JPH04127439A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04127439A
JPH04127439A JP24945690A JP24945690A JPH04127439A JP H04127439 A JPH04127439 A JP H04127439A JP 24945690 A JP24945690 A JP 24945690A JP 24945690 A JP24945690 A JP 24945690A JP H04127439 A JPH04127439 A JP H04127439A
Authority
JP
Japan
Prior art keywords
semiconductor substrate
diffusion layer
silicon substrate
normal line
type silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24945690A
Other languages
Japanese (ja)
Other versions
JP2624568B2 (en
Inventor
Takashi Nakabayashi
隆 中林
Shohei Shinohara
篠原 昭平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2249456A priority Critical patent/JP2624568B2/en
Publication of JPH04127439A publication Critical patent/JPH04127439A/en
Application granted granted Critical
Publication of JP2624568B2 publication Critical patent/JP2624568B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To make the concentration grade of impurities in a diffusion layer gentle and to weaken an electric field exerted on the diffusion layer by a method wherein an ion implantation operation in the inclined direction whose angle formed by the normal line of a semiconductor substrate and by the impinging direction of impurity ions is different is executed several times to the semiconductor substrate having a difference in level. CONSTITUTION:A polycrystalline silicon gate electrode 3 is formed on a P-type silicon substrate 1 via a gate oxide film 2; after that, the P-type silicon substrate 1 is tilted in such a way that an angle formed by the advance direction of an implantation beam and by the normal line of the P-type silicon substrate 1 is at 30 deg.; arsenic ions are implanted perpendicularly to the width direction of a gate; diffusion layers 4a, 5a are formed. Then, the P-type silicon substrate is turned by using the normal line of the P-type silicon substrate 1 as an axis; arsenic ions are implanted; diffusion layers 4a, 5b, 5c are formed. An impurity concentration becomes higher in the order of diffusion layers 4f, 4g, 4n, 4p and 4q (5m, 5n, 5s, 5t and 5u); an LDD diffusion layer has a five-step concentration grade in a state immediately after an implantation operation.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は半導体装置の製造方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a semiconductor device.

〔従来の技術〕[Conventional technology]

第7図は、従来の半導体装置の製造方法を用いたNチャ
ネルMO3トランジスタのLDD (Lightly 
Doped Drain)の形成方法を示す工程断面図
である。このLDDは、ソース(トレイン)拡散層とゲ
ート下のチャネル部との間に設けられた低濃度拡散層で
あり、ゲート長方向の電界を緩和する作用かある。
FIG. 7 shows an LDD (Lightly
FIG. 3 is a process cross-sectional view showing a method of forming a doped drain. This LDD is a lightly doped diffusion layer provided between the source (train) diffusion layer and the channel portion under the gate, and has the effect of relaxing the electric field in the gate length direction.

以下、従来の半導体装置の製造方法について、第7図を
参照しながら説明する。
Hereinafter, a conventional method for manufacturing a semiconductor device will be explained with reference to FIG.

まず、第7図(alでは、P型シリコン基板1上にゲー
ト酸化膜2を介して多結晶シリコンゲート電極3を形成
した後、注入ビーム(矢印で示す)の進行方向とP型シ
リコン基板lの法線の成す角度が30°になるようにP
型シリコン基板1を傾け、ゲート幅方向(断面図に垂直
な方向)に垂直にヒ素イオンを、加速エネルギー65K
eV、  ドーズ量5EI2cm−’で注入し、拡散層
4a、5aを形成する。
First, after forming a polycrystalline silicon gate electrode 3 on a P-type silicon substrate 1 via a gate oxide film 2, as shown in FIG. P so that the angle formed by the normal line of is 30°
Tilt the mold silicon substrate 1 and apply arsenic ions perpendicularly to the gate width direction (direction perpendicular to the cross-sectional view) at an acceleration energy of 65K.
eV and a dose of 5EI2 cm-' to form diffusion layers 4a and 5a.

つぎに、第7図(b)では、P型シリコン基板lを、P
型シリコン基板lの法線を軸として90°回転させ、ヒ
素イオンを加速エネルギー65KeV。
Next, in FIG. 7(b), the P-type silicon substrate l is
The arsenic ions were accelerated at an energy of 65 KeV by rotating the mold silicon substrate 1 by 90 degrees around its normal line.

ドーズ量5E12cm−”で注入し、拡散層4b。The diffusion layer 4b is implanted at a dose of 5E12 cm-''.

5b、5cを形成する。5b and 5c are formed.

つぎに、第7図(C)では、P型シリコン基板1を、P
型シリコン基板lの法線を軸として、さらに90°回転
させ、ヒ素イオンを加速エネルギー65KeV、  ド
ーズ量5E12cm−”で注入し、拡散層4c、5d、
5e、5fを形成する。
Next, in FIG. 7(C), the P-type silicon substrate 1 is
The silicon substrate 1 is further rotated by 90 degrees about the normal line of the silicon substrate 1, and arsenic ions are implanted at an acceleration energy of 65 KeV and a dose of 5E12 cm-'' to form diffusion layers 4c, 5d,
5e and 5f are formed.

つぎに、第7図fdlでは、P型シリコン基板lを、P
型シリコン基板lの法線を軸として、さらに90°回転
させ、ヒ素イオンを加速エネルギー65KeV、  ド
ーズ量5E12ao−”で注入し、拡散層4d、4e、
5g、5hを形成し、この後、900℃の窒素雰囲気中
で60分熱処理を行う。
Next, in FIG. 7 fdl, the P type silicon substrate l is
The silicon substrate 1 is further rotated by 90 degrees about the normal line of the silicon substrate 1, and arsenic ions are implanted at an acceleration energy of 65 KeV and a dose of 5E12ao-'' to form diffusion layers 4d, 4e,
5g and 5h are formed, and then heat treatment is performed for 60 minutes in a nitrogen atmosphere at 900°C.

以上のようにして形成された従来のLDD構造の半導体
装置では、注入後の拡散層4a、4d。
In the conventional LDD structure semiconductor device formed as described above, the diffusion layers 4a and 4d after implantation.

4e (5d、5g、5h)の不純物濃度の比率か1:
3:4となる。また、注入後の熱拡散によって緩やかな
濃度勾配をもつLDD構造を形成することができる。こ
のため、ゲート長方向の電界か緩和され、ホットキャリ
アの発生か減少し、MOSトランジスタ特性の経時劣化
を抑制することかできる。
4e (5d, 5g, 5h) impurity concentration ratio or 1:
The ratio will be 3:4. Furthermore, an LDD structure with a gentle concentration gradient can be formed by thermal diffusion after implantation. Therefore, the electric field in the gate length direction is relaxed, the generation of hot carriers is reduced, and deterioration of the MOS transistor characteristics over time can be suppressed.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

しかしながら、前記のような構成では、特にケート長が
1μmより短いMOSトランジスタにおいて、不純物の
ゲート下への拡散により実効チャネル長が短くなり、シ
ョートチャネル効果、パンチスルーによるリーク電流の
増大という問題を引起す。一方、熱処理温度を下げるか
、あるいは熱処理時間を短縮してゲート下への不純物の
拡散を抑えると、緩やかな濃度勾配を形成することかて
きなくなり、このためMOSトランジスタのチャネル長
方向の電界が強くなり、トランジスタのホットキャリア
信頼性が下がるという問題点を有していた。
However, in the above configuration, especially in a MOS transistor with a gate length shorter than 1 μm, the effective channel length is shortened due to the diffusion of impurities under the gate, causing problems such as short channel effect and increased leakage current due to punch-through. vinegar. On the other hand, if the diffusion of impurities under the gate is suppressed by lowering the heat treatment temperature or shortening the heat treatment time, it becomes impossible to form a gentle concentration gradient, and as a result, the electric field in the channel length direction of the MOS transistor becomes stronger. Therefore, there was a problem in that the hot carrier reliability of the transistor decreased.

したがって、この発明の目的は、拡散層の不純物の濃度
勾配を緩やかにして拡散層に加わる電界を弱めることが
できる半導体装置の製造方法を提供することである。
Therefore, an object of the present invention is to provide a method for manufacturing a semiconductor device that can reduce the concentration gradient of impurities in a diffusion layer and weaken the electric field applied to the diffusion layer.

〔課題を解決するための手段〕[Means to solve the problem]

請求項(1)記載の半導体装置の製造方法は、段差を存
する半導体基板に、半導体基板の法線と不純物イオンの
入射方向の成す角度の異なる複数回の斜め方向イオン注
入を行うことを特徴とする。
The method for manufacturing a semiconductor device according to claim (1) is characterized in that ion implantation is performed in a plurality of oblique directions at different angles between the normal line of the semiconductor substrate and the direction of impurity ion incidence into a semiconductor substrate having a step. do.

また、請求項(2)記載の半導体装置の製造方法は、半
導体基板上にゲート電極を形成した後、半導体基板の法
線を軸として半導体基板を回転させながら、半導体基板
の法線と不純物イオンの入射方向の成す角度の異なる複
数回の斜め方向イオン注入を行ってMOSトランジスタ
のソースおよびドレインとなる拡散層を形成することを
特徴とする請求項(3)記載の半導体装置の製造方法は
、半導体基板上に素子分離領域を形成した後、素子分離
領域上に段差を形成し、この後半導体基板の法線と不純
物イオンの入射方向の成す角度の異なる複数回の斜め方
向イオン注入を行って素子分離領域に近接した拡散層を
形成することを特徴とする。
Further, in the method for manufacturing a semiconductor device according to claim (2), after forming a gate electrode on a semiconductor substrate, while rotating the semiconductor substrate around the normal line of the semiconductor substrate, the normal line of the semiconductor substrate and impurity ions are The method of manufacturing a semiconductor device according to claim 3, characterized in that a diffusion layer which becomes a source and a drain of a MOS transistor is formed by performing oblique ion implantation a plurality of times with different angles of incidence of the ions. After forming an element isolation region on a semiconductor substrate, a step is formed on the element isolation region, and then oblique ion implantation is performed multiple times at different angles between the normal to the semiconductor substrate and the impurity ion incident direction. It is characterized by forming a diffusion layer close to the element isolation region.

〔作   用〕[For production]

請求項(11記載の構成によれば、段差を有する半導体
基板に対し、不純物イオンの入射方向の成す角度を異な
らせて複数回斜め方向に不純物イオンを注入するので、
段差によってできる陰の領域が注入角度によって異なり
、作られる拡散層の中に順次不純物濃度の異なる複数の
領域が形成されることになる。
According to the configuration described in claim 11, impurity ions are implanted diagonally multiple times into a semiconductor substrate having steps at different angles formed by the incident direction of the impurity ions.
The shadow region formed by the step differs depending on the implantation angle, and a plurality of regions with different impurity concentrations are formed in the created diffusion layer.

請求項(2)記載の構成によれば、半導体基板上のゲー
ト電極が段差となり、この段差を有する半導体基板に対
し、注入角度を異ならせて複数回斜め方向に不純物イオ
ンを注入するので、段差によってできる陰の領域が注入
角度によって異なり、ソースおよびドレインとして作ら
れる拡散層の中に順次不純物濃度の異なる複数の領域が
形成されることになる。
According to the structure recited in claim (2), the gate electrode on the semiconductor substrate has a step, and impurity ions are implanted obliquely multiple times at different implantation angles into the semiconductor substrate having the step, so that the step is eliminated. The shadow region formed by this method differs depending on the implantation angle, and a plurality of regions having different impurity concentrations are formed in the diffusion layer formed as the source and drain.

請求項(3)記載の構成によれば、半導体基板に設けた
素子分離領域上に段差を形成し、この段差を有する半導
体基板に対し、注入角度を異ならせて複数回斜め方向に
不純物イオンを注入するので、段差によってできる陰の
領域か注入角度によって異なり、素子分離領域に隣接し
て作られる拡散層の中に順次不純物濃度の異なる複数の
領域か形成されることになる。
According to the structure recited in claim (3), a step is formed on an element isolation region provided in a semiconductor substrate, and impurity ions are obliquely implanted multiple times at different implantation angles into the semiconductor substrate having the step. Since the implantation is performed, a plurality of regions with different impurity concentrations are sequentially formed in the diffusion layer formed adjacent to the element isolation region, depending on the implantation angle, depending on the shadow region created by the step.

C実 施 例〕 以下、図面を参照しながらこの発明の実施例について説
明する。
C Embodiment] Hereinafter, embodiments of the present invention will be described with reference to the drawings.

第1図はこの発明の第1の実施例の半導体装置の製造方
法におけるN型MOSトランジスタのしDD拡散層の形
成方法を示す工程断面図である。
FIG. 1 is a process cross-sectional view showing a method of forming a DD diffusion layer of an N-type MOS transistor in a method of manufacturing a semiconductor device according to a first embodiment of the present invention.

以下、この第1の実施例の半導体装置の製造方法につい
て、第1図を参照しながら説明する。
The method for manufacturing the semiconductor device of this first embodiment will be described below with reference to FIG.

まず、第1図(a)では、P型シリコン基板1にゲート
酸化膜2を介して多結晶シリコンゲート電極3を形成し
た後、注入ビーム(矢印で示す)の進行方向とP型シリ
コン基板lの法線の成す角度か30’になるようにP型
シリコン基板Iを傾け、ゲート幅方向(断面図に垂直な
方向)に垂直にヒ素イオンを加速エネルギー65KeV
、  ドーズ量1、25 E I 2cm−’で注入し
、拡散層4a、5aを形成する。
First, in FIG. 1(a), after forming a polycrystalline silicon gate electrode 3 on a P-type silicon substrate 1 via a gate oxide film 2, the direction of propagation of the implantation beam (indicated by an arrow) and the P-type silicon substrate l are shown. Tilt the P-type silicon substrate I at an angle of 30' between the normal lines of
, is implanted at a dose of 1.25 E I 2 cm-' to form diffusion layers 4a and 5a.

つぎに、第1図fblでは、P型シリコン基板1を、P
型シリコン基板1の法線を軸として90°回転させ、ヒ
素イオンを加速エネルギー65KeVドーズj11.2
5 E I 2cm−’で注入し、拡散層4b5b、5
cを形成する。
Next, in FIG. 1fbl, the P-type silicon substrate 1 is
The mold silicon substrate 1 is rotated by 90 degrees around the normal line, and arsenic ions are accelerated with an energy of 65 KeV at a dose j11.2.
5 E I 2 cm-', diffusion layers 4b5b, 5
form c.

つぎに、第1図fc)では、P型シリコン基板lを、P
型シリコン基板lの法線を軸として、さらに90°回転
させ、ヒ素イオンを加速エネルギー65KeV、  ド
ーズfi1.25 E 12cm−”で注入し、拡散層
4c、5d、5e、5fを形成する。
Next, in FIG. 1 fc), the P-type silicon substrate l is
The substrate is further rotated by 90 degrees about the normal to the silicon substrate l, and arsenic ions are implanted at an acceleration energy of 65 KeV and a dose fi of 1.25 E 12 cm-'' to form diffusion layers 4c, 5d, 5e, and 5f.

つぎに、第1図fdlでは、P型シリコン基板1を、P
型シリコン基板lの法線を軸として、さらに90°回転
させ、ヒ素イオンを加速エネルギー65KeV、  ド
ーズ量1.25 E l 2cm−’で注入し、拡散層
4d、4e、5g、5hを形成する。
Next, in FIG. 1fdl, the P type silicon substrate 1 is
The substrate is further rotated by 90° about the normal to the silicon substrate 1, and arsenic ions are implanted at an acceleration energy of 65 KeV and a dose of 1.25 El 2 cm-' to form diffusion layers 4d, 4e, 5g, and 5h. .

つぎに、第1図fe)では、注入ビームの進行方向(矢
印で示す)とP型シリコン基板lの法線の成す角度が4
5°になるようにP型シリコン基板Iを傾け、ゲート幅
方向(断面図に垂直な方向)に垂直にヒ素イオンを加速
エネルギー80KeV。
Next, in Fig. 1 fe), the angle between the advancing direction of the implantation beam (indicated by the arrow) and the normal to the P-type silicon substrate l is 4.
The P-type silicon substrate I was tilted at an angle of 5°, and arsenic ions were accelerated at an energy of 80 KeV perpendicular to the gate width direction (direction perpendicular to the cross-sectional view).

ドーズ量3.75 E 12cm−’で注入し、拡散層
4f。
It was implanted at a dose of 3.75 E 12 cm-' to form a diffusion layer 4f.

4g、4h、4i、5iを形成する。4g, 4h, 4i, and 5i are formed.

つぎに、第1図げ)では、P型シリコン基板1を、P型
シリコン基板lの法線を軸として90’回転させ、ヒ素
イオンを加速エネルギー80KeV。
Next, in Figure 1), the P-type silicon substrate 1 is rotated 90' around the normal line of the P-type silicon substrate 1, and arsenic ions are accelerated with an energy of 80 KeV.

ドーズ量3.75 E 12cm−”で注入し、拡散層
4j。
The diffusion layer 4j is implanted at a dose of 3.75 E 12 cm-''.

4に、5j、5に、5fを形成する。Form 4, 5j, 5, and 5f.

つぎに、第1図(g)では、P型シリコン基板lを、P
型シリコン基板Iの法線を軸として、さらに90°回転
させ、ヒ素イオンを加速エネルギー80KeV、  ド
ーズ量3.75 E I 2cm−”で注入し、拡散層
41.4m、5m、5n、5p、5q。
Next, in FIG. 1(g), the P-type silicon substrate l is
The substrate was further rotated 90 degrees around the normal to the type silicon substrate I, and arsenic ions were implanted at an acceleration energy of 80 KeV and a dose of 3.75 E I 2 cm-'' to form diffusion layers of 41.4 m, 5 m, 5 n, 5 p, 5q.

5rを形成する。Form 5r.

つぎに、第1図(社)では、P型シリコン基板lを、P
型シリコン基板Iの法線を軸として、さらに90°回転
させ、ヒ素イオンを加速エネルギー80KeV、  ド
ーズjL3.75 E I 2 cm−’で注入し、拡
散層4n、4p、4q、5s、5t、5uを形成し、こ
の後、850°Cの窒素雰囲気中で30分熱処理を行う
Next, in FIG. 1, the P-type silicon substrate l is
The silicon substrate I is further rotated by 90 degrees around the normal line, and arsenic ions are implanted at an acceleration energy of 80 KeV and a dose of 3.75 E I 2 cm-' to form diffusion layers 4n, 4p, 4q, 5s, 5t, After that, heat treatment is performed for 30 minutes in a nitrogen atmosphere at 850°C.

以上のように構成されたこの実施例の半導体装置では、
拡散層4f、4g、4n、4p、4q(5m、5n、5
s、5t、5u)の順に不純物濃度が高くなり、LDD
拡散層は注入直後の状態において5段階の濃度勾配をも
っことになる。そのため、ゲート長方向の電界か緩やか
になり、ホットキャリアの発生を抑制し、MOSトラン
ジスタ特性の経時劣化を減少させることかできる。
In the semiconductor device of this embodiment configured as described above,
Diffusion layers 4f, 4g, 4n, 4p, 4q (5m, 5n, 5
s, 5t, 5u), the impurity concentration increases in the order of LDD
The diffusion layer has a five-step concentration gradient immediately after implantation. Therefore, the electric field in the gate length direction becomes gentle, suppressing the generation of hot carriers, and reducing the deterioration of the MOS transistor characteristics over time.

以上のように、この実施例によれば、半導体基板lの法
線と入射イオンビームの進行方向の成す角度を2種類選
び、それぞれの条件において、半導体基板lを半導体基
板1の法線を軸として90’ずつ回転させ、4回注入す
ることによって、5種類の濃度勾配をもっLDD拡散層
を形成することができる。
As described above, according to this embodiment, two types of angles between the normal to the semiconductor substrate l and the traveling direction of the incident ion beam are selected, and under each condition, the semiconductor substrate l is centered around the normal to the semiconductor substrate 1. By rotating by 90' and implanting four times, LDD diffusion layers with five types of concentration gradients can be formed.

第2図は不純物イオン注入後の熱処理を850℃の窒素
雰囲気中で30分行った場合において、従来例において
形成されるLDD拡散層と、実施例において形成される
LDD拡散層のチャネル長方向のヒ素イオンの濃度分布
を示すものである。
Figure 2 shows the channel length direction of the LDD diffusion layer formed in the conventional example and the LDD diffusion layer formed in the example when heat treatment after impurity ion implantation was performed for 30 minutes in a nitrogen atmosphere at 850°C. This shows the concentration distribution of arsenic ions.

同図において、破線は30°の角度でのみ不純物イオン
の注入を行う従来例のヒ素イオンの濃度分布を示し、実
線は30°と45°の2種類の角度で不純物イオンの注
入を行う実施例のヒ素イオンの濃度分布を示している。
In the same figure, the broken line shows the concentration distribution of arsenic ions in a conventional example in which impurity ions are implanted only at an angle of 30°, and the solid line shows an example in which impurity ions are implanted at two types of angles: 30° and 45°. shows the concentration distribution of arsenic ions.

第2図から明らかなように、従来例に比べて、この実施
例では、チャネル長方向の不純物の濃度勾配か、特にゲ
ート下で緩やかになる。
As is clear from FIG. 2, compared to the conventional example, in this example, the impurity concentration gradient in the channel length direction becomes gentler, especially under the gate.

第3図は、第2図に示す2種類の不純物濃度分布のLD
D拡散層を有するMOSトランジスタにおけるチャネル
長方向の電界分布を比較したものである。同図において
、破線は30°の角度でのみ不純物イオンの注入を行う
従来例のチャネル長方向の電界分布を示し、実線は30
°と45°の2種類の角度で不純物イオンの注入を行う
実施例のチャネル長方向の電界分布をを示している。第
3図から明らかなように、この実施例では、従来例に比
へて、不純物の濃度勾配か緩やかであるため、電界が弱
くなり、その分布かケート下に広かっている。
Figure 3 shows the LD with the two types of impurity concentration distributions shown in Figure 2.
This is a comparison of the electric field distribution in the channel length direction in a MOS transistor having a D diffusion layer. In the same figure, the broken line shows the electric field distribution in the channel length direction in the conventional example where impurity ions are implanted only at an angle of 30°, and the solid line shows the electric field distribution in the channel length direction.
The electric field distribution in the channel length direction is shown in an embodiment in which impurity ions are implanted at two different angles: 0° and 45°. As is clear from FIG. 3, in this example, the impurity concentration gradient is gentler than in the conventional example, so the electric field is weaker and its distribution is wider under the gate.

トランジスタ特性の経時劣化は、チャネル長方向の電界
によって加速された電子か衝突電離を起こし、その時発
生する電子または正孔の一部かゲート酸化膜中に注入さ
れ捕獲される、あるいはゲート酸化膜とP型シリコン基
板の界面に準位を形成することによって起こる。衝突電
離によって発生する電子、正孔の数Nはチャネル長方向
の電界に強く依存し、 Noc exp (−b/ E)       ・−−
−・・(1)E:チャネル長方向の電界 b:定数 の式で表され、そのほとんどは基板方向へ流れて基板電
流として観測される。しかし、ごく一部はゲート酸化膜
中に注入され、その数はNに比例する。そのため、基板
電流とゲート酸化膜中に注入される電子(正孔)、つま
りトランジスタ特性の劣化量には強い相関が生じ、 τEX: (1、、b/ I 、) −・・−・・・(
2)τ、寿命 lamb:基板電流 !、:ソース・トレイン間電流 n:定数 という式が成り立つ。第4図はこの様子を示している。
Deterioration of transistor characteristics over time occurs when electrons accelerated by the electric field in the channel length direction cause impact ionization, and some of the electrons or holes generated at that time are injected and captured into the gate oxide film, or when the gate oxide film This occurs due to the formation of a level at the interface of the P-type silicon substrate. The number N of electrons and holes generated by impact ionization strongly depends on the electric field in the channel length direction, and is expressed as Noc exp (-b/E) ・--
- (1) E: Electric field in the channel length direction b: Expressed by a constant equation, most of which flows toward the substrate and is observed as a substrate current. However, a small portion is implanted into the gate oxide, and the number is proportional to N. Therefore, there is a strong correlation between the substrate current and the electrons (holes) injected into the gate oxide film, that is, the amount of deterioration of transistor characteristics, and τEX: (1,,b/I,) -... (
2) τ, life lamb: substrate current! , : source-to-train current n: constant. Figure 4 shows this situation.

なお、第4図の特性は、ゲート幅が20μmに対してゲ
ート長が1.czmのNチャネルMOSトランジスタで
、ソース・ドレイン間電圧が5Vの条件で測定したもの
である。
The characteristics shown in FIG. 4 are when the gate width is 20 μm and the gate length is 1.5 μm. Measurements were made using a czm N-channel MOS transistor with a source-drain voltage of 5V.

従来例に比べて、この実施例では、基板電流I rub
が25μAから22μAに減少するため、寿命は約半桁
延びると考えられる。
Compared to the conventional example, in this example, the substrate current I rub
Since the current is reduced from 25 μA to 22 μA, it is thought that the life span will be extended by about half an order of magnitude.

なお、第1の実施例において、半導体基板lの法線と入
射イオンビームの成す角度をn種類にすると、LDD拡
散層は(2n+1)種類の濃度勾配をもつことになり、
nが大きくなるにつれて、LDD拡散層の濃度勾配を一
層緩やかにすることかてきる。また、半導体基板lを半
導体基板の法線を軸に回転させながら注入を行ってもよ
い。さらに、LDD拡散層をヒ素イオンでなく、燐イオ
ンで形成してもよい。
In the first embodiment, if there are n types of angles between the normal to the semiconductor substrate l and the incident ion beam, the LDD diffusion layer will have (2n+1) types of concentration gradients.
As n becomes larger, the concentration gradient of the LDD diffusion layer can be made gentler. Alternatively, the implantation may be performed while rotating the semiconductor substrate l around the normal line of the semiconductor substrate. Furthermore, the LDD diffusion layer may be formed of phosphorus ions instead of arsenic ions.

第5図はこの発明の第2の実施例の半導体装置の製造方
法におけるNチャネルストッパに隣接するN型拡散層の
形成方法を示す工程断面図である。
FIG. 5 is a process sectional view showing a method of forming an N-type diffusion layer adjacent to an N-channel stopper in a method of manufacturing a semiconductor device according to a second embodiment of the present invention.

以下、この第2の実施例の半導体装置の製造方法につい
て、第5図を参照しながら説明する。
The method for manufacturing the semiconductor device of this second embodiment will be described below with reference to FIG.

まず、第5図fa)では、P型シリコン基板l上に30
nmの厚さの熱酸化膜6を形成した後、周知の気相成長
法を用いてシリコン窒化膜7を150nmの厚さに堆積
する。つぎに、フォトレジストをマスクとし前記シリコ
ン窒化膜7をドライエツチング法を用いてエツチングし
た後、ポロンイオンを加速エネルギー100KeV、 
 ドーズ量2E13cm−’で矢印で示すように注入し
、Nチャネルストッパ拡散層8を形成する。
First, in Fig. 5 fa), 30 mm
After forming a thermal oxide film 6 with a thickness of 150 nm, a silicon nitride film 7 is deposited with a thickness of 150 nm using a well-known vapor phase growth method. Next, the silicon nitride film 7 is etched using a dry etching method using a photoresist as a mask, and then poron ions are etched with an acceleration energy of 100 KeV.
The N-channel stopper diffusion layer 8 is formed by implanting at a dose of 2E13 cm-' as shown by the arrow.

つぎに、第5図fb)ては、パイロ酸化によって前記熱
酸化膜6上にシリコン窒化膜のない部分の酸化膜を選択
成長させ、500nmの厚さの素子分離酸化膜9を形成
する。
Next, in FIG. 5fb), the oxide film in the portions where the silicon nitride film is not present is selectively grown on the thermal oxide film 6 by pyro-oxidation to form an element isolation oxide film 9 with a thickness of 500 nm.

つぎに、第5図(C1では、半導体基板l上に周知の気
相成長法を用いて、多結晶シリコンを300nmの厚さ
に堆積させた後に、フォトレジストをマスクとしドライ
エツチング法を用いて多結晶シリコンをエツチングし、
素子分離領域と活性領域との境界に段差IOを形成する
。つぎに、ヒ素イオンを加速エネルギー40KeV、 
 ドーズ量IE13cm−’で矢印で示すように前記半
導体基板に垂直に注入し、低濃度のN型拡散層11を形
成する。
Next, in FIG. 5 (C1), polycrystalline silicon is deposited to a thickness of 300 nm on a semiconductor substrate l using a well-known vapor phase growth method, and then dry etching is performed using a photoresist as a mask. Etching polycrystalline silicon,
A step IO is formed at the boundary between the element isolation region and the active region. Next, accelerate the arsenic ions with an energy of 40 KeV,
A low concentration N-type diffusion layer 11 is formed by implanting perpendicularly into the semiconductor substrate as shown by the arrow at a dose IE of 13 cm-'.

つぎに、第5図(d)では、前記半導体基板】の法線と
注入ビーム(矢印で示す)の成す角度が30゜になるよ
うに半導体基板lを傾け、素子分離領域と活性領域の境
界線に垂直な方向に、ヒ素イオンを加速エネルギー65
KeV、  ドーズ量5EI4Cm−”で注入し、N型
拡散層12を形成する。
Next, in FIG. 5(d), the semiconductor substrate l is tilted so that the angle between the normal line of the semiconductor substrate and the implantation beam (indicated by the arrow) is 30 degrees, and the boundary between the element isolation region and the active region is Accelerating arsenic ions in the direction perpendicular to the line with an energy of 65
KeV is implanted at a dose of 5EI4Cm-'' to form an N-type diffusion layer 12.

つぎに、第5図(elでは、前記半導体基板lの法線と
注入ビーム(矢印で示す)の成す角度か60゜になるよ
うに半導体基板監を傾け、素子分離領域と活性領域の境
界線に垂直な方向に、ヒ素イオンを加速エネルギー80
KeV、t<−ズfft5EI5cm −”で注入し、
N型拡散層13を形成する。
Next, as shown in FIG. Accelerating arsenic ions in the direction perpendicular to
KeV, injected at t<-sfft5EI5cm-'',
An N-type diffusion layer 13 is formed.

以上のように構成されたこの第2の実施例の半導体装置
では、拡散層II、12.13の順に不純物濃度か高く
なり、3段階の濃度勾配をもつことになる。
In the semiconductor device of the second embodiment constructed as described above, the impurity concentration increases in the order of diffusion layers II and 12.13, resulting in a three-step concentration gradient.

第6図は従来の方法であるN型拡散層を30゜の角度で
の1回の斜め方向イオン注入で形成した場合のNチャネ
ルストッパとN型拡散層の接合付近の横方向の不純物分
布を破線で示し、実施例のように垂直方向のイオン注入
と30°および45゜角度での2回の斜め方向イオン注
入の計3回のイオン注入で形成した場合のNチャネルス
h ツバとN型拡散層の接合付近の横方向の不純物分布
を実線で示している。従来の方法では、20乗オーダー
の不純物濃度のN型拡散層とP型拡散層であるNチャネ
ルストッパとか直接接しているか、この実施例では直接
接しているのは17乗オーダーのN型拡散層であるため
、NチャネルストッパとN型拡散層の接合付近の電界分
布か緩やかになる。
Figure 6 shows the lateral impurity distribution near the junction between the N-channel stopper and the N-type diffusion layer when the N-type diffusion layer is formed by a single oblique ion implantation at an angle of 30° using the conventional method. N-channels shown by broken lines and formed by a total of three ion implantations: vertical ion implantation and two oblique ion implantations at 30° and 45° angles as in the example. The lateral impurity distribution near the junction of the diffusion layer is shown by a solid line. In the conventional method, an N-type diffusion layer with an impurity concentration on the order of the 20th power and an N-channel stopper, which is a P-type diffusion layer, are in direct contact with each other, or in this embodiment, an N-type diffusion layer with an impurity concentration on the order of the 17th power is in direct contact with each other. Therefore, the electric field distribution near the junction between the N-channel stopper and the N-type diffusion layer becomes gentle.

以上のように、この実施例によれば、半導体基板1の法
線と入射イオンビームの進行方向の成す角度を3種類選
び、イオン注入を3回行うことにより、3段階の濃度勾
配をもつN型拡散層を形成することができ、Nチャネル
ストッパとN型拡散層の接合付近の電界分布が緩やかに
なり、接合耐圧が高くなる。
As described above, according to this embodiment, by selecting three types of angles formed between the normal to the semiconductor substrate 1 and the traveling direction of the incident ion beam and performing ion implantation three times, N A type diffusion layer can be formed, the electric field distribution near the junction between the N-channel stopper and the N-type diffusion layer becomes gentle, and the junction breakdown voltage becomes high.

〔発明の効果〕〔Effect of the invention〕

請求項(11記載の半導体装置の製造方法によれば、半
導体基板の法線と不純物イオンの入射方向の成す角度の
異なる複数回の斜め方向イオン注入を行うので、不純物
イオンの注入により形成される拡散層の不純物の濃度勾
配の緩やかにしてその部分の電界を弱めることができる
According to the method for manufacturing a semiconductor device according to claim 11, oblique ion implantation is performed multiple times with different angles formed between the normal line of the semiconductor substrate and the impurity ion incident direction, so that the semiconductor device is formed by implanting impurity ions. By making the concentration gradient of impurities in the diffusion layer gentle, the electric field in that portion can be weakened.

請求項(2)記載の半導体装置の製造方法によれば、半
導体基板の法線を軸として半導体基板を回転させながら
、半導体基板の法線と不純物イオンの入射方向の成す角
度の異なる複数回の斜め方向イオン注入を行ってMOS
トランジスタのソースおよびトレインとなる拡散層を形
成するので、ソースおよびドレインとなる拡散層の不純
物の濃度勾配を緩やかにしてその部分の電界を弱めるこ
とかでき、寿命を延ばすことができる。
According to the method for manufacturing a semiconductor device according to claim (2), while rotating the semiconductor substrate about the normal line of the semiconductor substrate, the process is performed a plurality of times at different angles formed between the normal line of the semiconductor substrate and the incident direction of impurity ions. MOS by performing oblique ion implantation
Since the diffusion layers that serve as the source and train of the transistor are formed, the concentration gradient of impurities in the diffusion layers that serve as the source and drain can be made gentler, thereby weakening the electric field in those portions, thereby extending the life of the transistor.

請求項(3)記載の半導体装置の製造方法によれは、半
導体基板に設けた素子分離領域上に段差を形成し、この
後半導体基板の法線と不純物イオンの入射方向の成す角
度の異なる複数回の斜め方向イオン注入を行って素子分
離領域に近接した拡散層を形成するので、素子分離領域
の近接した拡散層の不純物の濃度勾配を緩やかにしてそ
の部分の電界を弱めることができ、耐圧を高めることか
できる。
According to the method for manufacturing a semiconductor device according to claim (3), a step is formed on an element isolation region provided in a semiconductor substrate, and then a plurality of steps are formed at different angles between the normal line of the semiconductor substrate and the incident direction of impurity ions. Since the diagonal ion implantation is performed twice to form a diffusion layer close to the device isolation region, the impurity concentration gradient in the diffusion layer close to the device isolation region can be made gentler, thereby weakening the electric field in that area. It is possible to increase

【図面の簡単な説明】[Brief explanation of drawings]

第1図はこの発明の第1の実施例におけるN型MOSト
ランジスタのLDD構造の形成方法を示す工程断面図、
第2図はこの発明の第1の実施例におけるN型MOSト
ランジスタのチャネル長方向のヒ素濃度分布を示す濃度
分布図、第3図はチャネル長方向の電界分布を示す電界
分布図、第4図はMOSトランジスタにおける最大基板
電流値とホットキャリア寿命との関係を示す特性図、第
5図はこの発明の第2の実施例におけるN型MOSトラ
ンジスタのNチャネルストッパに隣接するN型拡散層の
形成方法を示す工程断面図、第6図はそのチャネル長方
向の不純物の分布を示す不純物分布図、第7図はN型M
OSトランジスタのしDD槽構造形成方法の従来例を示
す工程断面図である。 1・・・P型シリコン基板、2・・・ゲート酸化膜、3
・・・多結晶シリコンゲート電極、4a〜4q、5a〜
5u・・・LDD拡散層、6・・・熱酸化膜、7・・・
シリコン窒化膜、8・・・Nチャネルストッパ、9・・
・素子分離酸化膜、IO・・・多結晶シリコン、11.
1213・・・N型拡散層 第 (b (C (d] 図 1〜13 N梨拡散増 第 図 第 図 第 図 30°2 x T013(1/cm2)+マ冬ル幅乃句
FIG. 1 is a process cross-sectional view showing a method for forming an LDD structure of an N-type MOS transistor in a first embodiment of the present invention;
FIG. 2 is a concentration distribution diagram showing the arsenic concentration distribution in the channel length direction of the N-type MOS transistor in the first embodiment of the present invention, FIG. 3 is an electric field distribution diagram showing the electric field distribution in the channel length direction, and FIG. is a characteristic diagram showing the relationship between maximum substrate current value and hot carrier lifetime in a MOS transistor, and FIG. 5 is a diagram showing the formation of an N-type diffusion layer adjacent to an N-channel stopper of an N-type MOS transistor in a second embodiment of the present invention. 6 is an impurity distribution diagram showing the impurity distribution in the channel length direction, and FIG. 7 is an N-type M
FIG. 3 is a process sectional view showing a conventional example of a method for forming a DD tank structure of an OS transistor. 1...P-type silicon substrate, 2...gate oxide film, 3
...Polycrystalline silicon gate electrode, 4a-4q, 5a-
5u...LDD diffusion layer, 6...thermal oxide film, 7...
Silicon nitride film, 8...N channel stopper, 9...
・Element isolation oxide film, IO...polycrystalline silicon, 11.
1213...N-type diffusion layer (b (C (d)) Figures 1 to 13

Claims (3)

【特許請求の範囲】[Claims] (1)段差を有する半導体基板に、前記半導体基板の法
線と不純物イオンの入射方向の成す角度の異なる複数回
の斜め方向イオン注入を行うことを特徴とする半導体装
置の製造方法。
(1) A method for manufacturing a semiconductor device, which comprises performing oblique ion implantation multiple times at different angles between the normal line of the semiconductor substrate and the direction of impurity ion incidence into a semiconductor substrate having a step.
(2)半導体基板上にゲート電極を形成した後、前記半
導体基板の法線を軸として前記半導体基板を回転させな
がら、前記半導体基板の法線と不純物イオンの入射方向
の成す角度の異なる複数回の斜め方向イオン注入を行っ
てMOSトランジスタのソースおよびドレインとなる拡
散層を形成することを特徴とする半導体装置の製造方法
(2) After forming a gate electrode on a semiconductor substrate, the semiconductor substrate is rotated about the normal line of the semiconductor substrate and rotated multiple times at different angles between the normal line of the semiconductor substrate and the incident direction of impurity ions. 1. A method of manufacturing a semiconductor device, comprising performing oblique ion implantation to form diffusion layers that become a source and a drain of a MOS transistor.
(3)半導体基板上に素子分離領域を形成した後、前記
素子分離領域上に段差を形成し、この後前記半導体基板
の法線と不純物イオンの入射方向の成す角度の異なる複
数回の斜め方向イオン注入を行って前記素子分離領域に
近接した拡散層を形成することを特徴とする半導体装置
の製造方法。
(3) After forming an element isolation region on a semiconductor substrate, a step is formed on the element isolation region, and then a plurality of diagonal directions are formed at different angles between the normal line of the semiconductor substrate and the impurity ion incident direction. A method of manufacturing a semiconductor device, comprising forming a diffusion layer close to the element isolation region by performing ion implantation.
JP2249456A 1990-09-18 1990-09-18 Method for manufacturing semiconductor device Expired - Fee Related JP2624568B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2249456A JP2624568B2 (en) 1990-09-18 1990-09-18 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2249456A JP2624568B2 (en) 1990-09-18 1990-09-18 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH04127439A true JPH04127439A (en) 1992-04-28
JP2624568B2 JP2624568B2 (en) 1997-06-25

Family

ID=17193233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2249456A Expired - Fee Related JP2624568B2 (en) 1990-09-18 1990-09-18 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2624568B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258319A (en) * 1988-02-19 1993-11-02 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a MOS type field effect transistor using an oblique ion implantation step
US5366915A (en) * 1992-08-28 1994-11-22 Nec Corporation Process of fabricating floating gate type field effect transistor having drain region gently varied in impurity profile
JPH07161985A (en) * 1993-12-06 1995-06-23 Nec Corp Manufacture of semiconductor device
JP2006324630A (en) * 2005-05-18 2006-11-30 Hynix Semiconductor Inc Ion implanting method for manufacture of semiconductor device, and graded junction forming method using this

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942971A (en) * 1982-09-03 1984-03-09 Hitachi Ltd Control system for magnifying printing
JPS63215075A (en) * 1987-03-04 1988-09-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH01307266A (en) * 1988-06-06 1989-12-12 Hitachi Ltd Manufacture of semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5942971A (en) * 1982-09-03 1984-03-09 Hitachi Ltd Control system for magnifying printing
JPS63215075A (en) * 1987-03-04 1988-09-07 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
JPH01307266A (en) * 1988-06-06 1989-12-12 Hitachi Ltd Manufacture of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5258319A (en) * 1988-02-19 1993-11-02 Mitsubishi Denki Kabushiki Kaisha Method of manufacturing a MOS type field effect transistor using an oblique ion implantation step
US5366915A (en) * 1992-08-28 1994-11-22 Nec Corporation Process of fabricating floating gate type field effect transistor having drain region gently varied in impurity profile
JPH07161985A (en) * 1993-12-06 1995-06-23 Nec Corp Manufacture of semiconductor device
JP2006324630A (en) * 2005-05-18 2006-11-30 Hynix Semiconductor Inc Ion implanting method for manufacture of semiconductor device, and graded junction forming method using this

Also Published As

Publication number Publication date
JP2624568B2 (en) 1997-06-25

Similar Documents

Publication Publication Date Title
JPH06275636A (en) Manufacture of semiconductor device
JP3869325B2 (en) Manufacturing method of MOS transistor
US6297111B1 (en) Self-aligned channel transistor and method for making same
JPH04127439A (en) Manufacture of semiconductor device
JP3356629B2 (en) Method of manufacturing lateral MOS transistor
JP2703883B2 (en) MIS transistor and method of manufacturing the same
JPH0298143A (en) Manufacture of ldd structure polysilicon thin film transistor
JPH05136404A (en) Semiconductor device and its manufacture
JPH0637106A (en) Manufacture of semiconductor device
JPH05326968A (en) Nonvolatile semiconductor memory and manufacture thereof
US6214674B1 (en) Method of fabricating high voltage device suitable for low voltage device
JPH04249372A (en) Mos type field effect transistor and fabrication thereof
JP2757491B2 (en) Method for manufacturing semiconductor device
JP2001135797A (en) Semiconductor device and manufacturing method for the same
JPS5837990B2 (en) Manufacturing method of semiconductor device
JPH08316477A (en) Manufacture of semiconductor element
JP3480500B2 (en) Semiconductor element forming method
JPH0536983A (en) Semicondcutor device and manufacturing method
KR100223994B1 (en) N type field effect metal oxide semiconductor device and manufacturing thereof
JPH04192337A (en) Manufacture of field-effect transistor
JPH0778979A (en) Fabrication of semiconductor device
KR100550381B1 (en) Semiconductor Device And Manufacturing Method For the Same
KR100226261B1 (en) Method of manufacturing semiconductor device
KR100587074B1 (en) method for forming a transistor of semiconductor device
KR970006977B1 (en) Semiconductor device manufacturing method

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080411

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090411

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees