JPH03262130A - Manufacture of semiconductor element - Google Patents

Manufacture of semiconductor element

Info

Publication number
JPH03262130A
JPH03262130A JP5993390A JP5993390A JPH03262130A JP H03262130 A JPH03262130 A JP H03262130A JP 5993390 A JP5993390 A JP 5993390A JP 5993390 A JP5993390 A JP 5993390A JP H03262130 A JPH03262130 A JP H03262130A
Authority
JP
Japan
Prior art keywords
gate electrode
implanted
type
angle
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5993390A
Other languages
Japanese (ja)
Inventor
Akio Kita
北 明夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5993390A priority Critical patent/JPH03262130A/en
Publication of JPH03262130A publication Critical patent/JPH03262130A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface

Abstract

PURPOSE:To enable the title semiconductor element having excellent electric field relieving effect and punch-through preventive effect to be manufactured by a method wherein the first conductivity type impurity ions are implanted making a deep angle with the perpendicular direction to substrate surface and then the second conductivity type impurity ions are implanted making a shallow angle with the same. CONSTITUTION:A field oxide film 2 is formed on inactive regions of a P type silicon semiconductor substrate 1 and then a gate oxide 3 and a gate electrode 4 are formed on the surface of an active region. Next, boron is ion-implanted in the direction making an oblique angle exceeding 20 deg. but not exceeding 90 deg. with the perpendicular direction to a wafer surface using the gate electrode 4 as a mask so as to form a P<+>type region 5 for preventing punch-through. Successively, phosphorus ions are implanted in the direction making an angle exceeding 0 deg. but not exceeding 10 deg. with the perpendicular direction to the wafer surface using the gate electrode 4 as a mask so as to form an N<->type region 6 in LDD structure. Furthermore, sidewall spacers 7 are formed at the edge parts on both sides of the gate electrode 4 while ions are implanted using the gate electrode 4 and the sidewall spacers 7 as masks to form N<+>type source.drain diffused layers 8.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、半導体素子の製造方法に係り、特にMTS
型電界効果トランジスタの製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device.
The present invention relates to a method of manufacturing a type field effect transistor.

(従来の技術) 従来、MO3型電界効果トランジスタを縮小して行くと
、デバイス内の電界が増大し、高エネルギーをもったホ
ット化したキャリアが発生し、ゲート酸化膜中にトラッ
プされ、あるいは界面準位を増大させる。その結果、闇
値電圧の変動をもたらす等の所謂デバイス特性が劣化す
るホットキャリア効果が問題となる。また、MO3型電
界効果トランジスタのオフ状態において、ソース・ドレ
イン間のリーク電流が発生するバンチスルー現像も顕著
となってくる。
(Prior art) Conventionally, as MO3 field effect transistors are scaled down, the electric field inside the device increases, and hot carriers with high energy are generated and trapped in the gate oxide film or at the interface. Increase level. As a result, the so-called hot carrier effect that causes deterioration of device characteristics, such as fluctuations in dark value voltage, becomes a problem. Furthermore, bunch-through development, in which leakage current occurs between the source and drain, becomes noticeable when the MO3 field effect transistor is in the off state.

そこで、このような問題を解決するために、例、t L
f、インターナショナルエレクトロン デバイスミーテ
ィング(International Electro
n DevicesMeeting)、 1985年テ
クニカルダイジェスト、230頁〜233頁の文献に新
たなトランジスタ構造が提案されている。
Therefore, in order to solve such a problem, for example, t L
f, International Electron Device Meeting (International Electron Device Meeting)
A new transistor structure has been proposed in the document published by N.DevicesMeeting), 1985 Technical Digest, pages 230-233.

次に、第2図を参照してこの提案されたMO3型電界効
果トランジスタの概要を説明する。まず、P型シリコン
基板101上にゲート酸化膜102を形成し、このゲー
ト酸化膜102上にゲート電極103をバターニングす
る。このゲート電極103をマスクにしてパンチスルー
防止用のP゛型ポケット層104をウェハ面垂直方向か
ら政変傾けた方向からボロンのイオン注入により形成す
る。同様に垂直方向からリンのイオン注入によりLDD
 (上ightly DopedDrrain)構造用
の浅いN−型層105を形成する。その後、化学気相成
長(CVD)法と反応性イオンエツチング(RI E)
を利用してゲート電極103のエツジ部及びゲート酸化
膜102上にサイドウオールスペーサ106を設ける。
Next, an outline of the proposed MO3 field effect transistor will be explained with reference to FIG. First, a gate oxide film 102 is formed on a P-type silicon substrate 101, and a gate electrode 103 is patterned on this gate oxide film 102. Using this gate electrode 103 as a mask, a P-type pocket layer 104 for preventing punch-through is formed by boron ion implantation in a direction tilted from the direction perpendicular to the wafer surface. Similarly, LDD is created by ion implantation of phosphorus from the vertical direction.
A shallow N-type layer 105 for the (upper tightly doped drrain) structure is formed. Afterwards, chemical vapor deposition (CVD) and reactive ion etching (RIE)
A sidewall spacer 106 is provided on the edge portion of the gate electrode 103 and on the gate oxide film 102 using the method.

次に、このサイドウオールスペーサ106とゲート電極
103をマスクにしてひ素をイオン注入してN゛型ソー
ス・ドレイン拡散層107を形成する。
Next, using the sidewall spacer 106 and the gate electrode 103 as a mask, arsenic ions are implanted to form an N-type source/drain diffusion layer 107.

P+型ポケット層104及びN−型層105の形成条件
を慎重に設定することにより、第2図に示すようにP゛
型ポケット層104を内側、N−型層105をその外側
となる位置関係ζこ形成することができる。この構造に
おいて、N−型層105によリドレインエツジにおける
電界集中を緩和し、ホットキャリアの発生を抑制し、又
、P゛型ポケット層104によりチャネル側への空乏層
の延びを短縮させてパンチスルーも抑制することができ
る。
By carefully setting the formation conditions of the P+ type pocket layer 104 and the N- type layer 105, a positional relationship is established in which the P'' type pocket layer 104 is on the inside and the N- type layer 105 is on the outside, as shown in FIG. ζ can be formed. In this structure, the N-type layer 105 alleviates electric field concentration at the drain edge and suppresses the generation of hot carriers, and the P-type pocket layer 104 shortens the extension of the depletion layer toward the channel side. Punch-through can also be suppressed.

(発明が解決しようとする課題) しかしながら、以上述べた方法であってもパンチスルー
防止のためのP′″型ポケット層104がN−型層10
5形成の時と同じゲート電極103をマスクにして略同
じイオン注入角度で形成されているため、P゛型ポケッ
ト層104及びN−型層105を夫々任意に制御できな
い。このため、P゛型ポケソ1〜層104の長さの形成
自由度が低くなり、その長さが短かくなるために十分な
パンチスルーの防止作用が働かない場合がある課題があ
った。
(Problem to be Solved by the Invention) However, even with the method described above, the P'' type pocket layer 104 for punch-through prevention is
Since they are formed using the same gate electrode 103 as a mask and substantially the same ion implantation angle as in the case of forming the P-type pocket layer 104 and the N-type layer 105, it is not possible to control each of them arbitrarily. For this reason, the degree of freedom in forming the length of the P'' type pocket 1 to the layer 104 is reduced, and because the length becomes short, there is a problem that a sufficient punch-through prevention effect may not work.

そこで、十分なパンチスルー防止作用を得るようにP゛
型ポケット層104の濃度を高めると、接合容量が増大
し、高速動作が不利になったり、接合部で電界強度が高
まるために電界緩和効果を阻害し、ホットキャリアの発
生が増大するという新たな課題が生じる。
Therefore, if the concentration of the P-type pocket layer 104 is increased to obtain a sufficient punch-through prevention effect, the junction capacitance will increase, making high-speed operation disadvantageous, and the electric field strength will increase at the junction, resulting in an electric field relaxation effect. A new problem arises in that the generation of hot carriers increases.

この発明は、以上述べたパンチスルー防止のための領域
の形成自由度が低いためにパンチスルー防止作用が働か
ない課題を解決するため、パンチスルー防止用領域の形
成のためのイオン注入と電界緩和用領域の形成のための
イオン注入のイオン打ち込みの角度差を十分にもたせ、
電界緩和効果とパンチスルー防止効果の優れた半導体素
子の製造方法を提供することを目的とする。
In order to solve the above-mentioned problem in which the punch-through prevention effect does not work due to the low degree of freedom in forming the punch-through prevention region, the present invention provides ion implantation and electric field relaxation for forming the punch-through prevention region. The ion implantation angle difference for ion implantation to form the area for use is made sufficiently,
It is an object of the present invention to provide a method for manufacturing a semiconductor device with excellent electric field relaxation effect and punch-through prevention effect.

(課題を解決するための手段) この発明の半導体素子の製造方法は、第1導電型半導体
基板にゲート絶縁膜を形成する第1の工程と、ゲート絶
縁膜上にゲート電極を形成する第2の工程と、基板表面
垂直方向に対して20’以上90°未溝の角度で第1導
電型不純物イオンを注入する第3の工程と、0°以上1
0°以下の角度で第2導電型不純物イオンを注入する第
4の工程と、ゲト電極エツジ部にサイドウオールスペー
サを形成する第5の工程と、第2導電型不純物イオンを
高濃度に注入する第6の工程を具備したものである。
(Means for Solving the Problems) A method for manufacturing a semiconductor device of the present invention includes a first step of forming a gate insulating film on a first conductivity type semiconductor substrate, and a second step of forming a gate electrode on the gate insulating film. a third step of implanting impurity ions of the first conductivity type at an ungrooved angle of 20° or more and 90° with respect to the direction perpendicular to the substrate surface;
A fourth step of implanting second conductivity type impurity ions at an angle of 0° or less, a fifth step of forming a sidewall spacer at the edge of the gate electrode, and implanting second conductivity type impurity ions at a high concentration. This includes a sixth step.

(作 用) この発明における半導体素子の製造方法は、基板表面垂
直方向に対して比較的に非常に深い角度で第1導電型不
純物を注入するために、その注入領域をゲート電極下内
側深く基板内に形成でき、次に第2導電型不純物イオン
を浅い角度で注入するために第1導電型の注入領域の長
さを長く残すことができる。
(Function) In the method of manufacturing a semiconductor device according to the present invention, in order to implant the first conductivity type impurity at a relatively deep angle with respect to the direction perpendicular to the substrate surface, the implantation region is implanted deep inside the substrate under the gate electrode. The length of the implanted region of the first conductivity type can be left long in order to implant impurity ions of the second conductivity type at a shallow angle.

(実施例) 以下、この発明の一実施例を図面を参照して説明する。(Example) An embodiment of the present invention will be described below with reference to the drawings.

第1図はこの発明の一実施例を示す工程断面図である。FIG. 1 is a process sectional view showing an embodiment of the present invention.

まず、比抵抗1〜10Ωcm程度のP型シリコン半導体
基板1を用意し、選択酸化法等によりその非能動領域に
フィールド酸化膜2を形成する。P型シリコン半導体基
板1の能動領域表面に膜厚15nm程度のゲート酸化膜
3を熱酸化により形成する。次に、ゲート電極4となる
ポリシリコンをCVD法により膜厚300nm程度全面
に堆積させ、導電性をもたせるためにリンを5 XIO
”cm−’程度高濃度にドープする。そして、フォトリ
ソグラフィー及びドライエツチング技術を用いてリンを
ドープしたポリシリコンをバターニングしてゲート酸化
膜3上にゲート電極4を形成する(第1図(A)参照)
First, a P-type silicon semiconductor substrate 1 having a specific resistance of about 1 to 10 Ωcm is prepared, and a field oxide film 2 is formed in its non-active region by selective oxidation or the like. A gate oxide film 3 having a thickness of approximately 15 nm is formed on the surface of the active region of a P-type silicon semiconductor substrate 1 by thermal oxidation. Next, polysilicon that will become the gate electrode 4 is deposited over the entire surface to a thickness of about 300 nm using the CVD method, and 5XIO of phosphorus is added to make it conductive.
The polysilicon doped with phosphorus is then patterned using photolithography and dry etching techniques to form a gate electrode 4 on the gate oxide film 3 (see FIG. 1). See A))
.

次に、ゲート電極4をマスクにして、ウェハ面に垂直な
方向から30°ないし60°傾けた方向からボロンをド
ーズ量5×10目ないし5X10”cmイオン打ち込み
エネルギー60ないし120KeVの条件でP型シリコ
ン半導体基板1にイオン注入を行い、パンチスルー防止
用のP+型領域5を形成する。この際、ゲートエツジ両
方向に対称になるようにウェハを回転させながらイオン
注入を行う。
Next, using the gate electrode 4 as a mask, boron is implanted into the P-type at a dose of 5 x 10 cm to 5 x 10" cm and an ion implantation energy of 60 to 120 KeV from a direction tilted 30° to 60° from the direction perpendicular to the wafer surface. Ions are implanted into the silicon semiconductor substrate 1 to form a P+ type region 5 for punch-through prevention.At this time, the ion implantation is performed while rotating the wafer so that it is symmetrical in both directions of the gate edge.

このイオン注入によりゲート電極4のエツジ内周辺下部
にちくり込むようにP゛型領領域5形成することができ
る。このゲート電極4下のP+型領域5のオーバーラン
プ量はイオン注入条件により任意に設定できる(第1図
(B)参照)。
By this ion implantation, a P-type region 5 can be formed so as to be recessed in the lower part of the periphery within the edge of the gate electrode 4. The overlamp amount of the P+ type region 5 under the gate electrode 4 can be arbitrarily set depending on the ion implantation conditions (see FIG. 1(B)).

続いて今度は、ウェハ面にほぼ垂直な方向から、リンを
ドーズ量2X10”cm−2程度、イオン打ち込みエネ
ルギ−50KeV程度の条件で、ゲート電極4をマスク
にしてP型シリコン半導体基板1にイオン注入して、L
DD構造のN−型領域6を形成する。このN−型領域6
はP型シリコン半導体基板1のゲート電極4下両側に形
成されるが、このN−型領域6に隣接して一対のP゛型
領領域5ポケット状にゲート電極4下に残る(第1図(
C)参照)更に、CVD法により全面にCVD酸化膜を
堆積し、異方性の強いドライエツチングによりゲート電
極4両側のエツジ部にサイドウオールスペーサ7を形成
する。そして、ゲート電極4及びサイドウオールスペー
サ7をマスクにして、ひ素をドーズ量5×IO”cm−
2程度の条件で、P型シリコン半導体基板1にイオン注
入して、ゲート電極4下の両側にN゛゛ソース・ドレイ
ン拡散層8を形成する。このN“型ソース・ドレイン拡
散層8とP1型領域5の間に隣接してN−型領域6が残
る(第1図(D)参照)。
Next, ions are implanted into the P-type silicon semiconductor substrate 1 from a direction almost perpendicular to the wafer surface using the gate electrode 4 as a mask under the conditions of a phosphorus dose of about 2×10"cm-2 and an ion implantation energy of about 50 KeV. Inject, L
An N-type region 6 having a DD structure is formed. This N-type region 6
are formed on both sides of the P type silicon semiconductor substrate 1 under the gate electrode 4, and a pair of P' type regions 5 remain below the gate electrode 4 in the form of pockets adjacent to the N- type region 6 (see Fig. 1). (
(See C)) Furthermore, a CVD oxide film is deposited on the entire surface by the CVD method, and sidewall spacers 7 are formed at the edge portions on both sides of the gate electrode 4 by highly anisotropic dry etching. Then, using the gate electrode 4 and sidewall spacer 7 as a mask, arsenic is applied at a dose of 5×IO”cm−
Ions are implanted into the P-type silicon semiconductor substrate 1 under conditions of about 2 to form N source/drain diffusion layers 8 on both sides under the gate electrode 4. An N- type region 6 remains adjacent to and between this N" type source/drain diffusion layer 8 and P1 type region 5 (see FIG. 1(D)).

以降図示しないが、層間分離用の絶縁膜を形成し、必要
な場所に金属配線との接続をとるためのコンタクトホー
ルを開孔し、金属配線をアルミ・シリコン合金によって
形成する。最後に保護用のパッシベーション膜をっけウ
ェハプロセスを終了する。
Although not shown in the drawings, an insulating film for interlayer isolation is formed, contact holes are opened in necessary locations for connection with metal wiring, and metal wiring is formed of an aluminum-silicon alloy. Finally, a protective passivation film is applied to complete the wafer process.

以上の実施例ではNチャネル電界効果トランジスタの製
造方法について説明したが、不純物の極性等を反転させ
ることによりPチャネル電界効果トランジスタにも適用
可能である。
In the above embodiments, a method for manufacturing an N-channel field effect transistor has been described, but the method can also be applied to a P-channel field effect transistor by reversing the polarity of impurities.

なお、上記実施例において、P゛型領領域用イオン注入
はウェハ表面垂直方向から20’以上90’未満の角度
をもって行い、N−型領域用のイオン注入は同じ<10
°以下の角度をもって行えばパンチスルー防止に十分効
果がある。
In the above embodiment, the ion implantation for the P-type region is performed at an angle of 20' or more and less than 90' from the vertical direction of the wafer surface, and the ion implantation for the N-type region is performed at the same angle of <10'.
If it is performed at an angle of less than 100°, it is sufficiently effective in preventing punch-through.

(発明の効果) 以上のようにこの発明の製造方法によれば、ゲート電極
をマスクにして、第1導電型不純物イオンを半導体基板
表面垂直方向に対して20°以上90°未満の角度で注
入してゲート電極下オーバーランプ量を制御し、第2導
電型不純物イオンを0゜以上10°以下の角度で注入し
てパンチスルー防止用の第1導電型不純物イオン注入領
域を残すと共に電界緩和のための第2導電型不純物イオ
ン注入領域を形成するようにしたので、パンチスルー防
止用領域の濃度、深さ、長さの条件が広い範囲で設定可
能であり、パンチスルー防止効果と電界緩和効果の向上
が期待できる。
(Effects of the Invention) As described above, according to the manufacturing method of the present invention, impurity ions of the first conductivity type are implanted at an angle of 20° or more and less than 90° with respect to the direction perpendicular to the surface of the semiconductor substrate, using the gate electrode as a mask. The amount of over-ramp under the gate electrode is controlled, and the second conductivity type impurity ions are implanted at an angle of 0° or more and 10° or less, leaving a region where the first conductivity type impurity ions are implanted to prevent punch-through and to relax the electric field. Since a second conductivity type impurity ion implantation region is formed for the purpose of preventing punch-through, the concentration, depth, and length conditions of the region for punch-through prevention can be set within a wide range, and the punch-through prevention effect and electric field relaxation effect can be improved. can be expected to improve.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の一実施例に係る半導体素子の製造方
法の工程断面図、第2図は従来の半導体素子の製造方法
を説明するための素子断面図である。 0 図中、1・・・P型シリコン半導体基板、3・・・ゲー
ト酸化膜、4・・・ゲート電極、5・・・P゛型領領域
6・・・N−型領域、7・・・サイドウオールスペーサ
、8N+型ソース・ドレイン拡散層。 ■
FIG. 1 is a process sectional view of a method of manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a sectional view of a device for explaining a conventional method of manufacturing a semiconductor device. 0 In the figure, 1... P type silicon semiconductor substrate, 3... Gate oxide film, 4... Gate electrode, 5... P' type region 6... N- type region, 7...・Sidewall spacer, 8N+ type source/drain diffusion layer. ■

Claims (1)

【特許請求の範囲】  第1導電型の半導体基板にゲート絶縁膜を形成する第
1の工程と、 前記ゲート絶縁膜上にゲート電極を形成する第2の工程
と、 前記ゲート電極をマスクにして、前記半導体基板表面の
垂直方向に対して20°以上90°未満の角度で第1導
電型の不純物イオンを前記半導体基板に注入して第1の
領域を形成する第3の工程と、前記ゲート電極をマスク
にして、前記半導体基板表面の垂直方向に対して0°以
上10°以下の角度で第1導電型とは逆の第2導電型の
不純物イオンを前記半導体基板に注入して第2導電型の
第2の領域にする第4の工程と、 前記ゲート電極の両側のエッジ部にサイドウォールスペ
ーサを形成する第5の工程と、 前記ゲート電極及びサイドウォールスペーサをマスクに
して、第2導電型の不純物イオンを前記半導体基板に高
濃度に注入する第6の工程とを具備することを特徴とす
る半導体素子の製造方法。
[Claims] A first step of forming a gate insulating film on a semiconductor substrate of a first conductivity type, a second step of forming a gate electrode on the gate insulating film, and using the gate electrode as a mask. a third step of implanting impurity ions of a first conductivity type into the semiconductor substrate at an angle of 20° or more and less than 90° with respect to a direction perpendicular to the surface of the semiconductor substrate to form a first region; Using the electrode as a mask, impurity ions of a second conductivity type opposite to the first conductivity type are implanted into the semiconductor substrate at an angle of 0° or more and 10° or less with respect to a direction perpendicular to the surface of the semiconductor substrate. a fourth step of forming a second region of a conductive type; a fifth step of forming sidewall spacers on both edge portions of the gate electrode; and a sixth step of implanting conductive type impurity ions into the semiconductor substrate at a high concentration.
JP5993390A 1990-03-13 1990-03-13 Manufacture of semiconductor element Pending JPH03262130A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5993390A JPH03262130A (en) 1990-03-13 1990-03-13 Manufacture of semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5993390A JPH03262130A (en) 1990-03-13 1990-03-13 Manufacture of semiconductor element

Publications (1)

Publication Number Publication Date
JPH03262130A true JPH03262130A (en) 1991-11-21

Family

ID=13127428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5993390A Pending JPH03262130A (en) 1990-03-13 1990-03-13 Manufacture of semiconductor element

Country Status (1)

Country Link
JP (1) JPH03262130A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5376566A (en) * 1993-11-12 1994-12-27 Micron Semiconductor, Inc. N-channel field effect transistor having an oblique arsenic implant for lowered series resistance
US5378641A (en) * 1993-02-22 1995-01-03 Micron Semiconductor, Inc. Electrically conductive substrate interconnect continuity region and method of forming same with an angled implant
US5409848A (en) * 1994-03-31 1995-04-25 Vlsi Technology, Inc. Angled lateral pocket implants on p-type semiconductor devices
US5426063A (en) * 1993-03-24 1995-06-20 Sharp Kabushiki Kaisha Method of making a field effect transistor with submicron channel length and threshold implant using oblique implantation
US5439835A (en) * 1993-11-12 1995-08-08 Micron Semiconductor, Inc. Process for DRAM incorporating a high-energy, oblique P-type implant for both field isolation and punchthrough
US5532176A (en) * 1992-04-17 1996-07-02 Nippondenso Co., Ltd. Process for fabricating a complementary MIS transistor
EP0720215A1 (en) * 1994-12-28 1996-07-03 Nec Corporation Fabrication process for MOSFET
US5543337A (en) * 1994-06-15 1996-08-06 Lsi Logic Corporation Method for fabricating field effect transistor structure using symmetrical high tilt angle punchthrough implants
US5554544A (en) * 1995-08-09 1996-09-10 United Microelectronics Corporation Field edge manufacture of a T-gate LDD pocket device
US5858845A (en) * 1994-09-27 1999-01-12 Micron Technology, Inc. Electrically conductive substrate interconnect continuity region and method of forming same with an angled implant
US6236085B1 (en) 1996-11-11 2001-05-22 Denso Corporation Semiconductor memory device having high-concentration region around electric-field moderating layer in substrate
JP2006032930A (en) * 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd Doping device
JP2013247347A (en) * 2012-05-29 2013-12-09 Canon Inc Semiconductor device and manufacturing method of the same

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5753556A (en) * 1992-04-17 1998-05-19 Nippondenso Co., Ltd. Method of fabricating a MIS transistor
US5532176A (en) * 1992-04-17 1996-07-02 Nippondenso Co., Ltd. Process for fabricating a complementary MIS transistor
US5378641A (en) * 1993-02-22 1995-01-03 Micron Semiconductor, Inc. Electrically conductive substrate interconnect continuity region and method of forming same with an angled implant
US6320235B1 (en) 1993-02-22 2001-11-20 Micron Technology, Inc. Apparatus having low resistance angled implant regions
US5976960A (en) * 1993-02-22 1999-11-02 Micron Technology, Inc. Method of forming an electrically conductive substrate interconnect continuity region with an angled implant
US5426063A (en) * 1993-03-24 1995-06-20 Sharp Kabushiki Kaisha Method of making a field effect transistor with submicron channel length and threshold implant using oblique implantation
US5532508A (en) * 1993-03-24 1996-07-02 Sharp Kabushiki Kaisha Semiconductor device with LDD structure
US5439835A (en) * 1993-11-12 1995-08-08 Micron Semiconductor, Inc. Process for DRAM incorporating a high-energy, oblique P-type implant for both field isolation and punchthrough
US5376566A (en) * 1993-11-12 1994-12-27 Micron Semiconductor, Inc. N-channel field effect transistor having an oblique arsenic implant for lowered series resistance
US5409848A (en) * 1994-03-31 1995-04-25 Vlsi Technology, Inc. Angled lateral pocket implants on p-type semiconductor devices
US5543337A (en) * 1994-06-15 1996-08-06 Lsi Logic Corporation Method for fabricating field effect transistor structure using symmetrical high tilt angle punchthrough implants
US5858845A (en) * 1994-09-27 1999-01-12 Micron Technology, Inc. Electrically conductive substrate interconnect continuity region and method of forming same with an angled implant
US5736416A (en) * 1994-12-28 1998-04-07 Nec Corporation Fabrication process for MOSFET using oblique rotation ion implantation
EP0720215A1 (en) * 1994-12-28 1996-07-03 Nec Corporation Fabrication process for MOSFET
US5554544A (en) * 1995-08-09 1996-09-10 United Microelectronics Corporation Field edge manufacture of a T-gate LDD pocket device
US6236085B1 (en) 1996-11-11 2001-05-22 Denso Corporation Semiconductor memory device having high-concentration region around electric-field moderating layer in substrate
JP2006032930A (en) * 2004-06-14 2006-02-02 Semiconductor Energy Lab Co Ltd Doping device
JP2013247347A (en) * 2012-05-29 2013-12-09 Canon Inc Semiconductor device and manufacturing method of the same

Similar Documents

Publication Publication Date Title
US4737471A (en) Method for fabricating an insulated-gate FET having a narrow channel width
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US5885886A (en) Method for manufacturing semiconductor device
US5780902A (en) Semiconductor device having LDD structure with pocket on drain side
JPH07508371A (en) Threshold adjustment in vertical DMOS devices
JPH0479142B2 (en)
JPH03262130A (en) Manufacture of semiconductor element
US20050003598A1 (en) Low dose super deep source/drain implant
JPH01307266A (en) Manufacture of semiconductor device
JP2797798B2 (en) Semiconductor device having buried contact for preventing penetration and method of manufacturing the same
JPH02280342A (en) Mos semiconductor device and manufacture thereof
JPH01212471A (en) Mos type transistor and manufacture thereof
KR960000233B1 (en) Mos-transistor and its making method
JP2000164525A (en) Silicon carbide semiconductor device and manufacture thereof
JPH10321871A (en) Semiconductor device having soi structure and manufacture thereof
KR100252747B1 (en) Flash memory device and manufacturing method thereof
KR100189751B1 (en) Semiconductor device and method of manufacturing the same
JP3394562B2 (en) MOSFET manufacturing method
JP3014138B2 (en) Semiconductor device
JP2554361B2 (en) Method for manufacturing semiconductor device
JPH0630390B2 (en) Method for manufacturing CMOS semiconductor device
JP2880885B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPH04196170A (en) Semiconductor device and manufacture thereof
KR0167664B1 (en) Method of fabricating semiconductor device
JP3253712B2 (en) Method for manufacturing semiconductor device