JPH03120836A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH03120836A
JPH03120836A JP26042489A JP26042489A JPH03120836A JP H03120836 A JPH03120836 A JP H03120836A JP 26042489 A JP26042489 A JP 26042489A JP 26042489 A JP26042489 A JP 26042489A JP H03120836 A JPH03120836 A JP H03120836A
Authority
JP
Japan
Prior art keywords
diffusion layer
conductivity type
gate electrode
low concentration
opposite conductivity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP26042489A
Other languages
Japanese (ja)
Inventor
Takemi Kimura
木村 岳見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP26042489A priority Critical patent/JPH03120836A/en
Publication of JPH03120836A publication Critical patent/JPH03120836A/en
Pending legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To improve the breakdown strength of an element, and restrain the generation of hot carrier affecting the reliability of the element, by forming an LDD structure having a graded junction wherein a low concentration impurity diffusion layer surrounds a high concentration impurity diffusion layer in a source.drain region. CONSTITUTION:The title device is provided with the following; a gate electrode 3 formed, via a gate insulating film 2, on an element forming region formed on a conductivity type semiconductor substrate 1, a first opposite conductivity type low concentration layer 7 formed in the element forming region so as to be matched with the gate electrode 3, a second opposite conductivity type low concentration diffusion layer 6 formed so as to be matched with an insulating film 4 formed on the side wall of the gate electrode 3 and be connected with the first opposite conductivity type low concentration diffusion layer 7 in the element forming region, and an opposite conductivity type high concentration diffusion layer 5 formed in the second opposite conductivity type low concentration diffusion layer 6. For example, phosphorus ion is implanted by using the gate electrode 3 and a side spacer 4 as masks; then arsenic ion is implanted, heat treatment is performed, an N<-> type diffusion layer 6 connected with an N<-> type diffusion layer 7 and an N<+> type diffusion layer 5 shallowly formed in an N<-> type diffusion layer 6 are provided.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、半導体装置に関し、特にMIS型電界効果ト
ランジスタを有する半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor device, and particularly to a semiconductor device having an MIS type field effect transistor.

〔従来の技術〕[Conventional technology]

MIS型電界効果トランジスタは、ゲート長が短くなる
に従い、動作時のドレイン近傍の電界が非常に大きくな
り、短チヤネル効果の増大、ホットキャリア注入による
特性劣化等の信頼性の低下が大きな問題となっている。
As the gate length of MIS type field effect transistors becomes shorter, the electric field near the drain becomes extremely large during operation, resulting in serious problems such as an increase in short channel effects and a decrease in reliability due to characteristic deterioration due to hot carrier injection. ing.

これを防ぎ、信頼性、特に耐圧を向上させる構造として
、高濃度拡散層をゲート電極とオフセットさせて設け、
その中間に低濃度拡散層を設けたLDD構造(Ligh
tly Doped Drain構造)が知られている
In order to prevent this and improve reliability, especially withstand voltage, a highly concentrated diffusion layer is provided offset from the gate electrode.
The LDD structure (Light) has a low concentration diffusion layer in the middle.
tly Doped Drain structure) is known.

第3図は従来の半導体装置の断面図である。FIG. 3 is a sectional view of a conventional semiconductor device.

第3図に示すように、P型シリコン基板1の一主面に形
成した素子形成領域の表面にゲート酸化膜2を介して設
けたゲート電極3をマスクとして素子形成領域に設けた
N−型拡散領域7と、ゲート電極3の一側壁に設けた絶
縁膜(以下サイドスペーサと記す)4をマスクとして素
子形成領域にN−型拡散層7に接続して設けたN+型型
数散層5有してLDD構造のMIS型電界効果トランジ
スタを有する半導体装置を構成する。
As shown in FIG. 3, using a gate electrode 3 provided on the surface of the element formation region formed on one principal surface of the P-type silicon substrate 1 via a gate oxide film 2 as a mask, an N-type silicon substrate 1 is formed on the element formation region. Using the diffusion region 7 and the insulating film (hereinafter referred to as side spacer) 4 provided on one side wall of the gate electrode 3 as a mask, an N+ type scattering layer 5 is provided in the element formation region connected to the N− type diffusion layer 7. A semiconductor device having an MIS field effect transistor with an LDD structure is constructed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上述した従来の半導体装置は、高濃度拡散層が半導体基
板と直接に接して設けられているため、耐圧が不十分で
あり、短チヤネル効果が厳しくなるという欠点がある。
The above-described conventional semiconductor device has the drawback that the high concentration diffusion layer is provided in direct contact with the semiconductor substrate, and therefore has insufficient breakdown voltage and severe short channel effect.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の半導体装置は、−導電型半導体基板上に設けた
素子形成領域の上にゲート絶縁膜を介して設けたゲート
電極と、前記ゲート電極に整合して前記素子形成領域内
に設けた第1の逆導電型低濃度拡散層と、前記ゲート電
極の側壁に設けた絶縁膜に整合して前記素子形成領域の
前記第1の逆導電型低濃度拡散層と接続して設けた第2
の逆導電型低濃度拡散層及び前記第2の逆導電型低濃度
拡散層内に設けた逆導電型高濃度拡散層とを有する。
The semiconductor device of the present invention includes a gate electrode provided on an element formation region provided on a conductivity type semiconductor substrate via a gate insulating film, and a gate electrode provided in the element formation region in alignment with the gate electrode. a second opposite conductivity type low concentration diffusion layer provided in alignment with an insulating film provided on a side wall of the gate electrode and connected to the first opposite conductivity type low concentration diffusion layer in the element formation region;
and a reverse conductivity type high concentration diffusion layer provided in the second reverse conductivity type low concentration diffusion layer.

〔実施例〕〔Example〕

次に、本発明について図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)〜(C)は本発明の第1の実施例の製造方
法を説明するための工程順に示した半導体チップの断面
図である。
FIGS. 1A to 1C are cross-sectional views of a semiconductor chip shown in the order of steps for explaining the manufacturing method of the first embodiment of the present invention.

まず、第1図(a)に示すように、P型シリコン基板1
の一生面に選択的に素子分離領域(図示せず)を設けて
素子形成領域を形成し、素子形成領域の表面を熱酸化し
てゲート酸化膜2を20〜30nmの厚さに形成する。
First, as shown in FIG. 1(a), a P-type silicon substrate 1
An element isolation region (not shown) is selectively provided on the entire surface to form an element formation region, and the surface of the element formation region is thermally oxidized to form a gate oxide film 2 with a thickness of 20 to 30 nm.

次にゲート酸化膜2の上にリンを高濃度にドープした多
結晶シリコン膜又は高融点金属硅化物膜もしくはそれら
の複合膜を0.4μmの厚さに堆積して、これを選択的
にエツチングしてゲート電極3を形成する。次に、ゲー
ト電極3をマスクとしてリンイオンを加速エネルギー4
0keV、ドーズ量5X1013C111−2の条件で
イオン注入し、N−型拡散層7を形成する。
Next, a polycrystalline silicon film doped with phosphorus at a high concentration, a high melting point metal silicide film, or a composite film thereof is deposited to a thickness of 0.4 μm on the gate oxide film 2, and this is selectively etched. Then, gate electrode 3 is formed. Next, using the gate electrode 3 as a mask, phosphorus ions are accelerated with an energy of 4
Ion implantation is performed under the conditions of 0 keV and a dose of 5×10 13 C111-2 to form an N − type diffusion layer 7 .

次に、第1図(b)に示すように、ゲート電極3を含む
表面に酸化シリコン膜を0.3μmの厚さに堆積した後
反応性イオンエツチング(RIE)法により異方性エツ
チングし、ゲート電極3の側壁に厚さ0.3μmのサイ
ドスペーサ4を設ける。
Next, as shown in FIG. 1(b), a silicon oxide film is deposited to a thickness of 0.3 μm on the surface including the gate electrode 3, and then anisotropically etched by reactive ion etching (RIE). A side spacer 4 having a thickness of 0.3 μm is provided on the side wall of the gate electrode 3.

次に、第1図(c)に示すように、ゲート電極3及びサ
イドスペーサ4をマスクとしてリンイオンを加速エネル
ギー100keV、ドーズ量1×10”cm−”の条件
で、次いで、ヒ素イオンを加速エネルギー70keV、
ドーズ量5 X 1015cm−2の条件で順次イオン
注入して熱処理を行いN−型拡散層7と接続するN−型
拡散層6及びN−型拡散層6内に浅く形成したN+型型
数散層5それぞれ設け、LDD構造のMIS型電界効果
トランジスタを構成する。
Next, as shown in FIG. 1(c), using the gate electrode 3 and side spacer 4 as a mask, phosphorus ions are accelerated with an energy of 100 keV and a dose of 1×10 cm-, and then arsenic ions are accelerated with an energy of 100 keV and a dose of 1×10 cm. 70keV,
Sequential ion implantation and heat treatment were performed under the conditions of a dose of 5 x 1015 cm-2 to form an N- type diffusion layer 6 connected to the N- type diffusion layer 7 and an N+ type diffusion layer 6 formed shallowly within the N- type diffusion layer 6. Each layer 5 is provided to constitute a MIS type field effect transistor having an LDD structure.

ここで、N+型型数散層5リンにより形成されたN−型
拡散層6にとり囲まれて傾斜接合となっており、かつN
+型型数散層5ゲート電極3の直下より離れたところに
ありオフセットとなっているので、ソース・ドレイン拡
散層の内部電界が弱められ、ソース・ドレイン拡散層の
耐圧を向上させる事ができ、かつ素子の信頼性に大きな
影響を与えるホットキャリアを減少させる事ができる。
Here, the N+ type diffused layer 5 is surrounded by the N- type diffused layer 6 formed of phosphorus, forming a sloped junction, and the N
Since the + type scattering layer 5 is located away from directly under the gate electrode 3 and is offset, the internal electric field of the source/drain diffusion layer is weakened and the withstand voltage of the source/drain diffusion layer can be improved. , and it is possible to reduce hot carriers that greatly affect the reliability of the device.

第2図は本発明の第2の実施例の断面図である。FIG. 2 is a sectional view of a second embodiment of the invention.

第2図に示すように、ソース側のサイドスペーサを選択
的に除去し、ゲート電極3のドレイン側の側壁にのみサ
イドスペーサ4を設けてドレイン側にN−型拡散領域7
を設け、ソース側にゲート電@3と整合したN−型拡散
層6及びN−型拡散層6内にN+型型数散層5設けた以
外は第1の実施例と同じ構成を有している。
As shown in FIG. 2, the side spacers on the source side are selectively removed, and the side spacers 4 are provided only on the side wall of the gate electrode 3 on the drain side, and an N- type diffusion region 7 is formed on the drain side.
It has the same structure as the first embodiment except that an N- type diffusion layer 6 matched with the gate voltage @3 is provided on the source side and an N+ type scattering layer 5 is provided in the N- type diffusion layer 6. ing.

本実施例では、ドレイン側拡散層のみをLDD構造とし
ているため低不純物濃度領域に生ずる寄生抵抗を第1の
実施例に比べ半減できるという利点がある。
In this embodiment, since only the drain side diffusion layer has an LDD structure, there is an advantage that the parasitic resistance occurring in the low impurity concentration region can be halved compared to the first embodiment.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ソース・ドレイン領域の
高不純物濃度拡散層を低不純物濃度拡散層がとり囲んだ
傾斜接合を有するLDD構造を形成することにより、素
子の耐圧を向上させる事ができ、かつ、素子の信頼性に
影響を与えるホットキャリアの発生も抑制する事ができ
、高信頼性を有する半導体装置を提供できるという効果
を有する。
As explained above, the present invention can improve the withstand voltage of the device by forming an LDD structure having an inclined junction in which a high impurity concentration diffusion layer in the source/drain region is surrounded by a low impurity concentration diffusion layer. In addition, it is possible to suppress the generation of hot carriers that affect the reliability of the device, and it is possible to provide a highly reliable semiconductor device.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(c)は本発明の第1の実施例の製造方
法を説明するための工程順に示した半導体チップの断面
図、第2図は本発明の第2の実施例を示す断面図、第3
図は従来の半導体装置の断面図である。 1・・・P型シリコン基板、2・・・ゲート酸化膜、3
・・・ゲート電極、4・・・サイドスペーサ、5・・・
N+型型数散層6,7・・・N−型拡散層。
FIGS. 1(a) to (c) are cross-sectional views of a semiconductor chip shown in the order of steps to explain the manufacturing method of the first embodiment of the present invention, and FIG. Sectional view shown, 3rd
The figure is a cross-sectional view of a conventional semiconductor device. 1...P-type silicon substrate, 2...gate oxide film, 3
...Gate electrode, 4...Side spacer, 5...
N+ type diffused layer 6, 7...N- type diffused layer.

Claims (1)

【特許請求の範囲】[Claims] 一導電型半導体基板上に設けた素子形成領域の上にゲー
ト絶縁膜を介して設けたゲート電極と、前記ゲート電極
に整合して前記素子形成領域内に設けた第1の逆導電型
低濃度拡散層と、前記ゲート電極の側壁に設けた絶縁膜
に整合して前記素子形成領域の前記第1の逆導電型低濃
度拡散層と接続して設けた第2の逆導電型低濃度拡散層
及び前記第2の逆導電型低濃度拡散層内に設けた逆導電
型高濃度拡散層とを有することを特徴とする半導体装置
A gate electrode provided on an element formation region provided on a semiconductor substrate of one conductivity type via a gate insulating film, and a first opposite conductivity type low concentration provided in the element formation region in alignment with the gate electrode. a second reverse conductivity type low concentration diffusion layer provided in alignment with the diffusion layer and the insulating film provided on the side wall of the gate electrode and connected to the first reverse conductivity type low concentration diffusion layer in the element formation region; and a reverse conductivity type high concentration diffusion layer provided within the second reverse conductivity type low concentration diffusion layer.
JP26042489A 1989-10-04 1989-10-04 Semiconductor device Pending JPH03120836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26042489A JPH03120836A (en) 1989-10-04 1989-10-04 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26042489A JPH03120836A (en) 1989-10-04 1989-10-04 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH03120836A true JPH03120836A (en) 1991-05-23

Family

ID=17347744

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26042489A Pending JPH03120836A (en) 1989-10-04 1989-10-04 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH03120836A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5315144A (en) * 1992-09-18 1994-05-24 Harris Corporation Reduction of bipolar gain and improvement in snap-back sustaining voltage in SOI field effect transistor
US5512769A (en) * 1992-05-25 1996-04-30 Matsushita Electronics Corporation High breakdown voltage semiconductor device and method of fabricating the same
US6597038B1 (en) 1998-02-24 2003-07-22 Nec Corporation MOS transistor with double drain structure for suppressing short channel effect

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512769A (en) * 1992-05-25 1996-04-30 Matsushita Electronics Corporation High breakdown voltage semiconductor device and method of fabricating the same
US5315144A (en) * 1992-09-18 1994-05-24 Harris Corporation Reduction of bipolar gain and improvement in snap-back sustaining voltage in SOI field effect transistor
US6597038B1 (en) 1998-02-24 2003-07-22 Nec Corporation MOS transistor with double drain structure for suppressing short channel effect

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JP2835216B2 (en) Method for manufacturing semiconductor device
JP2897004B2 (en) CMOSFET manufacturing method
JPH11121739A (en) Semiconductor device and manufacture thereof
JP2002124671A (en) Semiconductor device and its manufacturing method
JP2001308321A (en) Semiconductor device and its manufacturing method
KR920008120B1 (en) Mos type field effect transistor
JPH05102179A (en) Semiconductor device and its manufacture
JPH03120836A (en) Semiconductor device
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
KR950001152B1 (en) Semiconductor device and manufacturing method thereof
JPH0575045A (en) Manufacture of semiconductor device
JPH03209762A (en) Semiconductor device and its manufacture
US20020089021A1 (en) Semiconductor device with an anti-doped region
KR0167664B1 (en) Method of fabricating semiconductor device
JP2808620B2 (en) Method for manufacturing semiconductor device
JPH02219237A (en) Mis type semiconductor device
KR940010919B1 (en) Manufacturing method of ldd type mosfet
JP2658163B2 (en) Method of manufacturing MIS type semiconductor device
JP2773159B2 (en) Semiconductor integrated circuit
JPH06283713A (en) Semiconductor device and its manufacture
JPS62130563A (en) Semiconductor device
JPS6373666A (en) Insulated-gate field-effect semiconductor device
JPH0230145A (en) Manufacture of semiconductor device
JPS6258681A (en) Insulated gate semiconductor device and manufacture thereof