JPH01307266A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01307266A
JPH01307266A JP63137576A JP13757688A JPH01307266A JP H01307266 A JPH01307266 A JP H01307266A JP 63137576 A JP63137576 A JP 63137576A JP 13757688 A JP13757688 A JP 13757688A JP H01307266 A JPH01307266 A JP H01307266A
Authority
JP
Japan
Prior art keywords
drain
gate electrode
forming
source
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63137576A
Other languages
Japanese (ja)
Inventor
Akihiro Shimizu
昭博 清水
Yoshio Sakai
芳男 酒井
Ryuichi Izawa
井沢 龍一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP63137576A priority Critical patent/JPH01307266A/en
Publication of JPH01307266A publication Critical patent/JPH01307266A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To overlap a gate electrode and source-drain sufficiently, and to obtain a MIS type field-effect transistor, breakdown strength of which is increased and current driving capacitance of which is augmented, by forming the low-concentration source-drain through oblique ion implantation. CONSTITUTION:Phosphorus is implanted at an angle of 45 deg.-60 deg. in the vertical direction to an silicon substrate 1 while using a gate electrode 5 as a mask. Rotational implantation in the two-four directions is conducted in consideration of the direction of the gate electrode 5 of a transistor shaped onto the substrate in ion implantation at that time, thus preventing the generation of asymmetry to source-drain. An silicon oxide film is applied, and sidewall spacers 7 are formed onto the sidewalls of the gate electrode 5 by using reactive ion etching. N<+> layers 8 are shaped through a rotational implantation method in which arsenic is implanted at an angle of 0 deg. or approximately 7 deg. in the vertical direction to the silicon substrate. Accordingly, a MIS type field-effect transistor having high breakdown strength and high current driving capacitance can be acquired.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置の製造方法に係り、特に高信頼度
化、高電流駆動能力化を実現しうるMIS型電界効果ト
ランジスタを形成するのに好適な製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for forming a MIS field effect transistor that can achieve high reliability and high current drive capability. The present invention relates to a manufacturing method suitable for.

〔従来の技術〕[Conventional technology]

従来、MIS型電界効果トランジスタにおいて高信頼度
化、高電流駆動能力化を実現しうる構造とその製造方法
としては、例えばアイ・イー・イー・イー、エレクトロ
ン・デバイス・レターズ。
Conventionally, structures and manufacturing methods that can achieve high reliability and high current drive capability in MIS type field effect transistors are described, for example, by IEE and Electron Device Letters.

イー・デイ−・エル8.(1987年)第151頁から
第153頁(IE E E 、 Electron D
eviceLatters、 EDL−8(1987)
 、 pp、151−153)において論じられている
IT−LDD(Inverse−T Gate LDD
)構造のようなゲートと低濃度ドレインのオーバーラツ
プ量が充分バあり、高濃度ドレインがゲート電極直下ま
で達していることが必要である。IT−LDDはこれを
形成する1つの製造方法である。
E.D.L.8. (1987) pp. 151-153 (IE E E, Electron D
eviceLatters, EDL-8 (1987)
, pp. 151-153).
) structure, it is necessary that the amount of overlap between the gate and the lightly doped drain is sufficient, and that the highly doped drain reaches just below the gate electrode. IT-LDD is one manufacturing method for forming this.

また、LDD構造の形成方法の1つに、信学技報、Vo
l、87.No、343 (1988年)、第25頁か
ら第30頁において論じられているようなイオン打ち込
み時の非対称性を防ぐ目的として、ウェハと垂直方向に
対し7°の角度で4方向から回転注入する方法があげら
れる。これを第2図(a)、(b)に示す。
In addition, one of the methods for forming the LDD structure is published in IEICE Technical Report, Vol.
l, 87. No. 343 (1988), pages 25 to 30, to prevent asymmetry during ion implantation, rotational implantation is performed from four directions at an angle of 7° to the wafer and perpendicular direction. I can give you a method. This is shown in FIGS. 2(a) and 2(b).

さらに、単にソース、ドレイン低濃度層とゲートとのオ
ーバーラツプ量を確保するには、低濃度・層形成時に充
分な熱処理を行い熱拡散で大きな拡散層を形成する方法
、あるいは、イオン打ち込み時の打ち込みエネルギーを
高くシ、大きな拡散層を形成する方法があげられる。こ
れを第2図(c)に示す。
Furthermore, in order to simply ensure the amount of overlap between the low concentration source/drain layer and the gate, it is possible to perform sufficient heat treatment during the formation of the low concentration layer and form a large diffusion layer by thermal diffusion, or to form a large diffusion layer during ion implantation. One method is to use high energy to form a large diffusion layer. This is shown in FIG. 2(c).

【発明が解決しようとする課題〕[Problem to be solved by the invention]

上記従来技術において、IT−LDDの形成方法は、ゲ
ート電極加工時に、エツチングを途中で止める等、製造
工程の安定性、容易性に欠ける。
In the above-mentioned conventional technology, the method for forming an IT-LDD lacks stability and ease of manufacturing process, such as stopping etching midway through processing the gate electrode.

また、角度をつけた回転イオン注入法では、単にLDD
非対称性改善するだけで、構造自体は従来のLDD構造
と変わらず、より高耐圧化、高電流駆動能力化は実現で
きない。
In addition, in the angled rotational ion implantation method, it is possible to simply
Although the asymmetry is only improved, the structure itself remains the same as the conventional LDD structure, and higher breakdown voltage and higher current drive capability cannot be achieved.

さらに、第2図(c)の如く、熱拡散のみでゲートとソ
ース、ドレインのオーバーラツプ量を確保する場合には
、拡散層は一般に横方向以上に深さ方向に伸びることに
なる。このため、短チヤネル効果の大きな増大を招く。
Furthermore, as shown in FIG. 2(c), when securing the amount of overlap between the gate, source, and drain only by thermal diffusion, the diffusion layer generally extends not only in the lateral direction but also in the depth direction. This results in a large increase in the short channel effect.

本発明の目的は、ゲートとソース、ドレインを充分にオ
ーバーラツプさせ、かつ高濃度の拡散端をゲート電極直
下にまで到達させたLDD構造を容易に形成する製造方
法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a manufacturing method for easily forming an LDD structure in which the gate, source, and drain sufficiently overlap and the high concentration diffusion end reaches directly below the gate electrode.

〔課題を解決するための手段〕[Means to solve the problem]

上記目的は、MIS型電界効果トランジスタの形成方法
において、低濃度ソース、ドレイン形成用イオン打ち込
み時の入射角をウェハと垂直方向に対して大きく、つま
り斜めイオン打ち込みを行い、かつ、サイドウオールス
ペーサ形成後に高濃度ドレインをゲート電極直下まで到
達するように形成することにより達成される。
The above purpose is to increase the angle of incidence during ion implantation for forming low-concentration sources and drains with respect to the direction perpendicular to the wafer, that is, to perform oblique ion implantation in a method for forming MIS type field effect transistors, and to form sidewall spacers. This is achieved by later forming a highly doped drain so as to reach just below the gate electrode.

〔作用〕[Effect]

MIS型電界効果トランジスタの低濃度ソース。 Low concentration source of MIS type field effect transistor.

ドレインを斜めイオン打ち込みにより形成することによ
り、深さ方向に比べて横方向の伸びの大きな拡散層を形
成することができ、短チヤネル効果増大を抑制しつつ、
ゲート電極とソース、ドレインのオーバーラツプ量をか
せぐことができる。また、高濃度ソース、ドレインをゲ
ート直下まで達せさせるため、大きな電流駆動能力向上
が望める。
By forming the drain by oblique ion implantation, it is possible to form a diffusion layer that has a larger elongation in the lateral direction than in the depth direction, suppressing the increase in the short channel effect, and
The amount of overlap between the gate electrode, source, and drain can be increased. Furthermore, since the highly doped source and drain reach directly below the gate, a significant improvement in current drive capability can be expected.

以上により、従来LDDよりも、高耐圧、高電流駆動能
力化したMIS型電界効果トランジスタを得ることがで
きる。
As described above, it is possible to obtain a MIS type field effect transistor which has a higher breakdown voltage and higher current drive capability than the conventional LDD.

〔実施例〕〔Example〕

実施例1゜ 以下に本発明の第1の実施例を第1図を用いて説明する
Embodiment 1 A first embodiment of the present invention will be described below with reference to FIG.

まず、第1図(a)の如<、p型シリコン(比抵抗5〜
100程度)基板1に、選択的に素子分離用の500〜
700nmのシリコン酸化膜を形成し、全面にボロンを
150〜200KeVの打ち込みエネルギー、0.5〜
I X 1013cm−”のドーズ量でイオン注入し、
基板内に高濃度埋め込み層2を形成する。その後、ゲー
ト酸化膜4を10〜20nm形成し、閾値電圧設定用に
ボロン3をまた0、5〜1.5X10”cm−”低エネ
ルギーで注入する。これは、上記埋め込み層2の注入量
によっては省くことができる。また、図中においては。
First, as shown in Figure 1(a), p-type silicon (specific resistance 5~
(approximately 100) on the substrate 1, selectively 500 ~
A 700 nm silicon oxide film is formed, and boron is implanted over the entire surface at an energy of 150 to 200 KeV, 0.5 to
Ion implantation was performed at a dose of I x 1013 cm-'',
A high concentration buried layer 2 is formed in the substrate. Thereafter, a gate oxide film 4 is formed to a thickness of 10 to 20 nm, and boron 3 is again implanted at a low energy of 0.5 to 1.5 x 10" cm to set a threshold voltage. This can be omitted depending on the implantation amount of the buried layer 2. Also, in the figure.

素子分離領域は省いである0次に、多結晶シリコン膜を
300〜350nm程度被膜し、フ第1へエツチングに
より図中の如く、ゲート電極5をパタ−ニングする。
Element isolation regions are omitted. Next, a polycrystalline silicon film is coated to a thickness of about 300 to 350 nm, and a gate electrode 5 is patterned by etching the first layer as shown in the figure.

次に、第1図(b)の如く、ゲート電極をマスクに5X
IO”〜2 X 101cmm−”程度のリンを。
Next, as shown in Figure 1(b), using the gate electrode as a mask, 5X
About IO"~2 x 101cm-" of phosphorus.

シリコン基板1と垂直方向に対して456〜60’の角
度で注入する。このとき、イオン打ち込みは、基板上に
形成されたトランジスタのゲート電極の方向を考慮し、
2〜4方向の回転注入を行い、ソース・ドレインに非対
称性が生ずるのを防ぐ。本実施例では、n−層6の大き
さは、i終的には深さ方向で0.1〜0.15μm、横
方向(つまりゲートとのオーバーラツプ量)で0.15
〜0.2μmとなった。
The implantation is performed at an angle of 456 to 60' with respect to the direction perpendicular to the silicon substrate 1. At this time, ion implantation takes into consideration the direction of the gate electrode of the transistor formed on the substrate.
Rotational implantation is performed in 2 to 4 directions to prevent source/drain asymmetry. In this embodiment, the size of the n-layer 6 is ultimately 0.1 to 0.15 μm in the depth direction and 0.15 μm in the lateral direction (that is, the amount of overlap with the gate).
It became ~0.2 μm.

さらに、第1図(c)の如く、シリコン酸化膜を100
〜150nm被膜し、反応性イオンエツチングを用いて
、ゲート電極5の側壁にサイドウオールスペーサ7を形
成する。このとき、スペーサ長は0.1〜0.15μm
となった。この後、1〜5 X 1015am−”程度
のヒ素をシリコン基板に垂直方向に対して0″、あるい
は、7″程度傾けての回転注入法により、n+層8を形
成する。このとき、最終的なn+層の横方向拡散量は0
.1〜0.15μmであった。上記サイドウオールスペ
ーサ7の幅は、このn+層の横方向拡散量以下に設定す
る必要がある。
Furthermore, as shown in FIG. 1(c), a silicon oxide film of 100%
A film of ~150 nm is formed, and sidewall spacers 7 are formed on the side walls of the gate electrode 5 using reactive ion etching. At this time, the spacer length is 0.1 to 0.15 μm
It became. Thereafter, an n+ layer 8 is formed by rotational implantation of about 1 to 5 x 1015 am-'' of arsenic into the silicon substrate at an angle of about 0'' or 7'' with respect to the vertical direction. The amount of lateral diffusion of the n+ layer is 0.
.. It was 1 to 0.15 μm. The width of the sidewall spacer 7 needs to be set to be equal to or less than the amount of lateral diffusion of the n+ layer.

以上により、工程数の増大なく、ゲートオーバーラツプ
量を確保した高耐圧、高電流即動能力のMIS型電界効
果トランジスタを得ることができた0本実施例では、基
板内部に高濃度埋め込み層2が形成しであるため、短チ
ヤネル効果も抑制されており、ゲート長0.5μmレベ
ルで非常に有効となる。
As a result of the above, it was possible to obtain a MIS type field effect transistor with high breakdown voltage and high current instantaneous ability, which secured the amount of gate overlap, without increasing the number of process steps. 2 is not formed, the short channel effect is also suppressed, and it is very effective at a gate length of 0.5 μm.

実施例2゜ 次に、本発明の第2の実施例を第3図を用いて説明する
Embodiment 2 Next, a second embodiment of the present invention will be described with reference to FIG.

まず、第3図(a)のように、ゲート電流5を形成する
までは、前記第1の実施例における第1図(a)と同じ
工程で形成し、続いて、リンを1〜5 X I Q 1
3cm−”程度ドレインからソース方向へ斜めにイオン
打ち込みし、n型の低濃度拡散層6を形成する。これに
より、ドレイン側には大きなゲートとのオーバーラツプ
量を有するn−、flが、また、ソース側にはゲート電
極5の影となりn−層がない。
First, as shown in FIG. 3(a), the formation of the gate current 5 is performed in the same steps as in FIG. 1(a) in the first embodiment, and then phosphorus is I Q 1
Ion implantation is performed obliquely from the drain to the source by about 3 cm to form an n-type low concentration diffusion layer 6. As a result, n- and fl having a large amount of overlap with the gate are formed on the drain side. The source side is in the shadow of the gate electrode 5 and has no n- layer.

次に、第3図(b)の如く、0.1〜0.15μm程度
のサイドウオールスペーサを形成し、今後はヒ素をシリ
コン基板に対し垂直に1〜5×1015CII!−2程
度打ち込む。以後は第1の実施例と同じである。
Next, as shown in FIG. 3(b), a side wall spacer of about 0.1 to 0.15 μm is formed, and from now on, arsenic is applied perpendicularly to the silicon substrate by 1 to 5×10 15 CII! -Enter about 2. The subsequent steps are the same as in the first embodiment.

本実施例によれば、大きなオーバーラツプ量を有するn
−層がドレイン側にしかないため、高信頼度化を第1の
実施例と同様に実現しつつ、より高電流駆動能力化を実
現している。上記第1、及び第2の実施例ではnチャネ
ルトランジスタの例を示したが、導電型を全て逆にする
ことにより、nチャネルトランジスタにも容易に応用可
能である。
According to this embodiment, n having a large amount of overlap
- Since the layer is located on the drain side, high reliability can be achieved in the same way as in the first embodiment, while higher current drive capability can be achieved. In the first and second embodiments described above, an example of an n-channel transistor was shown, but by reversing the conductivity types, the present invention can easily be applied to an n-channel transistor as well.

実施例3゜ 最後に、本発明を相補型MOSトランジスタ形成プロセ
スに応用した実施例を第4図を用いて説明する。
Embodiment 3 Finally, an embodiment in which the present invention is applied to a process for forming complementary MOS transistors will be described with reference to FIG.

まず、第4図(a)の如<、p型シリコン基板(比抵抗
5〜10ΩcIl)にボロンとリンの選択的イオン打ち
込みと、1050〜1150℃、20〜30時間の熱処
理で、p型ウェル51とn型ウェル52を選択的に形成
する。このとき、ウェルの濃度は1〜3X1016c■
−3程度で、ウェルの拡散端の深さは4〜5μmであっ
た。続いて、図の如く素子分離用の厚いシリコン酸化膜
を500〜700nm形成する。
First, as shown in Fig. 4(a), a p-type well was formed by selectively implanting boron and phosphorus ions into a p-type silicon substrate (specific resistance 5-10ΩcIl) and heat-treating at 1050-1150°C for 20-30 hours. 51 and an n-type well 52 are selectively formed. At this time, the concentration of the well is 1~3X1016c■
-3, and the depth of the diffusion edge of the well was 4 to 5 μm. Subsequently, as shown in the figure, a thick silicon oxide film for element isolation is formed to a thickness of 500 to 700 nm.

次に第4図(b)の如くp型ウェル50にはボロンを1
50〜200KeVで5〜10×101012cr”打
ち込み、埋め込みp壁高濃度層55を形成し、n型ウェ
ル52にはリンを200〜300KeVで、5〜10 
X 1012cm−”打ち込み、増め込みn型高濃度[
56を形成した。これら高濃度埋め込み層55 、’ 
56は最終的なピーク濃度は2〜5X10”7am−3
となり、これにより、トランジスタのパンチスルースト
ッパと、アイソレージJン用チャネルストッパ層を兼ね
ることができる。
Next, as shown in FIG. 4(b), 1 boron is added to the p-type well 50.
A buried p-wall high concentration layer 55 is formed by implanting 5 to 10×101012 cr” at 50 to 200 KeV, and 5 to 10 cr of phosphorus is implanted at 200 to 300 KeV to form a buried p-wall high concentration layer 55.
X 1012cm-” implantation, increase n-type high concentration [
56 was formed. These high concentration buried layers 55,'
56 has a final peak concentration of 2~5X10"7am-3
Therefore, it can serve as both a punch-through stopper for a transistor and a channel stopper layer for isolation.

続いて、ゲート酸化膜49を10〜15nm形成に、そ
の上に、ゲート電極57を多結晶シリコンで形成する。
Subsequently, a gate oxide film 49 is formed to a thickness of 10 to 15 nm, and a gate electrode 57 is formed thereon using polycrystalline silicon.

このとき、nチャネル、pチャネルMOSトランジスタ
の閾値電圧は、ゲート電極形成前のボロン1〜1.7X
1012c厘−2のイオン打ち込みで設定する。ただし
、高濃度埋め込み層のプロファイルによっては、閾値電
圧設定用イオン打ち込みは省くことができる。
At this time, the threshold voltage of the n-channel and p-channel MOS transistors is 1 to 1.7X of boron before the gate electrode is formed.
Set by ion implantation of 1012c-2. However, depending on the profile of the high concentration buried layer, ion implantation for setting the threshold voltage can be omitted.

次に、第4図(c)の如く、まず、pチャネル側をレジ
スト58でおおい、リンを1〜5×1()13c11−
2斜めに打ち込み、ゲートとのオーバーラツプ量の大き
なn−層59を形成する。続いて、第4図(d)の如く
、今度はnチャネル側をレジスト58でおおい、ボロン
を1〜5 X 1013cm−”斜めに打ち込み、上記
n−層59と同様なp−層60を形成する。
Next, as shown in FIG. 4(c), first, the p-channel side is covered with a resist 58, and the phosphorus is 1 to 5×1()13c11-
2 is implanted diagonally to form an n- layer 59 with a large amount of overlap with the gate. Next, as shown in FIG. 4(d), the n-channel side is covered with a resist 58, and boron is obliquely implanted in a thickness of 1 to 5 x 1013 cm to form a p-layer 60 similar to the n-layer 59 described above. do.

次に、第4図(e)〜(g)の如く、シリコン酸化膜で
サイドウオールスペーサ61を0.1〜0.25μm形
成する。続いて、nチャネルにはヒ素を1〜5 X 1
0”am−”、pチャネル番こはボロンを1〜2 X 
101sc+*−”程度選択的に打ち込み、各々にn 
”m 62 * p ”M 63を形成する。
Next, as shown in FIGS. 4(e) to 4(g), sidewall spacers 61 of 0.1 to 0.25 μm are formed of a silicon oxide film. Next, arsenic was added to the n-channel at 1 to 5 × 1
0"am-", p channel number is boron 1~2X
Selectively drive about 101sc+*-” and n to each
"m 62 * p" M 63 is formed.

最後に、図4図(h)の如く、眉間ta録膜、例えばボ
ロンリン硅素ガラス(BPSG)を500〜700nm
形成し、コンタクトホールを開孔後。
Finally, as shown in FIG.
After forming and drilling contact holes.

アルミニウム電極を形成して完成する。Complete by forming aluminum electrodes.

以上の製造工程において重要なことは、n+層62とp
+層63の拡散端が共にゲート電極直下にまで到達して
いることである。この場合、サイドウオールスペーサを
、nチャネル、pチャネルで拡散層の伸びに合わせて作
り分けてもよいが。
What is important in the above manufacturing process is that the n+ layer 62 and the p
Both diffusion ends of the + layer 63 reach directly below the gate electrode. In this case, sidewall spacers may be made separately for n-channel and p-channel according to the elongation of the diffusion layer.

本実施例では同一のスペーサ長を設けた。この場合、n
+層62とp+層63形成の間、及び、n +。
In this example, the same spacer length was provided. In this case, n
+ layer 62 and p+ layer 63 formation, and n +.

p+暦影形成後熱処理を調整(特に前者)することによ
り、n”*P+層の伸びをほぼ同一にしている。これに
より、従来プロセスとほとんど変わらぬ製造方法でゲー
トオーバーラツプ量を充分に確保した高耐圧、高電流駆
動能力の相補型MOSトランジスタを形成することがで
きた6本実施例では、npPチャネル共に高耐圧MoS
トランジスタにしているが、一方を従来の構造、プロセ
スで形成しても良い。
By adjusting the heat treatment after forming the p+ calendar shadow (particularly the former), the elongation of the n''*P+ layer is made almost the same.As a result, the amount of gate overlap can be sufficiently reduced using a manufacturing method that is almost the same as the conventional process. In this example, we were able to form complementary MOS transistors with high breakdown voltage and high current drive capability.
Although a transistor is used, one of them may be formed using a conventional structure and process.

また、pチャネルのソース、ドレインのp4″層は、第
2のサイドウオール等をもう1度形成し。
Further, for the p4'' layer of the source and drain of the p-channel, a second sidewall and the like are formed once again.

pチャネルの全サイドウオールスペーサ長を長くすれば
、上記同様相補型MOSプロセスに適用できる。ただし
、この場合は多少の工程数の増大を招く。
If the total sidewall spacer length of the p-channel is increased, it can be applied to the complementary MOS process as described above. However, in this case, the number of steps increases to some extent.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、従来のLDD構造形成プロセスの少し
の改良で工程数の増大なしに、高耐圧。
According to the present invention, a high breakdown voltage can be achieved without increasing the number of steps by slightly improving the conventional LDD structure formation process.

高電流駆動能力のMIS型電界効果トランジスタを得る
ことができ、ゲート長0.5μm以下のUL S I 
(Ultra Larged 5cale Integ
ration)の基本デバイスとして非常に有効である
It is possible to obtain a MIS type field effect transistor with high current drive capability and a UL S I with a gate length of 0.5 μm or less.
(Ultra Large 5cale Integ
It is very effective as a basic device for

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の代表的な実施例を示した製造方法工程
図、第2図は従来の製造方法を示した工程概略図、第3
図及び第4図は本発明の他の実施例を示した図である。 1.50・・・半導体基板、2,55.56・・・高濃
度埋め込み層、3・・・閾値電圧設定用不純物層、4.
49・・・ゲート絶縁膜、5,57・・・ゲート電極、
7.10,61・・・サイドウオールスペーサ、6.9
,11,59,60・・・低濃度拡散層、8.62.6
3・・・高濃度拡散層、51,52・・・ウェル層。 ¥ /圓 第 2 図 竿 5 回 第4− 圓
Fig. 1 is a manufacturing method process diagram showing a typical embodiment of the present invention, Fig. 2 is a process schematic diagram showing a conventional manufacturing method, and Fig. 3 is a process diagram showing a conventional manufacturing method.
4 and 4 are diagrams showing other embodiments of the present invention. 1.50... Semiconductor substrate, 2, 55.56... High concentration buried layer, 3... Impurity layer for threshold voltage setting, 4.
49... Gate insulating film, 5, 57... Gate electrode,
7.10,61...Side wall spacer, 6.9
, 11, 59, 60...Low concentration diffusion layer, 8.62.6
3... High concentration diffusion layer, 51, 52... Well layer. ¥ / En 2nd Zukan 5th 4th - En

Claims (1)

【特許請求の範囲】 1、半導体基板上にMIS型電界効果トランジスタを形
成する方法において、ゲート電極を形成する工程と、該
ゲート電極をマスクに斜めイオン注入により低不純物濃
度のソース、ドレインを形成する工程と、該ゲート電極
の端から離れた所から、ゲート電極直下に達する高不純
物濃度のソース、ドレインを形成する工程を含むことを
特徴とする半導体装置の製造方法。 2、特許請求範囲第1項記載の半導体装置の製造方法に
おいて、該低不純物濃度層をドレイン側にのみ斜めイオ
ン注入で形成することを特徴とする半導体装置の製造方
法。 3、特許請求範囲第1項記載の半導体装置の製造方法に
おいて、少なくとも一方の導電型チャネルトランジスタ
の低不純物濃度のソース、ドレインを相補型のMIS型
電界効果トランジスタの形成において用い、かつ、該相
補型トランジスタの高濃度ソース、ドレインの拡散層深
土が同一となるように形成することを特徴とする半導体
装置の製造方法。 4、特許請求範囲第3項記載の半導体装置の製造方法に
おいて、相補型のMIS型電界効配トランジスタの一方
の導電型チャネル用の高不純物濃度のソース、ドレイン
形成工程と、他方の導電型チャネル用の高不純物濃度の
ソース、ドレインを形成工程の間に、熱処理工程を有す
ることを特徴とする半導体装置の製造方法。
[Claims] 1. A method for forming a MIS field effect transistor on a semiconductor substrate, which includes the steps of forming a gate electrode, and forming a source and drain with low impurity concentration by oblique ion implantation using the gate electrode as a mask. 1. A method of manufacturing a semiconductor device, comprising the steps of forming a source and a drain with high impurity concentration from a location away from an end of the gate electrode to directly below the gate electrode. 2. A method for manufacturing a semiconductor device according to claim 1, characterized in that the low impurity concentration layer is formed only on the drain side by oblique ion implantation. 3. In the method for manufacturing a semiconductor device according to claim 1, the low impurity concentration source and drain of at least one conductivity type channel transistor are used in forming a complementary MIS field effect transistor, and the complementary 1. A method for manufacturing a semiconductor device, comprising forming a high-concentration source and a drain of a type transistor so that the depths of the diffusion layers are the same. 4. A method for manufacturing a semiconductor device according to claim 3, including a step of forming a source and drain with high impurity concentration for one conductivity type channel of a complementary MIS field effect transistor, and a step of forming a high impurity concentration source and drain for the other conductivity type channel. 1. A method of manufacturing a semiconductor device, comprising a heat treatment step between a step of forming a source and a drain with high impurity concentration.
JP63137576A 1988-06-06 1988-06-06 Manufacture of semiconductor device Pending JPH01307266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63137576A JPH01307266A (en) 1988-06-06 1988-06-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63137576A JPH01307266A (en) 1988-06-06 1988-06-06 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01307266A true JPH01307266A (en) 1989-12-12

Family

ID=15201948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63137576A Pending JPH01307266A (en) 1988-06-06 1988-06-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01307266A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427132A (en) * 1990-05-22 1992-01-30 Matsushita Electron Corp Manufacture of semiconductor device
JPH0434968A (en) * 1990-05-30 1992-02-05 Mitsubishi Electric Corp Complementary field-effect transistor and manufacture thereof
JPH04127439A (en) * 1990-09-18 1992-04-28 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH04188633A (en) * 1990-11-19 1992-07-07 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
JPH0536719A (en) * 1990-11-05 1993-02-12 Mitsubishi Electric Corp Manufacture of semiconductor device
US5773347A (en) * 1994-03-25 1998-06-30 Mitsubishi Denki Kabushiki Kaisha Method of maufacturing field effect transistor
US6906383B1 (en) 1994-07-14 2005-06-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacture thereof
JP2008078203A (en) * 2006-09-19 2008-04-03 Asahi Kasei Electronics Co Ltd Method for manufacturing semiconductor device
JP2011119344A (en) * 2009-12-01 2011-06-16 Panasonic Corp Semiconductor apparatus, and method for manufacturing the same

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427132A (en) * 1990-05-22 1992-01-30 Matsushita Electron Corp Manufacture of semiconductor device
JPH0434968A (en) * 1990-05-30 1992-02-05 Mitsubishi Electric Corp Complementary field-effect transistor and manufacture thereof
JPH04127439A (en) * 1990-09-18 1992-04-28 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH0536719A (en) * 1990-11-05 1993-02-12 Mitsubishi Electric Corp Manufacture of semiconductor device
JPH04188633A (en) * 1990-11-19 1992-07-07 Mitsubishi Electric Corp Semiconductor device and manufacture thereof
US5773347A (en) * 1994-03-25 1998-06-30 Mitsubishi Denki Kabushiki Kaisha Method of maufacturing field effect transistor
US6906383B1 (en) 1994-07-14 2005-06-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacture thereof
US7183614B2 (en) 1994-07-14 2007-02-27 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacture thereof
US7635895B2 (en) 1994-07-14 2009-12-22 Semiconductor Energy Laboratory Co., Ltd. Display device
US8273613B2 (en) 1994-07-14 2012-09-25 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device and method of manufacture thereof
JP2008078203A (en) * 2006-09-19 2008-04-03 Asahi Kasei Electronics Co Ltd Method for manufacturing semiconductor device
JP2011119344A (en) * 2009-12-01 2011-06-16 Panasonic Corp Semiconductor apparatus, and method for manufacturing the same

Similar Documents

Publication Publication Date Title
JP3164076B2 (en) Method for manufacturing semiconductor device
JP2897004B2 (en) CMOSFET manufacturing method
US8120109B2 (en) Low dose super deep source/drain implant
JP2002124671A (en) Semiconductor device and its manufacturing method
JPH01307266A (en) Manufacture of semiconductor device
JPH03262130A (en) Manufacture of semiconductor element
JP3381110B2 (en) Method for manufacturing semiconductor device
JP2635096B2 (en) Semiconductor device and manufacturing method thereof
JPH06224216A (en) Transistor and its preparation
JPH0346238A (en) Manufacture of semiconductor device
JP4615755B2 (en) Manufacturing method of semiconductor device
JPH0234936A (en) Semiconductor device and its manufacture
JP3186298B2 (en) Method for manufacturing MOS type semiconductor device
JP2001298187A (en) Manufacturing method for high-voltage transistor
JP3394562B2 (en) MOSFET manufacturing method
JPH0575045A (en) Manufacture of semiconductor device
JPH0630390B2 (en) Method for manufacturing CMOS semiconductor device
JPH06260496A (en) Manufacture of semiconductor device
JPS62101074A (en) Semiconductor device
JPH0461254A (en) Method of manufacturing semiconductor device
JPH02219237A (en) Mis type semiconductor device
JP3366709B2 (en) Method for manufacturing MOS transistor
JPH03120836A (en) Semiconductor device
JPH05251697A (en) Mosfet and its manufacture
JP3035996B2 (en) Method of manufacturing MIS type semiconductor device