JPH04294585A - Manufacture of vertical type mos semiconductor device - Google Patents

Manufacture of vertical type mos semiconductor device

Info

Publication number
JPH04294585A
JPH04294585A JP5986991A JP5986991A JPH04294585A JP H04294585 A JPH04294585 A JP H04294585A JP 5986991 A JP5986991 A JP 5986991A JP 5986991 A JP5986991 A JP 5986991A JP H04294585 A JPH04294585 A JP H04294585A
Authority
JP
Japan
Prior art keywords
gate electrode
semiconductor device
silicon
silicon pillar
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5986991A
Other languages
Japanese (ja)
Inventor
Shinji Toyoyama
愼治 豊山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP5986991A priority Critical patent/JPH04294585A/en
Publication of JPH04294585A publication Critical patent/JPH04294585A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7827Vertical transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To provide a method for manufacturing a semiconductor device by which the channel length is easily controlled and which has a short distance between a source or drain area below a gate electrode and a channel formed on the side face of a silicon pillar and a gate electrode which can be easily connected with wiring. CONSTITUTION:This manufacturing method of a vertical type MOS semiconductor device forms a gate electrode 9 by filling up a groove formed between a silicon pillar 5 and an insulator 7 surrounding the pillar 5 with a gate material after a source area 3 or drain area 10 is formed below the gate electrode 9.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明はシリコン基板表面に対し
て垂直方向にチャネルを有する縦型MOS半導体装置の
製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a vertical MOS semiconductor device having a channel perpendicular to the surface of a silicon substrate.

【0002】0002

【従来の技術】現在、実用に供されているMOS型半導
体集積回路では、半導体表面に対して水平方向にチャネ
ルを有する平面型MOS型半導体が用いられている。集
積回路の集積度を向上させるためには素子の占有面積を
減少させる必要があるが、平面型MOS型半導体におい
て占有面積を減少させるためには、チャネル長を短くし
たりチャネル幅を小さくする必要がある。しかし、短チ
ャネル効果やホットキャリアによる劣化、電流駆動能力
の低下等の多くの問題が生じるためチャネル長やチャネ
ル幅を小さくして占有面積を有効に減少させることは困
難である。
2. Description of the Related Art MOS type semiconductor integrated circuits currently in practical use use planar MOS type semiconductors having channels in the horizontal direction with respect to the semiconductor surface. In order to improve the degree of integration of integrated circuits, it is necessary to reduce the area occupied by the elements, but in order to reduce the area occupied by planar MOS semiconductors, it is necessary to shorten the channel length or narrow the channel width. There is. However, it is difficult to effectively reduce the occupied area by reducing the channel length and channel width because many problems occur, such as short channel effects, deterioration due to hot carriers, and a decrease in current drive capability.

【0003】一方、薄膜SOI基板等に形成したMOS
型半導体装置において基板部分が完全に空乏化すること
により素子特性が向上することが見いだされており、こ
うした完全空乏化デバイスの研究が行われている。また
チャネル領域を挟む2つのゲート電極を有する2ゲート
デバイスにより、ドレイン電流の制御性を向上させる研
究も進められている。
On the other hand, MOS formed on a thin film SOI substrate, etc.
It has been found that device characteristics are improved by completely depleting the substrate portion of a type semiconductor device, and research is being conducted on such fully depleted devices. Research is also underway to improve controllability of drain current using a two-gate device having two gate electrodes sandwiching a channel region.

【0004】このような占有面積の小さなデバイス、完
全空乏化デバイスや2ゲートデバイスの実現には様々な
方法が試みられているが、その一つの方法として、シリ
コン基板表面に対して垂直方向にチャネルを有する縦型
MOS半導体装置を用いる方法がある。すなわち、チャ
ネルをシリコン基板表面に対して垂直方向に形成するこ
とにより、チャネル長を短くしたり、チャネル幅を小さ
くしなくても占有面積を減少させることができる。また
、チャネル領域の周囲にゲート電極を容易に形成するこ
とができ、チャネル領域を十分細い柱状にすることによ
り基板部分を完全に空乏化することができる。また、柱
状にしたチャネル領域の相対する2つの側面に沿ってゲ
ート電極を形成することにより2ゲートデバイスも容易
に実現できる。
[0004] Various methods have been attempted to realize such small-occupying-area devices, fully depleted devices, and two-gate devices. There is a method using a vertical MOS semiconductor device having the following characteristics. That is, by forming the channel in a direction perpendicular to the surface of the silicon substrate, the occupied area can be reduced without shortening the channel length or reducing the channel width. Further, a gate electrode can be easily formed around the channel region, and by making the channel region into a sufficiently thin columnar shape, the substrate portion can be completely depleted. Furthermore, a two-gate device can be easily realized by forming gate electrodes along two opposing sides of a columnar channel region.

【0005】具体的な縦型MOS半導体装置の製造方法
の例としては、図11(a)のようにシリコン基板1の
表面にボロンのイオン注入を行い6μmの深さでp型不
純物層2を形成したのち、図11(b)のようにRIE
法を用いて部分的にp型不純物層2を除去して1μmの
高さで0.5μmの幅をもつシリコン柱5を形成し、図
11(c)のように熱酸化により200Åの厚さのゲー
ト酸化膜7を形成し、その上に図11(d)のように0
.6μmの厚さで多結晶シリコン8を堆積し、サイドウ
ォール技術を用いてエッチバックして図11(e)のよ
うに水平方向に0.3μmの厚さで多結晶シリコン8を
残してゲート電極9とし、図11(f)のようにゲート
電極9をマスクとして砒素そイオン注入を行い0.3μ
mの深さでドレイン領域10およびソース領域3を形成
して縦型MOS半導体装置とする。この場合、ドレイン
領域10とソース領域3が入れ代わってもよい。
As a specific example of a method for manufacturing a vertical MOS semiconductor device, as shown in FIG. 11(a), boron ions are implanted into the surface of a silicon substrate 1 to form a p-type impurity layer 2 at a depth of 6 μm. After forming, RIE is performed as shown in FIG. 11(b).
The p-type impurity layer 2 is partially removed using a method to form a silicon pillar 5 having a height of 1 μm and a width of 0.5 μm, and then it is heated to a thickness of 200 Å by thermal oxidation as shown in FIG. 11(c). A gate oxide film 7 of 0 is formed on it, as shown in FIG.
.. Polycrystalline silicon 8 is deposited to a thickness of 6 μm and etched back using a sidewall technique, leaving polycrystalline silicon 8 with a thickness of 0.3 μm in the horizontal direction as shown in FIG. 11(e) to form the gate electrode. 9, and as shown in FIG. 11(f), arsenic ions were implanted using the gate electrode 9 as a mask, and the thickness was 0.3μ.
A drain region 10 and source region 3 are formed at a depth of m to form a vertical MOS semiconductor device. In this case, the drain region 10 and the source region 3 may be replaced.

【0006】この構造では、ゲート酸化膜7を挟んでゲ
ート電極9に対向するシリコン柱5の側面にチャネルが
形成され、チャネルがシリコン基板1の表面に対して垂
直方向となる。
In this structure, a channel is formed on the side surface of the silicon pillar 5 facing the gate electrode 9 with the gate oxide film 7 in between, and the channel is perpendicular to the surface of the silicon substrate 1.

【0007】[0007]

【発明が解決しようとする課題】図11(f)に示すよ
うに、ドレイン領域10とソース領域3はゲート電極9
をマスクとするイオン注入により形成されるが、図11
(e)におけるサイドウォール技術を用いたエッチバッ
クによりゲート電極9の形状を制御するのは困難であり
、ゲート電極9の上部において水平方向の厚みが減少す
るので、ドレイン領域10の深さにばらつきが生じ、そ
の結果チャネル長の制御が困難になる。また、ゲート電
極9の厚みが比較的大きい場合には、ゲート電極9の下
部にあるソース領域3とシリコン柱5の側面に形成され
るチャネルとの距離が大きくなり、電流の制御性が劣化
する。一方で、ゲート電極9の厚みが比較的小さい場合
には、ゲート電極9に他の配線をつなぐことが困難にな
る。
Problems to be Solved by the Invention As shown in FIG. 11(f), the drain region 10 and the source region 3
It is formed by ion implantation using a mask as shown in FIG.
It is difficult to control the shape of the gate electrode 9 by etching back using the sidewall technique in (e), and the horizontal thickness decreases in the upper part of the gate electrode 9, so the depth of the drain region 10 varies. occurs, and as a result, it becomes difficult to control the channel length. Further, when the thickness of the gate electrode 9 is relatively large, the distance between the source region 3 located under the gate electrode 9 and the channel formed on the side surface of the silicon pillar 5 becomes large, and current controllability deteriorates. . On the other hand, if the thickness of the gate electrode 9 is relatively small, it becomes difficult to connect other wiring to the gate electrode 9.

【0008】本発明の目的は、チャネル長が制御しやす
く、ゲート電極下部のソース領域またはドレイン領域と
シリコン柱の側面に形成されるチャネルとの距離が小さ
く、配線をつなぎやすいゲート電極を有する縦型MOS
半導体装置の製造方法を提供する。
An object of the present invention is to provide a vertical structure having a gate electrode in which the channel length is easy to control, the distance between the source region or drain region under the gate electrode and the channel formed on the side surface of the silicon pillar is small, and it is easy to connect wiring. type MOS
A method for manufacturing a semiconductor device is provided.

【0009】[0009]

【課題を解決するための手段】本発明の前記目的は、シ
リコン基板表面に対して垂直方向にチャネルを有する縦
型MOS半導体装置の製造方法において、ゲート電極の
形成前に、ゲート電極下部の前記シリコン基板にソース
又はドレイン領域を形成する工程と、前記ソース又はド
レイン領域上にシリコン柱を形成する工程と、前記シリ
コン基板表面上にあって前記シリコン柱を取り囲む絶縁
物を形成する工程と、前記シリコン柱と絶縁物とで形成
される溝にゲート電極を埋め込んでゲート電極を形成す
る工程と、からなる縦型MOS半導体装置の製造方法を
提供するものである。
Means for Solving the Problems The object of the present invention is to provide a method for manufacturing a vertical MOS semiconductor device having a channel in a direction perpendicular to the surface of a silicon substrate. forming a source or drain region on a silicon substrate; forming a silicon pillar on the source or drain region; forming an insulator on the surface of the silicon substrate surrounding the silicon pillar; The present invention provides a method for manufacturing a vertical MOS semiconductor device, which comprises a step of embedding a gate electrode in a trench formed by a silicon pillar and an insulator to form a gate electrode.

【0010】また、前記シリコン柱の周囲全てに前記溝
が形成されてなる縦型MOS半導体装置の製造方法を提
供するものである。
Another object of the present invention is to provide a method for manufacturing a vertical MOS semiconductor device in which the groove is formed all around the silicon pillar.

【0011】更に、前記シリコン柱の断面が矩形であっ
て、このシリコン柱の相対する2側面に沿って前記溝が
形成されてなる縦型MOS半導体装置の製造方法を提供
するものである。
Furthermore, the present invention provides a method for manufacturing a vertical MOS semiconductor device, in which the silicon pillar has a rectangular cross section and the trench is formed along two opposing sides of the silicon pillar.

【0012】前記シリコン柱は、素子導通時、表面チャ
ネル領域より内部が完全に空乏化する太さ又は幅を有す
るものである。
The silicon pillar has a thickness or width such that the inside is completely depleted from the surface channel region when the device is conductive.

【0013】[0013]

【作用】本発明の縦型MOS半導体装置の製造方法にお
いては、サイドウォール技術を用いず、シリコン柱とシ
リコン柱を取り囲む絶縁物の間に設けた溝にゲート電極
材料を埋め込むことによりゲート電極を形成するので、
ゲート電極の形状制御性がよく、ドレイン領域の深さの
ばらつきが抑えられ、その結果チャネル長の制御が容易
になる。
[Operation] In the method of manufacturing a vertical MOS semiconductor device of the present invention, the gate electrode is formed by burying the gate electrode material in the groove provided between the silicon pillar and the insulator surrounding the silicon pillar, without using the sidewall technique. Because it forms
The shape controllability of the gate electrode is good, the variation in the depth of the drain region is suppressed, and as a result, the channel length can be easily controlled.

【0014】また、ゲート電極の形成前にゲート電極下
部のソース領域またはドレイン領域を形成するので、ゲ
ート電極下部のソース領域またはドレイン領域とシリコ
ン柱の側面に形成されるチャネルとの距離を小さくでき
る。また、ゲート電極の水平方向の厚みを大きくしても
、ゲート電極下部のソース領域またはドレイン領域に影
響を与えないので、水平方向にゲート電極を厚くしてゲ
ート電極に配線をつなぎ易くできる。
Furthermore, since the source or drain region under the gate electrode is formed before forming the gate electrode, the distance between the source or drain region under the gate electrode and the channel formed on the side surface of the silicon pillar can be reduced. . Further, even if the thickness of the gate electrode is increased in the horizontal direction, it does not affect the source region or the drain region under the gate electrode, so that the gate electrode can be made thicker in the horizontal direction to facilitate connecting wiring to the gate electrode.

【0015】[0015]

【実施例】以下、本発明の実施例を図面を参照しつつ詳
述するが、本発明は以下の実施例に限定されるものでは
ない。
EXAMPLES Examples of the present invention will be described in detail below with reference to the drawings, but the present invention is not limited to the following examples.

【0016】本発明の実施例として縦型MOS半導体装
置の製造方法を図1〜図9を用いて示し、2種類の実施
例の斜視図を図10(a)〜(b)を用いて示す。なお
、図1乃至図10において、図11に示した従来例と同
一の構成要素については、同一の符号にて示す。
As an embodiment of the present invention, a method for manufacturing a vertical MOS semiconductor device is shown in FIGS. 1 to 9, and perspective views of two types of embodiments are shown in FIGS. 10(a) to 10(b). . Note that in FIGS. 1 to 10, the same components as those in the conventional example shown in FIG. 11 are designated by the same reference numerals.

【0017】まず、図1のようにシリコン基板1の表面
にボロンのイオン注入を行い2μmの深さでp型不純物
層2を形成したのち、図2のように砒素のイオン注入に
より0.3μmの深さでソース領域3を形成する。次に
、図3のようにp型単結晶シリコン層4を1μmの厚さ
でエピタキシャル成長させたのち、図4のようにRIE
法を用いてソース領域3が露出するまで部分的に単結晶
シリコン層4を除去して1μmの高さで0.5μmの幅
をもつシリコン柱5を形成する。
First, as shown in FIG. 1, boron ions are implanted into the surface of a silicon substrate 1 to form a p-type impurity layer 2 to a depth of 2 μm, and then arsenic ions are implanted to a depth of 0.3 μm as shown in FIG. The source region 3 is formed at a depth of . Next, as shown in FIG. 3, a p-type single crystal silicon layer 4 is epitaxially grown to a thickness of 1 μm, and then RIE is performed as shown in FIG.
By using a method, the single crystal silicon layer 4 is partially removed until the source region 3 is exposed, thereby forming a silicon pillar 5 having a height of 1 μm and a width of 0.5 μm.

【0018】次いで酸化シリコン層6を1μmの厚さで
堆積したのち図5のようにRIE法を用いて部分的に酸
化シリコン層6を除去してシリコン柱5と酸化シリコン
層6の間に0.5μmの幅で溝を設け、図6のように熱
酸化により200Åの厚さのゲート酸化膜7を形成する
。続いて、その上に図7のように0.5μmの厚さで多
結晶シリコン8を堆積し溝を埋め込み、エッチバックし
て図8のように溝内に0.7μmの高さで多結晶シリコ
ン8を残してゲート電極9とし、図9のように砒素をイ
オン注入することにより約0.3μmの深さでドレイン
領域10を形成して縦型MOS半導体装置とする。この
場合、ドレイン領域10とそソース領域3が入れ代わっ
てもよい。
Next, after depositing a silicon oxide layer 6 to a thickness of 1 μm, as shown in FIG. A groove with a width of .5 μm is provided, and a gate oxide film 7 with a thickness of 200 Å is formed by thermal oxidation as shown in FIG. Next, as shown in FIG. 7, polycrystalline silicon 8 is deposited to a thickness of 0.5 μm to fill the groove, and etched back to deposit polycrystalline silicon 8 at a height of 0.7 μm in the groove as shown in FIG. The silicon 8 is left as a gate electrode 9, and as shown in FIG. 9, arsenic ions are implanted to form a drain region 10 to a depth of about 0.3 μm to form a vertical MOS semiconductor device. In this case, the drain region 10 and the source region 3 may be replaced.

【0019】図8におけるゲート電極9の形成において
エッチバックによるゲート電極9の形状制御性は良好で
、ゲート電極9の水平方向の厚みが一定しているので、
ドレイン領域10の深さが安定してチャネル長の制御が
容易となる。また、図2のように電極9の形成前にソー
ス領域3を形成するので、ソース領域3とシリコン柱5
の側面に形成されるチャネルを近接させることができ、
電流の制御性の劣化が抑えられる。また、ゲート電極9
の水平方向の厚さは図5において形成する溝の幅を変え
ることにより任意に決定でき、厚くできるのでゲート電
極9に配線をつなぎ易くする。
In forming the gate electrode 9 in FIG. 8, the shape controllability of the gate electrode 9 by etchback is good, and the thickness of the gate electrode 9 in the horizontal direction is constant.
The depth of the drain region 10 is stabilized and the channel length can be easily controlled. Furthermore, since the source region 3 is formed before the electrode 9 is formed as shown in FIG. 2, the source region 3 and the silicon pillar 5 are
The channels formed on the sides of the can be brought close to each other,
Deterioration of current controllability is suppressed. In addition, the gate electrode 9
The thickness in the horizontal direction can be arbitrarily determined by changing the width of the groove formed in FIG.

【0020】なお、本実施例図5における溝は図10(
a)のようにシリコン柱5の周囲すべてに形成されても
よく、また、図10(b)のようにシリコン柱5の相対
する2つの側面に沿って形成されてもよい。図10(a
)の場合には、チャネルはシリコン柱5の周囲に形成さ
れ、シリコン柱が十分細ければ空乏層が重なり合い、完
全空乏化デバイスとなる。また、図10(b)の場合に
は、2つのチャネルがシリコン柱5の相対する2つの側
面に形成され、2ゲートデバイスとなる。
Note that the grooves in FIG. 5 of this embodiment are as shown in FIG. 10 (
They may be formed all around the silicon pillar 5 as shown in a), or may be formed along two opposing sides of the silicon pillar 5 as shown in FIG. 10(b). Figure 10 (a
), the channel is formed around the silicon pillar 5, and if the silicon pillar is thin enough, the depletion layers overlap, resulting in a fully depleted device. In the case of FIG. 10(b), two channels are formed on two opposing sides of the silicon pillar 5, resulting in a two-gate device.

【0021】また、本実施例では図2においてシリコン
柱5の近傍のみに砒素のイオン注入を行ったが、他の部
分にもイオン注入を行い、ソース領域9の形成と同時に
n型不純物層による配線を行ってもよい。また、図5に
おいてシリコン柱5の近傍のみに溝を形成したが、酸化
シリコン層6の他の部分にも溝を形成し、ゲート電極9
の形成と同時にゲート電極材料による配線を行ってもよ
い。
Furthermore, in this embodiment, arsenic ions were implanted only in the vicinity of the silicon pillar 5 in FIG. Wiring may be done. Although the grooves were formed only in the vicinity of the silicon pillars 5 in FIG. 5, grooves were also formed in other parts of the silicon oxide layer 6, and the gate electrodes 9
Wiring using the gate electrode material may be performed simultaneously with the formation of the gate electrode.

【0022】また、本実施例ではシリコン基板1の表面
にイオン注入によりp型不純物層を形成したが、イオン
注入を行わず代わりにp型のシリコン基板を用いてもよ
い。また、本実施例ではn型MOS半導体装置の形成方
法について示したが、p型MOS半導体装置も同様に形
成できる。
Further, in this embodiment, a p-type impurity layer is formed on the surface of the silicon substrate 1 by ion implantation, but a p-type silicon substrate may be used instead without ion implantation. Further, although the method for forming an n-type MOS semiconductor device has been described in this embodiment, a p-type MOS semiconductor device can also be formed in the same manner.

【0023】[0023]

【発明の効果】本発明の縦型MOS半導体装置の製造方
法によれば、ゲート電極の形状制御性がよいのでチャネ
ル長の制御が容易となり、ゲート電極下部のソース領域
またはドレイン領域とシリコン柱の側面に形成されるチ
ャネルとの距離を小さくできるので電流の制御性の劣化
が抑えられ、ゲート電極を厚くできるのでゲート電極に
配線をつなぎ易い。
According to the method for manufacturing a vertical MOS semiconductor device of the present invention, since the shape controllability of the gate electrode is good, the channel length can be easily controlled, and the distance between the source region or drain region under the gate electrode and the silicon pillar can be easily controlled. Since the distance from the channel formed on the side surface can be reduced, deterioration in current controllability can be suppressed, and since the gate electrode can be made thicker, wiring can be easily connected to the gate electrode.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例による工程説明図である。FIG. 1 is a process explanatory diagram according to an embodiment of the present invention.

【図2】本発明の一実施例による工程説明図である。FIG. 2 is a process explanatory diagram according to an embodiment of the present invention.

【図3】本発明の一実施例による工程説明図である。FIG. 3 is a process explanatory diagram according to an embodiment of the present invention.

【図4】本発明の一実施例による工程説明図である。FIG. 4 is a process explanatory diagram according to an embodiment of the present invention.

【図5】本発明の一実施例による工程説明図である。FIG. 5 is a process explanatory diagram according to an embodiment of the present invention.

【図6】本発明の一実施例による工程説明図である。FIG. 6 is a process explanatory diagram according to an embodiment of the present invention.

【図7】本発明の一実施例による工程説明図である。FIG. 7 is a process explanatory diagram according to an embodiment of the present invention.

【図8】本発明の一実施例による工程説明図である。FIG. 8 is a process explanatory diagram according to an embodiment of the present invention.

【図9】本発明の一実施例による工程説明図である。FIG. 9 is a process explanatory diagram according to an embodiment of the present invention.

【図10】本発明の実施例を示す斜視図である。FIG. 10 is a perspective view showing an embodiment of the present invention.

【図11】従来例による工程説明図である。FIG. 11 is a process explanatory diagram according to a conventional example.

【符号の説明】[Explanation of symbols]

1  シリコン基板 2  p型不純物層 3  ソース領域 4  p型単結晶シリコン層 5  シリコン柱 6  酸化シリコン層 7  ゲート絶縁膜 8  多結晶シリコン 9  ゲート電極 10  ドレイン領域 1 Silicon substrate 2 p-type impurity layer 3 Source area 4 p-type single crystal silicon layer 5 Silicon pillar 6 Silicon oxide layer 7 Gate insulating film 8 Polycrystalline silicon 9 Gate electrode 10 Drain region

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  シリコン基板表面に対して垂直方向に
チャネルを有する縦型MOS半導体装置の製造方法であ
って、ゲート電極の形成前に、ゲート電極下部の前記シ
リコン基板にソース又はドレイン領域を形成する工程と
、前記ソース又はドレイン領域上にシリコン柱を形成す
る工程と、前記シリコン基板表面上にあって前記シリコ
ン柱を取り囲む絶縁物を形成する工程と、前記シリコン
柱と絶縁物とで形成される溝にゲート電極材料を埋め込
んでゲート電極を形成する工程と、からなることを特徴
とする縦型MOS半導体装置の製造方法。
1. A method for manufacturing a vertical MOS semiconductor device having a channel in a direction perpendicular to the surface of a silicon substrate, the method comprising: forming a source or drain region in the silicon substrate below the gate electrode before forming a gate electrode; forming a silicon pillar on the source or drain region; forming an insulator on the surface of the silicon substrate surrounding the silicon pillar; 1. A method for manufacturing a vertical MOS semiconductor device, comprising the steps of: burying a gate electrode material in a groove to form a gate electrode.
【請求項2】前記シリコン柱の周囲全てに前記溝が形成
されてなることを特徴とする請求項1に記載の縦型MO
S半導体装置の製造方法。
2. The vertical MO according to claim 1, wherein the groove is formed all around the silicon pillar.
S semiconductor device manufacturing method.
【請求項3】前記シリコン柱の断面が矩形であって、こ
のシリコン柱の相対する2側面に沿って前記溝が形成さ
れてなることを特徴とする請求項1に記載の縦型MOS
半導体装置の製造方法。
3. The vertical MOS according to claim 1, wherein the silicon pillar has a rectangular cross section, and the groove is formed along two opposing sides of the silicon pillar.
A method for manufacturing a semiconductor device.
【請求項4】前記シリコン柱は、素子導通時、表面チャ
ネル領域より内部が完全に空乏化する太さ又は幅を有す
ることを特徴とする請求項1,2又は3に記載の縦型M
OS半導体装置の製造方法。
4. The vertical type M according to claim 1, wherein the silicon pillar has a thickness or width such that the inside is completely depleted from the surface channel region when the device is conductive.
A method for manufacturing an OS semiconductor device.
JP5986991A 1991-03-25 1991-03-25 Manufacture of vertical type mos semiconductor device Pending JPH04294585A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5986991A JPH04294585A (en) 1991-03-25 1991-03-25 Manufacture of vertical type mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5986991A JPH04294585A (en) 1991-03-25 1991-03-25 Manufacture of vertical type mos semiconductor device

Publications (1)

Publication Number Publication Date
JPH04294585A true JPH04294585A (en) 1992-10-19

Family

ID=13125606

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5986991A Pending JPH04294585A (en) 1991-03-25 1991-03-25 Manufacture of vertical type mos semiconductor device

Country Status (1)

Country Link
JP (1) JPH04294585A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288431B1 (en) 1997-04-04 2001-09-11 Nippon Steel Corporation Semiconductor device and a method of manufacturing the same
FR2823010A1 (en) * 2001-04-02 2002-10-04 St Microelectronics Sa Insulated-gate vertical transistor production comprises forming semiconductor column on semiconductor substrate, and forming insulated semiconductor gate on column sides and substrate upper surface
JP2004319808A (en) * 2003-04-17 2004-11-11 Takehide Shirato Mis field effect transistor and its manufacturing method
KR100908991B1 (en) * 2001-09-21 2009-07-22 에이저 시스템즈 가디언 코포레이션 Multiple Operating Voltage Vertical Alternate-Gate Transistors

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288431B1 (en) 1997-04-04 2001-09-11 Nippon Steel Corporation Semiconductor device and a method of manufacturing the same
US6468887B2 (en) 1997-04-04 2002-10-22 Nippon Steel Corporation Semiconductor device and a method of manufacturing the same
FR2823010A1 (en) * 2001-04-02 2002-10-04 St Microelectronics Sa Insulated-gate vertical transistor production comprises forming semiconductor column on semiconductor substrate, and forming insulated semiconductor gate on column sides and substrate upper surface
US6746923B2 (en) 2001-04-02 2004-06-08 Stmicroelectronics S.A. Method of fabricating a vertical quadruple conduction channel insulated gate transistor
US7078764B2 (en) 2001-04-02 2006-07-18 Stmicroelectronics, S.A. Method of fabricating a vertical quadruple conduction channel insulated gate transistor, and integrated circuit including this kind of transistor
KR100908991B1 (en) * 2001-09-21 2009-07-22 에이저 시스템즈 가디언 코포레이션 Multiple Operating Voltage Vertical Alternate-Gate Transistors
JP2004319808A (en) * 2003-04-17 2004-11-11 Takehide Shirato Mis field effect transistor and its manufacturing method

Similar Documents

Publication Publication Date Title
US4980306A (en) Method of making a CMOS device with trench isolation device
US20040031987A1 (en) Method for fabricating a transistor configuration including trench transistor cells having a field electrode, trench transistor, and trench configuration
JP2000252468A (en) Mos gate device with buried gate and manufacture thereof
JPH04192564A (en) Transistor and its manufacture
JPH11274478A (en) High-performance mosfet element with raised source and drain
JPH11103056A (en) Semiconductor device including lateral mos element
JPH06204484A (en) High-speed and low-gate/drain capacitance p-mos device
KR100415975B1 (en) Field effect-controlled transistor and method for producing the same
JPH0456471B2 (en)
JP3965027B2 (en) Method for manufacturing trench gate type MIS device having thick polysilicon insulating layer at bottom of trench
JPH0348656B2 (en)
JPH01123476A (en) Semiconductor device and its manufacture
EP3933895B1 (en) Trench field effect transistor structure, and manufacturing method for same
JP3489602B2 (en) Semiconductor device and manufacturing method thereof
JP3022714B2 (en) Semiconductor device and manufacturing method thereof
JPH04294585A (en) Manufacture of vertical type mos semiconductor device
JPH0758785B2 (en) Method for manufacturing vertical field effect transistor
JP2765976B2 (en) Method for manufacturing semiconductor device
JPH10294456A (en) Semiconductor device
JPH05267678A (en) Semiconductor device and its manufacture
JPH0575132A (en) Vertical mos transistor and manufacture thereof
JPS63314870A (en) Insulated-gate field-effect transistor and manufacture thereof
JP2001168334A (en) Power field-effect transistor and its manufacturing method
JPH0974190A (en) Semiconductor device
JPH0335534A (en) Manufacture of semiconductor device