSG, H3BO3, doped oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LDD(Lihtly
Doped Drain)の構造を有するトランジス
タの製造方法に関し、特にソース/ドレーン領域の近傍
の電界によるホットキャリアの影響を減少させたものの
製造方法に関する。
The present invention relates to an LDD (Lihtly).
The present invention relates to a method of manufacturing a transistor having a Doped Drain structure, and more particularly to a method of manufacturing a transistor in which the influence of hot carriers due to an electric field in the vicinity of a source / drain region is reduced.

【0002】[0002]

【従来の技術】従来、一般のLDD構造を有するN型ト
ランジスタの製造工程を図1乃至図4を参照して説明す
る。まず、図1のように、P型基板1上にゲート2を形
成し、図2のように、低濃度のソース/ドレーン領域を
形成するためのN型イオン注入を施す。ついで図3の
ように、ゲート側壁スペーサ3を形成し、熱工程を施し
て注入したN型イオンを基板に拡散させ、低濃度のソ
ース/ドレーン領域4を形成する。そして図4のよう
に、N型イオン注入を施した後拡散させて高濃度のソ
ース/ドレーン領域5を形成する。
2. Description of the Related Art Conventionally, a manufacturing process of an N-type transistor having a general LDD structure will be described with reference to FIGS. First, as shown in FIG. 1, a gate 2 is formed on a P-type substrate 1, and N -type ion implantation for forming low concentration source / drain regions is performed as shown in FIG. Then, as shown in FIG. 3, a gate sidewall spacer 3 is formed, and a heat process is performed to diffuse the implanted N type ions into the substrate to form a low concentration source / drain region 4. Then, as shown in FIG. 4, N + type ion implantation is performed and then diffused to form a high concentration source / drain region 5.

【0003】[0003]

【発明が解決しようとする課題】ソース/ドレーン領域
の近傍に集中される強い電界を減少させるために、従来
は前記のように高濃度のソースドレーン領域5と低濃度
のソースドレーン領域とを形成して、最終商品の信頼性
を改善していた。しかしながら、強い電界によるホット
キャリアが側壁スペーサを形成するLTO(Low T
emperature Oxide)膜にトラップされ
て電界が存在することとなり、これにより、そのホット
キャリアのゲート酸化膜の信頼性が低下する不都合があ
った。
In order to reduce the strong electric field concentrated near the source / drain regions, the high concentration source drain region 5 and the low concentration source drain region are conventionally formed as described above. And improved the reliability of the final product. However, hot carriers generated by a strong electric field form LTO (Low T
Since an electric field is trapped in the embossed oxide (Oxide Oxide) film, the reliability of the gate oxide film for the hot carriers is lowered.

【0004】本発明は、このような従来の技術の不都合
を解消するためのもので、強い電界によりトラップされ
るホットキャリアを減少できる改良されたLDDトラン
ジスタ及びその製造方法を提供するにある。
SUMMARY OF THE INVENTION The present invention is intended to solve the above disadvantages of the conventional technique, and provides an improved LDD transistor capable of reducing hot carriers trapped by a strong electric field and a method of manufacturing the same.

【0005】[0005]

【課題を解決するための手段】本発明は、基板上に、通
常の方法によりゲートを形成した後、基板と異なる型の
イオン注入を施した後拡散させ、低濃度のソース/ドレ
ーン領域を形成し、全面的に基板に同型の不純物がドー
ピングされた物質,例えばBSG(BoronSili
cate Glass)を蒸着し、エッチングを施して
ゲート側壁を形成し、ポストアニーリング工程を施して
低濃度のソース/ドレーン領域の中の前記ゲート側壁の
直下に基板と同型の不純物拡散領域を形成し、前記基板
と異なる型のイオン注入を施した後拡散させ、高濃度の
ソース/ドレーン領域を形成するステップが含まれる。
This onset bright [Means for solving problems], on the substrate, after forming a gate in a conventional manner, is diffused after being subjected to ion implantation of a different type as the substrate, a low concentration source / drain regions of the A material, such as BSG (BoronSili), which is formed and entirely doped with the same type of impurities on the substrate.
and a gate sidewall is formed by etching, and a post-annealing process is performed to form an impurity diffusion region of the same type as the substrate just below the gate sidewall in the low concentration source / drain region. Ion implantation of a different type from the substrate and then diffusion to form high concentration source / drain regions are included.

【0006】[0006]

【実施例】本発明を図5乃至図9を参照して詳細に説明
する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described in detail with reference to FIGS.

【0007】まず、図5のように、濃度が2×1015
(cm−3)であるP型基板10上に、ゲート酸化膜1
1とゲート12を形成し、図6のように、低濃度のソー
ス/ドレーン領域を形成するために40keVのエネル
ギで2×1013(cm−2)の燐イオンを注入する。
一方、前記ゲート12の下方の基板10には40keV
のエネルギで2×1013(cm−2)のドーズのBF
を注入してチャンネル10aを形成する。
First, as shown in FIG. 5, the density is 2 × 10 15.
(Cm −3 ), on the P-type substrate 10, the gate oxide film 1 is formed.
1 and the gate 12 are formed, and as shown in FIG. 6, 2 × 10 13 (cm −2 ) of phosphorus ions are implanted at an energy of 40 keV to form a low concentration source / drain region.
On the other hand, 40 keV is applied to the substrate 10 below the gate 12.
BF with a dose of 2 × 10 13 (cm −2 ) with the energy of
2 is injected to form the channel 10a.

【0008】そして図7のように、P型不純物であるホ
ウ素が6×1018(cm−3)の濃度でドーピングさ
れたシリケートガラス(silicate glas
s,BSG)を全面的に蒸着した後、リアクチブイオン
エッチング(ReactiveIon Etchin
g,RIE)法によりドライエッチングを施して150
0Åの厚さ(T)の側壁スペーサ13を形成し、熱工程
を施して注入された燐イオンを前記基板10に拡散させ
て低濃度のソース/ドレーン領域14を形成する。
Then, as shown in FIG. 7, a silicate glass doped with boron, which is a P-type impurity, at a concentration of 6 × 10 18 (cm −3 ).
s, BSG) is deposited on the entire surface, and then reactive ion etching (Reactive Ion Etchin) is performed.
g, RIE) and dry-etched to 150
A sidewall spacer 13 having a thickness (T) of 0Å is formed, and a phosphorous ion implanted by a thermal process is diffused into the substrate 10 to form a low concentration source / drain region 14.

【0009】ついで図8のように、前記ホウ素がドーピ
ングされたゲート側壁13の濃度を向上させ、低濃度の
ソース/ドレーン領域14にホウ素を拡散させるための
ポストアニーリング(Post anealing)工
程が施される。その際前記ゲート側壁スペーサ13の直
下の低濃度のソース/ドレーン領域14にホウ素が拡散
され、P型層15を形成させる。
Next, as shown in FIG. 8, a post annealing process is performed to increase the concentration of the boron-doped gate sidewall 13 and diffuse the boron into the low concentration source / drain regions 14. It At that time, boron is diffused into the low-concentration source / drain region 14 immediately below the gate sidewall spacer 13 to form a P-type layer 15.

【0010】その後、図9のように、60keVのエネ
ルギで5×1015(cm−2)のドーズのひ素イオン
を注入して高濃度のソース/ドレーン領域16を形成す
る。
After that, as shown in FIG. 9, arsenic ions with a dose of 5 × 10 15 (cm −2 ) are implanted at an energy of 60 keV to form high-concentration source / drain regions 16.

【0011】以上のように、本発明によれば、LDD構
造のN型トランジスタにおいて、BSGによりゲート側
壁13を形成し、ポストアニーリングの時、ホウ素をゲ
ート側壁13を直下部分に拡散してP型層15を形成さ
せる。この時、このソース/ドレーン領域と反対型のP
型層15はホットキャリアがゲート酸化膜11とゲート
側壁13とに進出するのを止する。
As described above, according to the present invention, in the N-type transistor having the LDD structure, the gate sidewall 13 is formed by BSG, and at the time of post-annealing, boron is diffused into the portion immediately below the gate sidewall 13 to form the P-type. Form layer 15. At this time, a P type opposite to the source / drain region
-Type layer 15 is hot carriers deter to advance into the gate oxide film 11 and the gate sidewalls 13.

【0012】すなわち、3価不純物であるホウ素は、5
価不純物である燐によって強い電界が発生するのを防ぐ
バッファの役割をするものであり、ホットキャリアがソ
ース領域からドレーン領域に強く流入することを
し、ゲート酸化膜とゲート側壁とにトラップされること
を防ぐ。
That is, boron, which is a trivalent impurity, is 5
It is intended to the role of a buffer to prevent the strong electric field is generated by phosphorus valence impurities, sealed inhibitory that hot carrier flows strongly from the source region to the drain region, trapped in the gate oxide film and the gate sidewall To be prevented.

【0013】従来のLDDトランジスタと本発明による
LDDトランジスタとに対するシミュレーションの結果
は次の通りである。
The simulation results for the conventional LDD transistor and the LDD transistor according to the present invention are as follows.

【0014】まず、図10,11はインパクトイオン
(impact ion)のポテンシャル分布を示すグ
ラフであり、従来構造(図10)では、ゲート酸化膜に
インパクトイオンのポテンシャルが広く分布してホット
キャリアがゲート酸化膜にトラップされ易くなる。
First, FIGS. 10 and 11 are graphs showing the potential distribution of impact ions. In the conventional structure (FIG. 10), the potential of impact ions is widely distributed in the gate oxide film and hot carriers are generated in the gate. It is easily trapped in the oxide film.

【0015】逆に、本発明の構造(図11)では、側壁
スペーサの下方にホウ素が拡散されて形成されたP型層
のため、インパクトイオンのポテンシャルが狭く形成さ
れ、ホットキャリアがホウ素イオンと再結合してゲート
酸化膜へ進出することが減少する。したがって、素子特
性がよくなる。ここで、シミュレーション条件でVds
=3.3(Volts),Vgs=5(Volts)を
印加した。
On the contrary, in the structure of the present invention (FIG. 11), since the P-type layer is formed by diffusing boron under the side wall spacer, the potential of impact ions is narrowed, and the hot carriers are boron ions. Recombination and extension into the gate oxide film are reduced. Therefore, the device characteristics are improved. Here, Vds under simulation conditions
= 3.3 (Volts) and Vgs = 5 (Volts) were applied.

【0016】図12〜14は従来のLDDトランジスタ
と本発明によるLDDトランジスタとのLDD(図9
で、A−A′の部分)のドーピング輪郭を示し、比較し
たもので、図示のように、本発明によるLDDドーピン
グ輪郭(図13)では、従来のLDDドーピング輪郭
(図12)に比較して、側壁スペーサの濃度のため、屈
曲が現ている、図14では、従来のものと本発明のL
DDドーピング輪郭とを同時に示したものである。
12 to 14 show the LDD of the conventional LDD transistor and the LDD transistor of the present invention (see FIG. 9).
In FIG. 13, the LDD doping profile according to the present invention (FIG. 13) is compared with the conventional LDD doping profile (FIG. 12). since the concentration of the sidewall spacer, bending is present, in Figure 14, the conventional ones and the present invention L
3 shows the DD doping profile at the same time.

【0017】図15〜17は従来のLDDトランジスタ
と本発明との特性を評価するパラメータに関するグラフ
である。各パラメータはゲートにバイアス電圧が印加さ
れる時、正孔によって基板に流れる電流(Isub)で
ある。従来の構造(図15)においてはゲート電圧(V
gs)が1.8V印加される時、電流(Isub)の値
が1.506×10−6(Amphere/micro
n)と最大になり、本発明の構造(図16)において
は、ゲート電圧(Vgs)が1.6V印加される時、電
流(Isub)の値が3.016×10−7(Amph
ere/micron)と最大になる。結局、側壁スペ
ーサの下のP型領域で多数のホットキャリアが再結合さ
れ、ドレイン電界に衝突して発生する電子,正孔対の生
成が少なくなるので、基板に流れる電流の量も少くなく
なる。本発明によるシミュレーションの結果は従来のも
のより約1/5位減少されるよい特性であることを示し
ている。また、この基板に流れる電流(Isub)は、
ゲートにバイアス電圧が印加された状態での、ゲート電
流を間接的に測定するパラメータである。結局、これは
ホットキャリアにより、低下するゲート酸化膜の品質を
評価するパラメータである。図17は従来のトランジス
タと本発明のトランジスタとの電流(Isub)を比較
したものである。
15 to 17 are graphs relating to parameters for evaluating the characteristics of the conventional LDD transistor and the present invention. Each parameter is a current ( Isub ) flowing through the substrate by holes when a bias voltage is applied to the gate. In the conventional structure (FIG. 15), the gate voltage (V
gs) is applied at 1.8 V, the current (I sub ) value is 1.506 × 10 −6 (Amphere / micro).
n) and the maximum, in the structure (FIG. 16) of the present invention, when the gate voltage (Vgs) is 1.6V applied, the value of the current (I sub) is 3.016 × 10 -7 (Amph
ere / micron). Eventually, a large number of hot carriers are recombined in the P-type region under the sidewall spacers, and the number of electron-hole pairs generated by collision with the drain electric field is reduced, so that the amount of current flowing through the substrate is also small. The result of the simulation according to the present invention shows that it has a good characteristic that it is reduced by about 1/5 as compared with the conventional one. In addition, the current (I sub ) flowing through this substrate is
This is a parameter that indirectly measures the gate current when a bias voltage is applied to the gate. After all, this is a parameter for evaluating the quality of the gate oxide film which is deteriorated by hot carriers. FIG. 17 compares the current (I sub ) between the conventional transistor and the transistor of the present invention.

【0018】図18,19はLDDトランジスタの特性
を評価する他のパラメータを示すグラフである。各パラ
メータはゲートにバイアス電圧が印加される時、電子に
よってゲートに流れる電流(Ig)である。図示のよう
に、ゲート電圧(Vgs)が3.0V印加される時、従
来の構造(図18)においてはIgは1×10
−15(Amphere/micron)であり、本発
明の構造(図19)においては、その値が3×10
−18(Amphere/micron)になる。ここ
でも、従来の構造による電流(Ig)より本発明の構造
による電流(Ig)がずっと小さいことがわかる。
18 and 19 are graphs showing other parameters for evaluating the characteristics of the LDD transistor. Each parameter is a current (Ig) flowing through the gate by electrons when a bias voltage is applied to the gate. As shown in the figure, when a gate voltage (Vgs) of 3.0V is applied, Ig is 1 × 10 in the conventional structure (FIG. 18).
-15 (Amphere / micron), and the value is 3 × 10 in the structure of the present invention (FIG. 19).
It becomes -18 (Amphere / micron). Again, it can be seen that the current (Ig) according to the structure of the present invention is much smaller than the current (Ig) according to the conventional structure.

【0019】[0019]

【発明の効果】以上に説明したように、本発明によれ
ば、側壁スペーサに第1導電型をドーピングされた物質
を使用し、その側壁スペーサから第1導電型の不純物を
拡散させるようにしたので、低濃度の第2導電型不純物
拡散領域の所定の位置に正確に第1導電型不純物を拡散
させることができ、強い電界によるゲート酸化膜とゲー
ト側壁とにトラップされるホットキャリアを減少させて
トランジスタの特性および信頼性を大きく改善させるこ
とができた。
As described above, according to the present invention, the sidewall spacers are doped with the first conductivity type material.
Is used to remove impurities of the first conductivity type from the sidewall spacers.
Since it is made to diffuse, a low concentration second conductivity type impurity
Accurately diffuses the first conductivity type impurity at a predetermined position in the diffusion region
Gate oxide and gate due to the strong electric field.
To reduce hot carriers trapped in the sidewall
To greatly improve the characteristics and reliability of transistors.
I was able to.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来のLDDトランジスタの製造工程断面図で
ある。
FIG. 1 is a cross-sectional view of manufacturing steps of a conventional LDD transistor.

【図2】従来のLDDトランジスタの製造工程断面図で
ある。
FIG. 2 is a cross-sectional view of manufacturing steps of a conventional LDD transistor.

【図3】従来のLDDトランジスタの製造工程断面図で
ある。
FIG. 3 is a cross-sectional view of manufacturing steps of a conventional LDD transistor.

【図4】従来のLDDトランジスタの製造工程断面図で
ある。
FIG. 4 is a cross-sectional view of manufacturing steps of a conventional LDD transistor.

【図5】本発明によるLDDトランジスタの製造工程断
面図である。
FIG. 5 is a cross-sectional view of the manufacturing process of the LDD transistor according to the present invention.

【図6】本発明によるLDDトランジスタの製造工程断
面図である。
FIG. 6 is a sectional view of a manufacturing process of an LDD transistor according to the present invention.

【図7】本発明によるLDDトランジスタの製造工程断
面図である。
FIG. 7 is a cross-sectional view of the manufacturing process of the LDD transistor according to the present invention.

【図8】本発明によるLDDトランジスタの製造工程断
面図である。
FIG. 8 is a sectional view of a manufacturing process of an LDD transistor according to the present invention.

【図9】本発明によるLDDトランジスタの製造工程断
面図である。
FIG. 9 is a cross-sectional view of the manufacturing process of the LDD transistor according to the present invention.

【図10】従来LDDトランジスタにおいてインパクト
イオンのポテンシャル分布図である。
FIG. 10 is a potential distribution diagram of impact ions in a conventional LDD transistor.

【図11】本発明によるLDDトランジスタにおいてイ
ンパクトイオンのポテンシャル分布図である。
FIG. 11 is a potential distribution diagram of impact ions in the LDD transistor according to the present invention.

【図12】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 12: Conventional LDD transistor and L according to the present invention
It is a DD transistor, a simulation result, and a comparison graph figure.

【図13】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 13: Conventional LDD transistor and L according to the present invention
It is a DD transistor, a simulation result, and a comparison graph figure.

【図14】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 14 is a conventional LDD transistor and L according to the present invention.
It is a DD transistor, a simulation result, and a comparison graph figure.

【図15】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 15 shows a conventional LDD transistor and L according to the present invention.
It is a DD transistor and a simulation result and a comparison graph figure.

【図16】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 16 shows a conventional LDD transistor and L according to the present invention.
It is a DD transistor, a simulation result, and a comparison graph figure.

【図17】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 17: Conventional LDD transistor and L according to the present invention
It is a DD transistor and a simulation result and a comparison graph figure.

【図18】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 18: Conventional LDD transistor and L according to the present invention
It is a DD transistor and a simulation result and a comparison graph figure.

【図19】従来のLDDトランジスタと本発明によるL
DDトランジスタとシミュレーション結果及び比較グラ
フ図である。
FIG. 19 shows a conventional LDD transistor and L according to the present invention.
It is a DD transistor, a simulation result, and a comparison graph figure.

【符号の説明】[Explanation of symbols]

10 P型基板 13 側壁スペーサ 14 ソース/ドレーン領域 15 P型層 10 P-type substrate 13 Sidewall spacer 14 Source / drain region 15 P-type layer

Claims (10)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1導電型の基板の上にゲート電極を形
成する過程と、 前記ゲート電極の両側の基板表面内に、第2導電型の低
濃度のイオンを注入した後拡散させて低濃度の第2導電
型不純物拡散領域を形成する過程と、 全表面にわたって第1導電型不純物がドーピングされた
シリケートガラスを蒸着し、エッチングを施してゲート
電極の側面に側壁スペーサを形成する過程と、 前記側壁スペーサの下にある前記低濃度の第2導電型不
純物拡散領域に不純物を拡散させ、側壁スペーサの直下
に第1導電型不純物拡散領域を形成する過程と、 前記低濃度の第2導電型不純物拡散領域に隣接する箇所
に、第2導電型高濃度のイオンを注入した後拡散させて
高濃度の第2導電型不純物拡散領域を形成する過程と、 が順次含まれることを特徴とするLDDトランジスタの
製造方法。
1. A process of forming a gate electrode on a substrate of the first conductivity type, and a step of implanting low concentration ions of the second conductivity type into the surface of the substrate on both sides of the gate electrode and then diffusing the ions to lower the concentration. The process of forming the second conductivity type impurity diffusion region of high concentration and the doping of the first conductivity type impurity over the entire surface
A process of depositing silicate glass and performing etching to form a sidewall spacer on a side surface of the gate electrode, and diffusing impurities into the low-concentration second conductivity type impurity diffusion region under the sidewall spacer, A process of forming a first conductivity type impurity diffusion region immediately below, and a step of implanting a second conductivity type high concentration ion into a portion adjacent to the low concentration second conductivity type impurity diffusion region and then diffusing it to obtain a high concentration A method of manufacturing an LDD transistor, comprising: a step of forming a second conductivity type impurity diffusion region;
【請求項2】 RIE法ドライエッチングを施して側壁
スペーサを形成することを特徴とする請求項に記載の
LDDトランジスタの製造方法。
2. The method of manufacturing an LDD transistor according to claim 1 , wherein the sidewall spacers are formed by performing RIE dry etching.
【請求項3】 側壁スペーサをBSGで形成することを
特徴とする請求項に記載のLDDトランジスタの製造
方法。
3. The method of manufacturing an LDD transistor according to claim 1 , wherein the sidewall spacer is formed of BSG.
【請求項4】 第2導電型基板を用いる場合、側壁スペ
ーサをPSGで形成することを特徴とする請求項に記
載のLDDトランジスタの製造方法。
4. The method of manufacturing an LDD transistor according to claim 1 , wherein when the second conductivity type substrate is used, the side wall spacer is formed of PSG.
【請求項5】 1500Åの厚さで、側壁スペーサを形
成することを特徴とする請求項ないしのいずれかに
記載のLDDトランジスタの製造方法。
A thickness of 5. 1500 Å, a manufacturing method of the LDD transistor according to any one of 4 to claims 1 and forming a sidewall spacer.
【請求項6】 第1導電型基板の不純物と第1導電型不
純物拡散領域の不純物は、同じ物質を用いることを特徴
とする請求項に記載のLDDトランジスタの製造方
法。
6. The method of manufacturing an LDD transistor according to claim 1 , wherein the impurities of the first conductivity type substrate and the impurities of the first conductivity type impurity diffusion region use the same material.
【請求項7】 40keVのエネルギで2×10
13(cm−2)のリンを注入して低濃度の第2導電型
不純物拡散領域を形成することを特徴とする請求項
記載のLDDトランジスタの製造方法。
7. 2 × 10 at an energy of 40 keV
13. The method of manufacturing an LDD transistor according to claim 1 , wherein 13 (cm −2 ) of phosphorus is implanted to form a low concentration second conductivity type impurity diffusion region.
【請求項8】 60keVのエネルギで5×10
15(cm−2)のひ素を注入して高濃度の第2導電型
不純物拡散領域を形成することを特徴とする請求項
記載のLDDトランジスタの製造方法。
8. 5 × 10 at an energy of 60 keV
The method of manufacturing an LDD transistor according to claim 1 , wherein 15 (cm −2 ) of arsenic is implanted to form a high concentration second conductivity type impurity diffusion region.
【請求項9】 ポストアニーリング工程を施して側壁ス
ペーサの下方に第1導電型不純物拡散領域を形成するこ
とを特徴とする請求項に記載のLDDトランジスタの
製造方法。
9. The method of LDD transistor according to claim 1 which is subjected to post-annealing step and forming a first conductivity type impurity diffusion region under the sidewall spacers.
【請求項10】 側壁スペーサの下方に形成する第1導
電型不純物拡散領域が、前記低濃度の第2導電型不純物
拡散領域を外れないように形成することを特徴とする請
求項に記載のLDDトランジスタの製造方法。
10. A first conductivity type impurity diffusion region formed under the sidewall spacers, according the to claim 1, characterized in that formed so as not to come off the second conductivity type impurity diffusion region of low concentration Manufacturing method of LDD transistor.
JP4116768A 1991-04-10 1992-04-10 Method for manufacturing LDD transistor Expired - Fee Related JP2547690B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR5714/1991 1991-04-10
KR1019910005714A KR920020594A (en) 1991-04-10 1991-04-10 LDD transistor structure and manufacturing method

Publications (2)

Publication Number Publication Date
JPH0629308A JPH0629308A (en) 1994-02-04
JP2547690B2 true JP2547690B2 (en) 1996-10-23

Family

ID=19313084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116768A Expired - Fee Related JP2547690B2 (en) 1991-04-10 1992-04-10 Method for manufacturing LDD transistor

Country Status (4)

Country Link
JP (1) JP2547690B2 (en)
KR (1) KR920020594A (en)
DE (1) DE4211999C2 (en)
TW (1) TW268136B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5518945A (en) * 1995-05-05 1996-05-21 International Business Machines Corporation Method of making a diffused lightly doped drain device with built in etch stop
US6339005B1 (en) * 1999-10-22 2002-01-15 International Business Machines Corporation Disposable spacer for symmetric and asymmetric Schottky contact to SOI MOSFET
US7732285B2 (en) * 2007-03-28 2010-06-08 Intel Corporation Semiconductor device having self-aligned epitaxial source and drain extensions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143477A (en) * 1984-08-08 1986-03-03 Hitachi Ltd Manufacture of mos transistor
JPS61214575A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Semiconductor integrated circuit device
JPH01309376A (en) * 1988-06-07 1989-12-13 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143477A (en) * 1984-08-08 1986-03-03 Hitachi Ltd Manufacture of mos transistor
JPS61214575A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Semiconductor integrated circuit device
JPH01309376A (en) * 1988-06-07 1989-12-13 Mitsubishi Electric Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
KR920020594A (en) 1992-11-21
JPH0629308A (en) 1994-02-04
DE4211999A1 (en) 1992-10-15
DE4211999C2 (en) 1999-06-10
TW268136B (en) 1996-01-11

Similar Documents

Publication Publication Date Title
US5041885A (en) Surface field effect transistor with depressed source and/or drain areas for ULSI integrated devices
KR940005802B1 (en) Cmos semiconductor device and method of making the same
US6468843B2 (en) MIS semiconductor device having an LDD structure and a manufacturing method therefor
KR0137625B1 (en) Structure and manufacture of semiconductor
JP2547690B2 (en) Method for manufacturing LDD transistor
JPH01307266A (en) Manufacture of semiconductor device
US20070114604A1 (en) Double-extension formation using offset spacer
JP2683979B2 (en) Semiconductor device and manufacturing method thereof
JPH04260335A (en) Manufacture of field-effect transistor
US5215936A (en) Method of fabricating a semiconductor device having a lightly-doped drain structure
JPH06177146A (en) Manufacture of mosfet
JP2757491B2 (en) Method for manufacturing semiconductor device
JPH05335559A (en) Forming method for double diffused layer
JPH0548110A (en) Manufacture of semiconductor element
JPH07147399A (en) Semiconductor device
CN116190384A (en) Semiconductor device and method for manufacturing the same
JPH0234937A (en) Manufacture of semiconductor device
JP3126082B2 (en) Complementary transistor and method of manufacturing the same
JPH0818047A (en) Misfet and its manufacturing method
JPH0595000A (en) Manufacture of semiconductor device
JP3120372B2 (en) Method for manufacturing thin film transistor
JP2948892B2 (en) Mos field-effect transistor and its manufacture
KR960008736B1 (en) Mosfet and the manufacturing method thereof
JP2757962B2 (en) Manufacturing method of electrostatic induction semiconductor device
KR0172820B1 (en) Method of manufacturing semiconductor device

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S631 Written request for registration of reclamation of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313631

S633 Written request for registration of reclamation of name

Free format text: JAPANESE INTERMEDIATE CODE: R313633

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees