JPH0348656B2 - - Google Patents

Info

Publication number
JPH0348656B2
JPH0348656B2 JP57075831A JP7583182A JPH0348656B2 JP H0348656 B2 JPH0348656 B2 JP H0348656B2 JP 57075831 A JP57075831 A JP 57075831A JP 7583182 A JP7583182 A JP 7583182A JP H0348656 B2 JPH0348656 B2 JP H0348656B2
Authority
JP
Japan
Prior art keywords
recess
semiconductor
film
oxide film
thermal oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57075831A
Other languages
Japanese (ja)
Other versions
JPS58192346A (en
Inventor
Makoto Dan
Tetsunori Wada
Masamizu Konaka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57075831A priority Critical patent/JPS58192346A/en
Publication of JPS58192346A publication Critical patent/JPS58192346A/en
Publication of JPH0348656B2 publication Critical patent/JPH0348656B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/76294Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using selective deposition of single crystal silicon, i.e. SEG techniques

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、集積形成される半導体素子の周囲に
絶縁物を埋めこんで素子間分離した半導体装置の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device in which an insulator is buried around semiconductor elements that are formed in an integrated manner to isolate the elements.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

半導体としてシリコンを用いた半導体装置、特
に相補型MOS半導体装置は、低消費電力、高い
ノイズ余裕のために、今後の超高密度化された半
導体装置として極めて有力である。
Semiconductor devices using silicon as a semiconductor, particularly complementary MOS semiconductor devices, are extremely promising as future ultra-high-density semiconductor devices because of their low power consumption and high noise margin.

従来の相補型MOS(以下CMOSと称する)半導
体装置の欠点は、同一半導体基板上に形成するn
チヤネルMOSトランジスタとpチヤネルMOSト
ランジスタを電気的に分離し、ラツチアツプ現象
を防止するために、これらをたとえば10μm以上
離して形成する必要があり、そのために集積度が
向上しないことである。この欠点を改善する試み
として、MOSトランジスタの周辺を酸化物等の
絶縁物質を埋めこんで囲う技術が知られている。
その一例を第1図を用いて説明する。n型のシリ
コンウエハ11上に通常の写真食刻工程でレジス
トマスク12を形成し、反応性イオンエツチング
(以下RIEと称する)工程を用いて、素子分離領
域に幅約1.5μm、深さ約5μmの溝13を形成する
a。続いてCVD工程によりウエハ全面に酸化シ
リコン膜14を堆積し、更にその上に流動性物質
15、たとえばフオトレジストを塗布して表面を
平坦化するb。次に、前記流動性物質15と酸化
シリコン膜14のエツチング速度が等しくなる条
件下で、RIEにより半導体ウエハ11の表面が露
出するまでエツチングして、溝13内に酸化シリ
コン膜14を埋め込むc。この後再び通常の写真
食刻工程でレジストマスク16を形成し、nチヤ
ネルMOSトランジスタ形成領域に不純物をイオ
ン注入し、p−ウエル17を形成するd。以降は
通常の工程により、p−ウエル17中にn−チヤ
ネルMOSトランジスタを、またこれに隣接する
n型領域にpチヤネルMOSトランジスタを形成
する。
The drawback of conventional complementary MOS (hereinafter referred to as CMOS) semiconductor devices is that they are formed on the same semiconductor substrate.
In order to electrically isolate the channel MOS transistor and the p-channel MOS transistor and prevent the latch-up phenomenon, it is necessary to form them at a distance of, for example, 10 μm or more, which prevents an increase in the degree of integration. As an attempt to improve this drawback, a technique is known in which the periphery of a MOS transistor is surrounded by burying an insulating material such as an oxide.
An example of this will be explained using FIG. 1. A resist mask 12 is formed on an n-type silicon wafer 11 by a normal photolithography process, and a reactive ion etching (hereinafter referred to as RIE) process is used to form a resist mask 12 in an element isolation region with a width of about 1.5 μm and a depth of about 5 μm. a to form the groove 13. Subsequently, a silicon oxide film 14 is deposited on the entire surface of the wafer by a CVD process, and a fluid material 15, such as photoresist, is further applied thereon to flatten the surface b. Next, under conditions where the etching rates of the fluid substance 15 and the silicon oxide film 14 are equal, etching is performed by RIE until the surface of the semiconductor wafer 11 is exposed, and the silicon oxide film 14 is buried in the groove 13. Thereafter, a resist mask 16 is again formed by a normal photolithography process, and impurity ions are implanted into the n-channel MOS transistor formation region to form a p-well 17. Thereafter, an n-channel MOS transistor is formed in the p-well 17 and a p-channel MOS transistor is formed in the n-type region adjacent to the p-well 17 by normal steps.

しかし、この方法では、素子分離のための絶縁
物が埋めこまれる溝13の幅はRIE工程で形成さ
れるため、たとえば幅1μm以下にすることは極
めて困難であり、素子分離領域にとられる面積が
大きく、集積度の向上の観点からはまだ不十分で
ある。また、溝13はその深さに較べ幅が狭いの
で、絶縁物を完全に埋め込むことができず、内部
に巣が生じ、これが素子の信頼性及び電気的特性
に影響を与える。さらにp−ウエル17を形成す
る工程では、イオン注入用マスクとしてのレジス
トマスク16は、埋め込まれた酸化シリコン膜1
4と高い精度で位置合わせが実現されなければな
らない。
However, in this method, since the width of the trench 13 in which the insulator for element isolation is buried is formed in the RIE process, it is extremely difficult to reduce the width to 1 μm or less, and the area taken up by the element isolation region is extremely difficult to reduce. is large, and is still insufficient from the perspective of improving the degree of integration. Further, since the width of the trench 13 is narrower than its depth, the insulator cannot be completely buried, and cavities are generated inside, which affects the reliability and electrical characteristics of the device. Furthermore, in the step of forming the p-well 17, the resist mask 16 as an ion implantation mask is used to form the buried silicon oxide film 1.
Positioning must be achieved with a high accuracy of 4.

〔発明の目的〕[Purpose of the invention]

この発明は上記の点に鑑み、極めて微小な幅の
素子分離領域に信頼性よく絶縁物を埋め込み、ま
たこの絶縁物により区分される各領域に自己整合
的に所定導電型の半導体領域を形成して、素子の
高密度集積化を可能とした半導体装置の製造方法
を提供することを目的とする。
In view of the above points, the present invention reliably embeds an insulator in an element isolation region with an extremely small width, and forms semiconductor regions of a predetermined conductivity type in a self-aligned manner in each region divided by this insulator. An object of the present invention is to provide a method for manufacturing a semiconductor device that enables high-density integration of elements.

〔発明の概要〕[Summary of the invention]

本発明の方法は、半導体ウエハの所定の素子形
成領域に凹部を形成し、この凹部側壁のみ絶縁膜
でおおつた後、この凹部に平坦に単結晶半導体層
を埋め込み、絶縁膜で区分された各半導体領域に
素子を形成することを特徴とする。
In the method of the present invention, a recess is formed in a predetermined element formation region of a semiconductor wafer, only the side walls of the recess are covered with an insulating film, and then a single crystal semiconductor layer is flatly buried in the recess, and each part divided by the insulating film is A feature is that an element is formed in a semiconductor region.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、第1に素子分離領域に埋め込
まれる絶縁膜は、半導体ウエハに形成された凹部
の側壁をおおうように例えば熱酸化膜を形成する
ことにより1μm以下の厚さにすることも容易で
ある。従つて素子分離領域が半導体ウエハ表面に
占める面積は極めて小さいものとなり、素子の高
密度集積化が可能となる。また第2に細い溝全体
を絶縁膜で埋め込む従来の方法と異なつて、素子
分離領域内部に巣が発生することもなく、信頼性
および電気的分離特性の優れた半導体装置が得ら
れる。また第3に凹部にはエピタキシヤル成長法
などを利用して自己整合的に半導体層を埋め込む
ことにより、絶縁膜で区分された領域を互いに異
なる導電型とする場合にも、従来のように複雑な
マスク合せ工程を要せず、それぞれの素子形成領
域を所望の導電型の半導体層とすることができ
る。第4に、本発明では凹部の側壁のみ絶縁膜で
おおうようにしているので、凹部の底面全体から
結晶化が進み、均質な単結晶半導体層を埋込む事
が出来、バルクに近い素子特性を得る事ができ
る。特に本発明は、CMOS半導体装置に適用す
ることにより、ラツチアツプ現象を確実に防止し
てしかも高密度に集積形成することができるとい
う、大きな効果が得られる。
According to the present invention, first, the insulating film embedded in the element isolation region can be made to have a thickness of 1 μm or less by forming, for example, a thermal oxide film to cover the sidewalls of the recesses formed in the semiconductor wafer. It's easy. Therefore, the area occupied by the element isolation region on the surface of the semiconductor wafer becomes extremely small, making it possible to integrate elements at a high density. Second, unlike the conventional method of filling the entire narrow trench with an insulating film, no cavities are generated inside the element isolation region, and a semiconductor device with excellent reliability and electrical isolation characteristics can be obtained. Thirdly, by burying a semiconductor layer in the recess in a self-aligned manner using an epitaxial growth method, it is possible to make the regions separated by an insulating film have different conductivity types, which is complicated as in the past. Each element forming region can be made into a semiconductor layer of a desired conductivity type without requiring a mask alignment process. Fourth, in the present invention, only the side walls of the recess are covered with an insulating film, so crystallization progresses from the entire bottom of the recess, making it possible to bury a homogeneous single crystal semiconductor layer and achieve device characteristics close to those of the bulk. You can get it. In particular, when the present invention is applied to a CMOS semiconductor device, a significant effect can be obtained in that the latch-up phenomenon can be reliably prevented and the devices can be integrated at high density.

〔発明の実施例〕[Embodiments of the invention]

第2図は一実施例の製造工程を示す図である。
n型シリコン基板211の全面にp型層212をエ
ピタキシヤル成長させたシリコンウエハ21を用
意し、その表面に写真食刻工程によりレジストマ
スク22を形成して、RIE工程により所定の素子
形成領域に凹部23を形成するa。凹部23は急
峻な側壁をもち、またその深さはp型層212
厚みより大である。次に、レジストマスク22を
除去し、凹部23の側壁のみ絶縁膜を形成する。
この方法は種々あるが本実施例では次の様にして
行なつた。先ず、ウエハ全面に約5000Å厚の熱酸
化膜24を形成するb。次いで、CF4とH2の雰囲
気でRIEを行ない、凹部23の側壁の酸化膜24
のみ残して、他を除去するc。その場合RIEの特
徴である異方性エツチングを利用することによ
り、図に示すような構造ができるわけである。こ
の後エピタキシヤル成長法により凹部23の深さ
より厚く全面にn型シリコン層25を形成し、つ
ぎに表面が平坦になるようにレジスト膜26を塗
布するd。その後再びRIEにより、レジスト膜2
6とシリコン層25のエツチング速度が等しくな
るような条件でp型層212の表面が露出するま
で均一にエツチングして、凹部23に平坦にn型
シリコン層25を埋め込むe。そして熱酸化膜2
4によつて分離されたp、n型各領域に通常のプ
ロセスによつて、ゲート酸化膜271,272を介
して多結晶シリコンからなるゲート電極281
282を形成し、ソース、ドレインとなるn+型層
291,292およびp+型層301,302を順次形
成するf。最後に図示しないが、CVD酸化膜を
形成し、コンタクトホールをあけて電極配線を形
成してCMOS半導体装置が完成する。
FIG. 2 is a diagram showing the manufacturing process of one embodiment.
A silicon wafer 21 in which a p-type layer 21 2 is epitaxially grown on the entire surface of an n-type silicon substrate 21 1 is prepared, a resist mask 22 is formed on the surface by a photolithography process, and predetermined elements are formed by an RIE process. a forming a recess 23 in the area; The recess 23 has steep side walls, and its depth is greater than the thickness of the p-type layer 21 2 . Next, the resist mask 22 is removed and an insulating film is formed only on the side walls of the recess 23.
There are various methods for this, but in this example it was carried out as follows. First, a thermal oxide film 24 with a thickness of approximately 5000 Å is formed over the entire surface of the wafer. Next, RIE is performed in an atmosphere of CF 4 and H 2 to remove the oxide film 24 on the side wall of the recess 23.
Leave only one thing and remove the other c. In that case, by utilizing anisotropic etching, which is a feature of RIE, the structure shown in the figure can be created. Thereafter, an n-type silicon layer 25 is formed on the entire surface to be thicker than the depth of the recess 23 by epitaxial growth, and then a resist film 26 is applied so that the surface is flat. After that, by RIE again, the resist film 2
6 and the silicon layer 25 are uniformly etched until the surface of the p-type layer 21 2 is exposed, and the n-type silicon layer 25 is buried flat in the recess 23 e. And thermal oxide film 2
Gate electrodes 28 1 and 28 1 made of polycrystalline silicon are formed on each of the p-type and n-type regions separated by polycrystalline silicon through gate oxide films 27 1 and 27 2 by a normal process.
28 2 and sequentially form n + type layers 29 1 and 29 2 and p + type layers 30 1 and 30 2 which will become the source and drain. Finally, although not shown, a CVD oxide film is formed, contact holes are made, and electrode wiring is formed to complete the CMOS semiconductor device.

この実施例によれば、素子分離に用いられる熱
酸化膜24は酸化速度(温度、時間によつて決ま
る)によりその膜厚を制御することができるの
で、パターニング精度で素子分離領域の幅が決ま
る従来法に比べて、例えば膜厚を1μm以下に制
御して素子分離領域の幅を極めて狭いものとする
ことができ、従つてCMOS半導体装置の高密度
集積化が図られる。また素子分離が安定な熱酸化
膜で行われるため、信頼性、電気的特性に優れた
CMOS半導体装置が得られる。更に、p、nの
素子形成領域は、選択拡散によりpウエルあるい
はnウエルを形成する従来法と異なり、複雑なマ
スク合せ工程を要せず自己整合的に形成される。
また、凹部23をp型層212の厚みより深く形
成することにより、素子分離領域の熱酸化膜24
が深くなり、ラツチアツプ現象は確実に防止され
ることになる。又、凹部23の側壁にのみ絶縁膜
24が形成されているため、エピタキシヤル成長
時に凹部の底面全体から結晶化が進み、均質な単
結晶半導体層を埋込む事が出来、バルクに近い素
子特性を得る事ができる。
According to this embodiment, the thickness of the thermal oxide film 24 used for element isolation can be controlled by the oxidation rate (determined by temperature and time), so the width of the element isolation region is determined by the patterning accuracy. Compared to the conventional method, the width of the element isolation region can be made extremely narrow by controlling the film thickness to, for example, 1 μm or less, thereby achieving high-density integration of CMOS semiconductor devices. In addition, since element isolation is performed using a stable thermal oxide film, it has excellent reliability and electrical characteristics.
A CMOS semiconductor device is obtained. Further, unlike the conventional method of forming a p-well or n-well by selective diffusion, the p and n element forming regions are formed in a self-aligned manner without requiring a complicated mask alignment process.
Furthermore, by forming the recess 23 deeper than the thickness of the p-type layer 21 2 , the thermal oxide film 24 in the element isolation region
becomes deeper, and the latch-up phenomenon is reliably prevented. In addition, since the insulating film 24 is formed only on the side walls of the recess 23, crystallization progresses from the entire bottom surface of the recess during epitaxial growth, making it possible to bury a homogeneous single crystal semiconductor layer, resulting in device characteristics close to those of the bulk. can be obtained.

なおこの実施例の場合、通常のエピタキシヤル
成長を用いたが、選択エピタキシヤル成長技術を
利用してもよい。また形成されるn型シリコン層
25は特に熱酸化膜24に接する部分で結晶性が
劣つていることが懸念されるが、後の素子形成で
の熱工程でアニールされ、十分良質の結晶となる
ので問題はない。素子形成工程での熱処理ではア
ニール効果が十分でない場合には、レーザアニー
ル、電子ビームアニールあるいは熱アニールなど
の単結晶化処理工程を別に付加することも有効で
ある。またこのような単結晶化処理工程を付加す
るならば、n型シリコン層25をエピタキシヤル
成長法によらず、多結晶層あるいは非晶質層の状
態で堆積形成してもよい。
In this example, normal epitaxial growth was used, but selective epitaxial growth techniques may also be used. Furthermore, there is a concern that the formed n-type silicon layer 25 has poor crystallinity, especially in the part that contacts the thermal oxide film 24, but it will be annealed in a later thermal process during element formation, and will become a sufficiently high-quality crystal. So there is no problem. If the annealing effect is not sufficient in the heat treatment in the element forming process, it is also effective to add a separate single crystallization process such as laser annealing, electron beam annealing, or thermal annealing. Further, if such a single crystallization process is added, the n-type silicon layer 25 may be deposited in the form of a polycrystalline layer or an amorphous layer instead of using the epitaxial growth method.

また上記実施例においては、n型基板にp型層
をエピタキシヤル成長させたウエハを用いたが、
p型層は拡散層であつてもよいし、各層の導電型
を実施例とは逆にしてもよいことは勿論である。
Further, in the above embodiment, a wafer in which a p-type layer was epitaxially grown on an n-type substrate was used.
Of course, the p-type layer may be a diffusion layer, and the conductivity type of each layer may be reversed from that in the embodiment.

次に本発明の別の実施例を、第3図を用いて説
明する。n型シリコンウエハ31を用いてその表
面に熱酸化膜32を形成し、写真食刻工程により
形成したレジストマスク33を用いて熱酸化膜3
2をエツチングした後、RIEによりシリコンウエ
ハ31を深さ約5μmエツチングして急峻な側壁
をもつ凹部34を形成し、次いで形成された凹部
34の底にp+層35をホウ素のイオン打ち込み
工程により形成するa。レジストマスク33を除
去後、シリコンウエハ31の表面に、約5000Å厚
の熱酸化膜36を形成するb。このとき凹部34
以外の領域の熱酸化膜32′はより膜厚が厚くな
る。ついで、ウエハ全面にホウ素を高濃度に含ん
だ多結晶シリコン膜37をCVDで形成し、1000
℃の熱処理を加え、多結晶シリコン膜37中のホ
ウ素を、熱酸化膜36中に拡散させるc。この工
程により、多結晶シリコン膜37の表面に酸化膜
38が形成されるが、この後酸化膜38及び多結
晶シリコン膜37をエツチングにより除去する。
ついで、CF4とH2の雰囲気でRIEをおこない、熱
酸化膜5000Åを除去する。RIEでエツチングした
場合、エツチングは基板表面に垂直方向に進むの
で、凹部34の側壁にある熱酸化膜36はエツチ
ングされずに残り、また、凹部34以外の領域で
も厚さ約5000Åに相当する分がエツチングされる
が、2000〜3000Åの熱酸化膜32′がエツチング
されずに残つて、凹部34の底面のウエハ面を露
出させた状態から得られるd。次にウエハ全面に
p型のシリコン層39をエピタキシヤル成長させ
るe。このとき、シリコン層39は熱酸化膜3
2′,36上では、多結晶シリコンとなるが、シ
リコンウエハ31が露出した凹部34内では単結
晶層となる。次に全面に流動性被膜であるレジス
ト膜40を塗布して表面を平坦化するf。この場
合、エピタキシヤルで形成したシリコン層、39
の表面は約5μmの段差があるため、まず通常の
写真食刻工程で凹部34上に選択的にレジスト膜
を埋めこんだ後に、もう一度全面にレジスト膜を
塗布すれば、確実に表面が平坦化される。つい
で、レジスト膜40とシリコン層39のエツチン
グ速度が同一になる条件で、レジスト膜40およ
びシリコン層39を均一エツチングすると、凹部
34に平坦にシリコン層39が埋め込まれるg。
そしてシリコンウエハ31の表面の一部に残され
ている熱酸化膜32′をエツチングして除去する
と、シリコンウエハ31の一部に、ウエハと逆導
電型のシリコン層39が埋めこまれ、かつその周
囲を厚さ約5000Åの熱酸化膜36がとり囲み、底
部にウエハ31と逆導電型のp+層35が埋め込
まれた状態が得られるi。次にこのウエハの表面
を例えばレーザーによりアニールすると、シリコ
ン層39は熱酸化膜36に接する部分まで単結晶
化され、同時に熱酸化膜36中に拡散されていた
ホウ素が単結晶化したシリコン層39中へ拡散す
る。この拡散されたホウ素は素子分離のための熱
酸化膜36の厚さが非常に薄いため隣接領域の電
位の影響を受けて埋めこまれたシリコン層39の
側壁周囲が反転するのを防止する。この後は先の
実施例と同様、p、n各領域にそれぞれnチヤネ
ル、pチヤネルMOSトランジスタを形成して、
CMOS半導体装置が得られる。
Next, another embodiment of the present invention will be described with reference to FIG. A thermal oxide film 32 is formed on the surface of an n-type silicon wafer 31, and a resist mask 33 formed by a photolithography process is used to form a thermal oxide film 32.
After etching 2, the silicon wafer 31 is etched to a depth of about 5 μm using RIE to form a recess 34 with steep side walls, and then a p + layer 35 is formed at the bottom of the recess 34 by a boron ion implantation process. form a. After removing the resist mask 33, a thermal oxide film 36 with a thickness of approximately 5000 Å is formed on the surface of the silicon wafer 31b. At this time, the recess 34
The thermal oxide film 32' in other areas becomes thicker. Next, a polycrystalline silicon film 37 containing a high concentration of boron is formed on the entire surface of the wafer by CVD.
C. heat treatment is applied to diffuse boron in the polycrystalline silicon film 37 into the thermal oxide film 36. Through this step, an oxide film 38 is formed on the surface of the polycrystalline silicon film 37, and then the oxide film 38 and the polycrystalline silicon film 37 are removed by etching.
Next, RIE is performed in an atmosphere of CF 4 and H 2 to remove the thermal oxide film of 5000 Å. When etching is performed by RIE, the etching proceeds in a direction perpendicular to the substrate surface, so the thermal oxide film 36 on the side wall of the recess 34 remains unetched, and a portion equivalent to a thickness of approximately 5000 Å also remains in the area other than the recess 34. is etched, but a thermal oxide film 32' of 2000 to 3000 Å remains unetched, leaving the wafer surface at the bottom of the recess 34 exposed. Next, a p-type silicon layer 39 is epitaxially grown over the entire surface of the wafer. At this time, the silicon layer 39 is replaced by the thermal oxide film 3.
2' and 36 are polycrystalline silicon, but in the recess 34 where the silicon wafer 31 is exposed, it is a single crystal layer. Next, a resist film 40, which is a fluid film, is applied to the entire surface to flatten the surface f. In this case, an epitaxially formed silicon layer, 39
Since there is a level difference of approximately 5 μm on the surface, first fill in a resist film selectively on the recess 34 using a normal photolithography process, and then apply a resist film over the entire surface again to ensure that the surface is flat. be done. Then, when the resist film 40 and the silicon layer 39 are uniformly etched under conditions where the etching speed of the resist film 40 and the silicon layer 39 are the same, the silicon layer 39 is evenly embedded in the recess 34g.
When the thermal oxide film 32' left on a part of the surface of the silicon wafer 31 is etched and removed, a silicon layer 39 of the opposite conductivity type to that of the wafer is embedded in a part of the silicon wafer 31, and A state is obtained in which a thermal oxide film 36 with a thickness of about 5000 Å surrounds the wafer 31, and a p + layer 35 of a conductivity type opposite to that of the wafer 31 is buried at the bottom. Next, when the surface of this wafer is annealed using, for example, a laser, the silicon layer 39 is single-crystalized up to the portion in contact with the thermal oxide film 36, and at the same time, the silicon layer 39 in which the boron diffused in the thermal oxide film 36 is single-crystalized. Diffuse inside. Since the thickness of the thermal oxide film 36 for element isolation is very thin, this diffused boron prevents the surroundings of the side walls of the buried silicon layer 39 from being inverted due to the influence of the potential of the adjacent region. After this, as in the previous embodiment, n-channel and p-channel MOS transistors are formed in each of the p and n regions, respectively.
A CMOS semiconductor device is obtained.

この実施例によつても、先の実施例と同様、素
子分離領域の占有面積を小さくして高密度集積化
した、信頼性および電気的特性に優れたCMOS
半導体装置が得られる。またこの実施例によれ
ば、素子分離用の熱酸化膜36に予め不純物を拡
散させておくことによつて凹部34に埋め込まれ
たシリコン層39の周囲が薄い熱酸化膜36を介
して隣接素子の電位の影響で反転するのを防止し
ており、安定した特性が得られる。また凹部34
の底にp+層35を埋め込んでいるため、ラツチ
アツプ現象の抑制効果が大きい。
As in the previous embodiment, this embodiment is also a CMOS transistor with excellent reliability and electrical characteristics, which is highly integrated by reducing the area occupied by the element isolation region.
A semiconductor device is obtained. Further, according to this embodiment, impurities are diffused in advance into the thermal oxide film 36 for element isolation, so that the periphery of the silicon layer 39 embedded in the recess 34 is connected to the adjacent element via the thin thermal oxide film 36. This prevents reversal due to the influence of the electric potential, resulting in stable characteristics. Also, the recess 34
Since the p + layer 35 is embedded in the bottom of the layer, the effect of suppressing the latch-up phenomenon is large.

なお、素子分離用の熱酸化膜36に不純物を入
れておくための方法として、多結晶シリコン膜か
らの拡散でなく、斜め方向のイオン打ち込みを利
用してもよい。またシリコン層を凹部に平坦に埋
め込む工程では、第3図eの状態でシリコン層3
9の凹部34上の単結晶部分とそれ以外の多結晶
部分のエツチング速度差を利用して、予めエツチ
ングにより段差を小さくしてから、次の平坦化膜
の形成を行うようにしてもよい。
Note that as a method for introducing impurities into the thermal oxide film 36 for element isolation, oblique ion implantation may be used instead of diffusion from the polycrystalline silicon film. In addition, in the step of flatly embedding the silicon layer in the recess, the silicon layer 3 is placed in the state shown in FIG. 3e.
The difference in etching speed between the single crystal portion on the recessed portion 34 and the other polycrystal portion may be used to reduce the difference in level by etching in advance, and then the next flattening film may be formed.

第4図はこの様に形成したデバイス構成例であ
る。第4図aはCMOSの平面図、bはその回路
図を示している。便宜上、第2図と同符号を付し
てある。図において、p型層212に作られたn
チヤネルMOSトランジスタTと、n型シリコン
層25に作られたpチヤネルMOSトランジスタ
T2とでCMOSを構成している。若し、先述エツ
チング形成した凹部表面を絶縁膜で覆い、マスク
合わせして底面の絶縁膜の一部を除去した場合、
エピタキシヤル成長しても凹部内を均質な単結晶
で埋め尽くす事は難しいし、成長面は凹部のへり
で大きな窪みが生じてしまう。この様なシリコン
層に形成したMOSトランジスタはへりの部分で
しきい値が低下する。従つて上記の様に例えば
CMOS回路を組んだ場合、ロード側トランジス
タT1でリークが生じ消費電力が増大するという
問題がある。然しながら本発明では平坦に単結晶
半導体層を埋め込んだ様にしている為、配線の断
線が防止できると共に特性上の劣化が生じないと
いう副次的効果もある。本発明はCMOS半導体
装置に限られるものではなく、通常のpチヤネル
MOS、nチヤネルMOSは勿論、バイポーラトラ
ンジスタ回路、I2L回路等を集積形成する場合に
も有用である。また、素子分離用として凹部側壁
に形成する絶縁膜として、熱酸化膜の他に、直接
窒化による熱窒化膜、CVDによる酸化膜や窒化
膜等を用いても、従来法に比べれば十分制御性よ
く微小な素子分離領域を形成することができる。
又、凹部の側壁に絶縁膜を形成する方法も、ウエ
ハーを傾けて絶縁膜を斜めから蒸着する等、種々
の方法が適用できる。
FIG. 4 shows an example of a device configuration formed in this manner. FIG. 4a shows a plan view of the CMOS, and FIG. 4b shows its circuit diagram. For convenience, the same reference numerals as in FIG. 2 are given. In the figure, an n formed in the p-type layer 21 2
Channel MOS transistor T and p-channel MOS transistor made in n-type silicon layer 25
The CMOS is configured with T2 . If the surface of the recess formed by etching is covered with an insulating film and a part of the insulating film on the bottom is removed using a mask,
Even with epitaxial growth, it is difficult to fill the inside of the recess with a homogeneous single crystal, and a large depression is formed on the growth surface at the edge of the recess. The threshold value of a MOS transistor formed in such a silicon layer decreases at the edge. Therefore, as mentioned above, for example
When a CMOS circuit is constructed, there is a problem in that leakage occurs in the load side transistor T1 , increasing power consumption. However, in the present invention, since the single-crystal semiconductor layer is embedded flatly, there is also the secondary effect that disconnection of wiring can be prevented and that deterioration in characteristics does not occur. The present invention is not limited to CMOS semiconductor devices, but is applicable to ordinary p-channel devices.
It is useful not only for MOS and n-channel MOS, but also for integrated formation of bipolar transistor circuits, I 2 L circuits, and the like. Furthermore, as an insulating film formed on the sidewalls of the recess for element isolation, in addition to a thermal oxide film, a thermal nitride film by direct nitriding, an oxide film or a nitride film by CVD, etc. can be used, and the controllability is sufficient compared to conventional methods. Very small element isolation regions can be formed.
Furthermore, various methods can be used to form the insulating film on the side walls of the recessed portions, such as tilting the wafer and depositing the insulating film obliquely.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜dは従来のCMOS製造工程を説明
するための図、第2図a〜fは本発明の一実施例
のCMOS製造工程を説明するための図、第3図
a〜hは別の実施例のCMOS製造工程を説明す
るための図、第4図a,bは本発明の実施例を説
明する平面図及び回路図である。 21……シリコンウエハ、211……n型シリ
コン基板、212……p型層、22……レジスト
マスク、23……凹部、24……熱酸化膜(素子
分離用絶縁膜)、25……n型シリコン層、26
……レジスト膜(平坦化膜)、31……n型シリ
コンウエハ、32,32′……熱酸化膜、33…
…レジストマスク、34……凹部、35……p+
層、36……熱酸化膜(素子分離用絶縁膜)、3
7……多結晶シリコン膜、38……熱酸化膜、3
9……p型シリコン層、40……レジスト膜。
Figures 1 a to d are diagrams for explaining the conventional CMOS manufacturing process, Figures 2 a to f are diagrams for explaining the CMOS manufacturing process of an embodiment of the present invention, and Figures 3 a to h are diagrams for explaining the CMOS manufacturing process of an embodiment of the present invention. Figures 4a and 4b are diagrams for explaining the CMOS manufacturing process of another embodiment, and are a plan view and a circuit diagram for explaining the embodiment of the present invention. 21... Silicon wafer, 21 1 ... N-type silicon substrate, 21 2 ... P-type layer, 22... Resist mask, 23... Concavity, 24... Thermal oxide film (insulating film for element isolation), 25... ...n-type silicon layer, 26
...Resist film (flattening film), 31...n-type silicon wafer, 32, 32'...thermal oxide film, 33...
...Resist mask, 34...Concavity, 35...p +
Layer, 36...Thermal oxide film (insulating film for element isolation), 3
7... Polycrystalline silicon film, 38... Thermal oxide film, 3
9...p-type silicon layer, 40... resist film.

Claims (1)

【特許請求の範囲】 1 半導体ウエハの所定の素子形成領域に凹部を
形成する工程と、この凹部の側壁のみ絶縁膜でお
おう工程と、この凹部に平坦に単結晶半導体層を
埋め込む工程と、絶縁膜で区分された各半導体領
域に素子を形成する工程とを備えたことを特徴と
する半導体装置の製造方法。 2 前記半導体ウエハは第1導電型半導体基板全
面に第2導電型半導体層を形成したものであり、
前記凹部は少くとも前記第1導電型半導体基板に
達する深さに形成し、前記凹部に埋め込む半導体
層は第1導電型であつて、前記絶縁膜で区分され
た第1および第2導電型半導体領域にそれぞれ異
なる導電チヤンネルのMOSトランジスタを形成
する特許請求の範囲第1項記載の半導体装置の製
造方法。 3 前記半導体ウエハは第1導電型であり、前記
凹部に埋め込む半導体層は第2導電型であつて、
前記絶縁膜で区分された第1および第2導電型半
導体領域にそれぞれ異なる導電チヤネルのMOS
トランジスタを形成する特許請求の範囲第1項の
記載の半導体装置の製造方法。 4 前記凹部の側壁のみ絶縁膜でおおう工程は、
凹部が形成された半導体ウエハ全面に熱酸化膜を
形成し、異方性ドライエツチングによりこの熱酸
化膜を凹部側壁にのみ残して除去するものである
特許請求の範囲第1項記載の半導体装置の製造方
法。 5 前記半導体ウエハに凹部を形成する工程は、
予めウエハ全面に熱酸化膜を形成してその上にレ
ジストマスクを形成し、このレジストマスクを用
いて熱酸化膜をエツチングし露出した半導体ウエ
ハ表面をエツチングするものであり、形成された
凹部の側壁のみ絶縁膜でおおう工程は、レジスト
マスクを除去した後、再度ウエハ全面に熱酸化膜
を形成した後、その上に不純物を含む多結晶半導
体膜を堆積してその不純物を熱酸化膜に拡散さ
せ、その後この多結晶半導体を除去して異方性ド
ライエツチングにより前記熱酸化膜を半導体ウエ
ハ表面と共に凹部の側壁のみ残してエツチングす
るものである特許請求の範囲第1項記載の半導体
装置の製造方法。 6 前記凹部に半導体層を埋め込む工程は、凹部
が形成された半導体ウエハ全面に凹部の深さより
厚く半導体層をエピタキシヤル成長させるかまた
は堆積し、その上に表面が平坦になるように平坦
化膜を堆積した後、これら平坦化膜と半導体層を
両者のエツチング速度が略等しいエツチング条件
で全面エツチングするものである特許請求の範囲
第1項記載の半導体装置の製造方法。
[Claims] 1. A step of forming a recess in a predetermined element formation region of a semiconductor wafer, a step of covering only the sidewalls of the recess with an insulating film, a step of flatly embedding a single crystal semiconductor layer in the recess, and a step of covering the side walls of the recess with an insulating film. 1. A method of manufacturing a semiconductor device, comprising the step of forming an element in each semiconductor region divided by a film. 2. The semiconductor wafer has a second conductivity type semiconductor layer formed on the entire surface of the first conductivity type semiconductor substrate,
The recess is formed to a depth that reaches at least the first conductivity type semiconductor substrate, and the semiconductor layer embedded in the recess is of the first conductivity type, and the semiconductor layer is a first conductivity type and a second conductivity type semiconductor separated by the insulating film. 2. The method of manufacturing a semiconductor device according to claim 1, wherein MOS transistors of different conductive channels are formed in each region. 3. The semiconductor wafer is of a first conductivity type, and the semiconductor layer embedded in the recess is of a second conductivity type,
MOSs with different conductive channels are provided in the first and second conductive type semiconductor regions separated by the insulating film.
A method for manufacturing a semiconductor device according to claim 1, which comprises forming a transistor. 4. The step of covering only the side walls of the recess with an insulating film is as follows:
A semiconductor device according to claim 1, wherein a thermal oxide film is formed on the entire surface of a semiconductor wafer in which a recess is formed, and is removed by anisotropic dry etching, leaving the thermal oxide film only on the side walls of the recess. Production method. 5. The step of forming a recess in the semiconductor wafer includes:
A thermal oxide film is formed on the entire surface of the wafer in advance, a resist mask is formed on it, and the resist mask is used to etch the thermal oxide film and the exposed surface of the semiconductor wafer. In the process of covering only with an insulating film, after removing the resist mask, a thermal oxide film is again formed on the entire surface of the wafer, and then a polycrystalline semiconductor film containing impurities is deposited on top of it, and the impurities are diffused into the thermal oxide film. , and then the polycrystalline semiconductor is removed and the thermal oxide film is etched by anisotropic dry etching leaving only the sidewalls of the recesses together with the semiconductor wafer surface. . 6. The step of embedding a semiconductor layer in the recess includes epitaxially growing or depositing a semiconductor layer to a thickness greater than the depth of the recess on the entire surface of the semiconductor wafer in which the recess is formed, and then applying a planarizing film on top of the semiconductor layer to make the surface flat. 2. The method of manufacturing a semiconductor device according to claim 1, wherein after depositing the planarizing film and the semiconductor layer, the entire surface of the planarizing film and the semiconductor layer is etched under etching conditions such that the etching rate of both is substantially equal.
JP57075831A 1982-05-06 1982-05-06 Manufacture of semiconductor device Granted JPS58192346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57075831A JPS58192346A (en) 1982-05-06 1982-05-06 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57075831A JPS58192346A (en) 1982-05-06 1982-05-06 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58192346A JPS58192346A (en) 1983-11-09
JPH0348656B2 true JPH0348656B2 (en) 1991-07-25

Family

ID=13587521

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57075831A Granted JPS58192346A (en) 1982-05-06 1982-05-06 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58192346A (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2547954B1 (en) * 1983-06-21 1985-10-25 Efcis PROCESS FOR THE MANUFACTURE OF INSULATED SEMICONDUCTOR COMPONENTS IN A SEMICONDUCTOR WAFER
JPS60107844A (en) * 1983-11-16 1985-06-13 Nippon Precision Saakitsutsu Kk Manufacture of semiconductor device
JPH0669064B2 (en) * 1984-03-23 1994-08-31 日本電気株式会社 Element isolation method for semiconductor device
US4528047A (en) * 1984-06-25 1985-07-09 International Business Machines Corporation Method for forming a void free isolation structure utilizing etch and refill techniques
US4526631A (en) * 1984-06-25 1985-07-02 International Business Machines Corporation Method for forming a void free isolation pattern utilizing etch and refill techniques
JPS6122645A (en) * 1984-06-26 1986-01-31 Nec Corp Substrate for semiconductor device and manufacture thereof
JPS61128555A (en) * 1984-11-27 1986-06-16 Mitsubishi Electric Corp Semiconductor device
US4556585A (en) * 1985-01-28 1985-12-03 International Business Machines Corporation Vertically isolated complementary transistors
JPH079974B2 (en) * 1985-10-15 1995-02-01 日本電気株式会社 Manufacturing method of complementary semiconductor device
KR880005690A (en) * 1986-10-06 1988-06-30 넬손 스톤 BiCMOS manufacturing method using selective epitaxial layer
US4929570A (en) * 1986-10-06 1990-05-29 National Semiconductor Corporation Selective epitaxy BiCMOS process
NL8801981A (en) * 1988-08-09 1990-03-01 Philips Nv METHOD FOR MANUFACTURING A SEMICONDUCTOR DEVICE
JPH0282551A (en) * 1988-09-19 1990-03-23 Sanyo Electric Co Ltd Manufacture of semiconductor device
US5250461A (en) * 1991-05-17 1993-10-05 Delco Electronics Corporation Method for dielectrically isolating integrated circuits using doped oxide sidewalls
KR100485170B1 (en) * 2002-12-05 2005-04-22 동부아남반도체 주식회사 Semiconductor device and method for the same

Also Published As

Publication number Publication date
JPS58192346A (en) 1983-11-09

Similar Documents

Publication Publication Date Title
US6465842B2 (en) MIS semiconductor device and method of fabricating the same
JP3157357B2 (en) Semiconductor device
US4980306A (en) Method of making a CMOS device with trench isolation device
JPH0355984B2 (en)
EP0097703A1 (en) Process for forming a cmos integrated circuit structure
JPH0348656B2 (en)
US5872044A (en) Late process method for trench isolation
JPH0797625B2 (en) Semiconductor memory device
JPH118387A (en) Semiconductor device and manufacture thereof
US6271064B2 (en) Thin film transistor and method of manufacturing the same
JP2003037267A (en) Manufacturing method for semiconductor device
US4144098A (en) P+ Buried layer for I2 L isolation by ion implantation
JPS62104051A (en) Isolation structure of integrated circuit and formation of the same
JPH01130542A (en) Semiconductor device having interelement isolation region and manufacture thereof
JPH08125010A (en) Isolation structure of semiconductor device and formation thereof
US5593928A (en) Method of making a semiconductor device having floating source and drain regions
JPH0974189A (en) Manufacture of semiconductor device
JPH05110072A (en) Manufacture of semiconductor device
JP3060948B2 (en) Method for manufacturing semiconductor device
KR100743652B1 (en) Method for fabricating soi device
JPS63314870A (en) Insulated-gate field-effect transistor and manufacture thereof
JP2001244324A (en) Method for manufacturing semiconductor device
JPH0794721A (en) Semiconductor device and manufacture thereof
JPH04294585A (en) Manufacture of vertical type mos semiconductor device
JPS6238869B2 (en)