JPH01304783A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01304783A
JPH01304783A JP13440788A JP13440788A JPH01304783A JP H01304783 A JPH01304783 A JP H01304783A JP 13440788 A JP13440788 A JP 13440788A JP 13440788 A JP13440788 A JP 13440788A JP H01304783 A JPH01304783 A JP H01304783A
Authority
JP
Japan
Prior art keywords
substrate
semiconductor layer
film
semiconductor
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP13440788A
Other languages
Japanese (ja)
Other versions
JP2614745B2 (en
Inventor
Ichiro Kato
一郎 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP13440788A priority Critical patent/JP2614745B2/en
Publication of JPH01304783A publication Critical patent/JPH01304783A/en
Application granted granted Critical
Publication of JP2614745B2 publication Critical patent/JP2614745B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To maintain the performance of a MOSFET by a method wherein a process of forming a semiconductor layer of the opposite conductive type to a substrate on the substrate having an included surface and a process levelling the semiconductor layer are inclined, the semiconductor layer is made the first and second electrodes and the substrate in the region put between the inclined surfaces is made a channel region. CONSTITUTION:A two-layer consisting of an oxide film 12 and a nitride film 12' is made to grow on a semiconductor substrate 11, the substrate 11 is etched with a hydrazine solution and a trapezoidal part 11b having an inclined surface 11a is made under an SiO2 film 12. Next, a semiconductor whose allover is doped to be of the opposite conductive type to the substrate 11 is formed by vapor phase epitaxy for making a semiconductor layer 13 and polycrystalline silicon 13' is removed by levelling using a resist or the like so that the semiconductor layer 13 to be first and second electrodes of a MOSFET to be formed remains. Further, a gate insulating film 15 and a gate electrode 16 are made to grow on the SiO2 film on a channel region to finish the MOSFET, where the substrate part under the gate insulating film 15 is to be the channel. Thereby, characteristic deterioration can be prevented.

Description

【発明の詳細な説明】 〔発明の概要〕 半導体装置の製造方法、特に半導体による高速高密度回
路(超LSI)に利用される微細なトランジスタの製造
方法に関し、 LDD型構造の欠点を補い、MOSFETの性能を維持
する為の新しい構造を作る方法を提案することを目的と
し、 半導体基板上にマスク領域を設けて該基板を異方性エツ
チングする工程、該異方性エツチングによって作られた
傾斜面を有する該基板上に基板と反対導電型の半導体層
を成長させる工程、および該半導体層を平坦化する工程
とを含み前記半導体層を第1、第2の電極とし、傾斜面
にはさまれた領域の基板をチャネルとする半導体装置の
製造方法を含み構成する。
[Detailed Description of the Invention] [Summary of the Invention] This invention relates to a method of manufacturing semiconductor devices, particularly a method of manufacturing fine transistors used in high-speed, high-density circuits (ultra-LSI) using semiconductors, by compensating for the drawbacks of the LDD structure and manufacturing MOSFETs. The purpose of this study is to propose a method for creating a new structure to maintain the performance of a semiconductor substrate. a step of growing a semiconductor layer of a conductivity type opposite to that of the substrate on the substrate, and a step of flattening the semiconductor layer, using the semiconductor layer as a first and second electrode, and sandwiching the semiconductor layer between inclined surfaces. The present invention includes a method for manufacturing a semiconductor device using a substrate in a region as a channel.

[産業上の利用分野] 本発明は、半導体装置の製造方法、特に半導体による高
速高密度回路(超LSI)に利用される微細なトランジ
スタの製造方法に関する。
[Industrial Application Field] The present invention relates to a method of manufacturing a semiconductor device, and particularly to a method of manufacturing a fine transistor used in a high-speed, high-density semiconductor circuit (ultra LSI).

〔従来の技術] 最近のMOSFET (金属酸化膜半導体・電界効果型
トランジスタ)は性能を決めるゲート長が1μm以下に
なってきている。
[Prior Art] In recent MOSFETs (metal oxide semiconductor field effect transistors), the gate length, which determines performance, has become less than 1 μm.

寸法が微細になるに従い、接合の深さが性能をきめるよ
うになった。即ち深い接合ではパンチスルーを起こし、
浅い接合では寄生抵抗が増大する。
As dimensions have become finer, the depth of the bond has come to determine performance. In other words, deep joints cause punch-through,
Parasitic resistance increases in shallow junctions.

また接合が浅いとゲート端付近での濃度プロファイルの
曲率が小さくなりホットキャリアを多数発生して劣化し
やすくなる。これらの問題をすべて解決する新しい構造
の接合が要求されている。この為、LDD (Ligh
tly Doped Drain)構造が提案されてい
るが、単に浅い接合と深い接合の組み合わせであるので
、ゲート端での濃度プロファイルの曲率、寄生抵抗に関
しては解決されていないので、上記問題点を解決する必
要がある。
In addition, if the junction is shallow, the curvature of the concentration profile near the gate edge becomes small, generating a large number of hot carriers and making it easy to deteriorate. There is a need for new structural joints that solve all of these problems. For this reason, LDD (Light
(Tly Doped Drain) structure has been proposed, but since it is simply a combination of a shallow junction and a deep junction, the curvature of the concentration profile at the gate edge and the parasitic resistance have not been solved, so it is necessary to solve the above problems. There is.

上記したパンチスルーは、ソース、ドレイン間に電圧を
印加したときに空乏層が拡がって互にくっついてソース
、ドレイン間に電流が流れ、印加電圧を変えても電流を
制御しえないようになる現象で、パンチスルーは、ソー
ス、ドレインの濃度、基板濃度、ゲート長、接合深さに
左右される。
Punch-through described above occurs when a voltage is applied between the source and drain, the depletion layer expands and sticks together, and current flows between the source and drain, making it impossible to control the current even if the applied voltage is changed. Punch-through is a phenomenon that depends on the source and drain concentrations, substrate concentration, gate length, and junction depth.

そこで、接合深さを浅くすることが考えられるが、ソー
スからドレインへ電流が流れるときの寄生抵抗Rは、次
式によって決定され、接合深さが小になるとRが増大す
る。
Therefore, it is possible to make the junction depth shallower, but the parasitic resistance R when current flows from the source to the drain is determined by the following equation, and as the junction depth becomes smaller, R increases.

し ただし、Lはゲート長、Wはゲート幅、Xjは接合深さ
、ρはシート抵抗。
However, L is the gate length, W is the gate width, Xj is the junction depth, and ρ is the sheet resistance.

ゲート端付近でソースからドレインへ流れる電子が加速
され、この電子が接合面に衝突することによる衝突イオ
ン化によって電子と正孔が作られる。この衝突イオン化
によって作られた電子または正孔(ホットキャリア)が
ゲート絶縁膜中や、絶縁膜と半導体との界面に入って素
子劣化の原因となる。か−るホットキャリアの発生は、
ゲート長、電圧、不純物濃度に加え接合曲率によって左
右される。
Electrons flowing from the source to the drain near the gate edge are accelerated, and when these electrons collide with the junction surface, they are ionized and create electrons and holes. Electrons or holes (hot carriers) created by this impact ionization enter the gate insulating film or the interface between the insulating film and the semiconductor, causing device deterioration. The generation of hot carriers is
It is influenced by junction curvature as well as gate length, voltage, and impurity concentration.

こ−で、第2図を参照してLDD構造MO3FETを形
成する工程を説明する。
The process of forming an LDD structure MO3FET will now be described with reference to FIG.

第2図(a)参照: 半導体基板1上にゲート絶縁材料薄膜2aとゲ−1・電
極材料薄膜3aとを順に成長する。
Refer to FIG. 2(a): On a semiconductor substrate 1, a gate insulating material thin film 2a and a gate 1/electrode material thin film 3a are grown in order.

第2図(b)参照ニ レジストを塗布し、ゲートパターンを露光・現像して得
られるレジストパターン4をマスクにエツチングをなし
、ゲート絶縁膜2とゲート電極3のゲート構造(2,3
)を形成する。
Referring to FIG. 2(b), the gate structure of the gate insulating film 2 and gate electrode 3 (2, 3
) to form.

第2図(C)参照: ゲート構造(2,3)をマスクにしてイオン注入して、
浅いイオン注入領域5(接合深さXjl)を形成する。
See Figure 2(C): Ion implantation using the gate structure (2, 3) as a mask,
A shallow ion implantation region 5 (junction depth Xjl) is formed.

第2図(d)参照: ゲート電極3を後工程で側壁となる絶縁膜6でおおう。See Figure 2(d): The gate electrode 3 is covered with an insulating film 6 that will become side walls in a later process.

第2図(e)参照: 絶縁膜6を例えば反応性イオンエツチングでエンチング
し、側壁部分6aをゲート電極3の両側に残す。
See FIG. 2(e): The insulating film 6 is etched, for example, by reactive ion etching, leaving sidewall portions 6a on both sides of the gate electrode 3.

第2図(f)参照: 側壁部分6aを含むゲート構造(6a  3−6a)を
マスクに前の工程で形成されたイオン注入領域5よりも
深い(接合深さx ; Z > x J、 )領域7に
イオン注入を行なう。
Refer to FIG. 2(f): Deeper than the ion implantation region 5 formed in the previous step using the gate structure (6a 3-6a) including the sidewall portion 6a as a mask (junction depth x; Z > x J,) Ion implantation is performed in region 7.

第2図(g)参照: イオン注入領域5.7を活性化してソース、ドレイン領
域(8,9)となし、カバー絶縁膜10を付する。
See FIG. 2(g): The ion implanted regions 5.7 are activated to become source and drain regions (8, 9), and a cover insulating film 10 is applied.

以上の工程で形成したLDD構造においては、矩形のゲ
ートをマスクにイオン注入を行なうかぎり、ゲート電極
下への不純物のまわり込みによってチャネル面に対して
垂直な接合面が必らず存在し、また接合の深さXj、を
0にすることはできない為、より微細なLDD構造を作
るには、より浅い拡散技術が常に必要となる。しかも、
現在のイオン注入技術によって接合を浅くするにはイオ
ン注入後の表面不純物濃度を低くしなければならずMO
SFETの性能低下の原因となる。
In the LDD structure formed by the above steps, as long as ions are implanted using the rectangular gate as a mask, there will always be a junction plane perpendicular to the channel plane due to the impurity wrapping under the gate electrode. Since the junction depth Xj cannot be made zero, a shallower diffusion technique is always required to create a finer LDD structure. Moreover,
In order to make the junction shallower with current ion implantation technology, the surface impurity concentration after ion implantation must be lowered.
This causes performance deterioration of SFET.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

上記したように短チャネルMO5を形成する為には接合
を極端に浅くするかLDD形式にするかの二通りある。
As mentioned above, there are two ways to form the short channel MO5: to make the junction extremely shallow or to use an LDD type.

ところが極端に浅く、かつキャリア濃度が十分に大きい
接合を従来のイオン注入法で形成する事は技術的に困難
である。そこでLDD構造を用いるとすると、ゲート電
極に遠い所から、ゲート電極下面両端に近づくにつれ接
合を階段状に浅くしていく必要があり、そうなると工程
数が増大する。また水平基板に垂直に矩形のゲート構造
を用いてイオン注入を行う為、基板に垂直な接合面が必
ず存在し、そうなると互に平行な垂直接合面の間では電
界Eのベクトルと電流Iのベクトルとが同一方向になっ
てホットキャリアの発生が最大になる。そこで電界ベク
トルと電流ベクトルの向きを平行でないようにし、ホッ
トキャリアの発生を抑える必要がある。かくして、チャ
ネル長が短かくなるにつれ、ますまず浅い接合形成技術
が必要となる。
However, it is technically difficult to form an extremely shallow junction with a sufficiently large carrier concentration using the conventional ion implantation method. Therefore, if an LDD structure is used, it is necessary to make the junction shallower in a stepwise manner from a place far from the gate electrode toward both ends of the lower surface of the gate electrode, which increases the number of steps. In addition, since ion implantation is performed using a rectangular gate structure perpendicular to a horizontal substrate, there is always a junction plane perpendicular to the substrate, and in that case, between the vertical junction planes that are parallel to each other, the vector of the electric field E and the vector of the current I are in the same direction, and the generation of hot carriers is maximized. Therefore, it is necessary to prevent the electric field vector from being parallel to the current vector to suppress the generation of hot carriers. Thus, as channel lengths decrease, increasingly shallow junction formation techniques are required.

そこで本発明は、LDD型の欠点を補い、MOSFET
の性能を維持する為の新しい構造を作る方法を提案する
ことを目的とする。
Therefore, the present invention compensates for the drawbacks of the LDD type and
The purpose is to propose a method for creating a new structure to maintain the performance of

〔課題を解決するだめの手段] 上記課題は、半導体基板上にマスク領域を設けて該基板
を異方性エツチングする工程、該異方性エツチングによ
って作られた傾斜面を有する該基板上に基板と反対導電
型の半導体層を成長させる工程、および該半導体層を平
坦化する工程とを含み前記半導体層を第1、第2の電極
とし、傾斜面にはさまれた領域の基板をチャネルとする
半導体装置の製造方法によって解決される。
[Means for Solving the Problem] The above problem consists of a step of providing a mask region on a semiconductor substrate and anisotropically etching the substrate, and a step of etching the substrate on the substrate having an inclined surface created by the anisotropic etching. a step of growing a semiconductor layer of a conductivity type opposite to that of the semiconductor layer, and a step of planarizing the semiconductor layer. The problem is solved by a method of manufacturing a semiconductor device.

(作用] 本発明の方法では、Si基板面方位(100)の表面に
Si0gマスクを設け、例えばH2O: NzHz(ヒ
ドラジン)20%二80%のエツチング液に対し、(1
00)面は早< (111)面や(110)面は遅くエ
ンチングされる。
(Function) In the method of the present invention, a Si0g mask is provided on the surface of the Si substrate with the plane orientation (100), and an etching solution of (1
The (111) and (110) planes are etched slowly.

(ただし温度は100°C,)この時エツチングされた
溝は5i02マスクの両端から55°Cの角度をもつ傾
斜型側壁と(100)面方位の底面とで形成される。こ
の1頃斜をそのままソース・ドレイン接合領域の傾斜と
して利用するもので、か\る方法によって次の効果が得
られるものである。
(However, the temperature is 100°C.) The groove etched at this time is formed by inclined side walls having an angle of 55°C from both ends of the 5i02 mask and a bottom face in the (100) plane orientation. This 1-degree slope is used as it is as the slope of the source/drain junction region, and the following effects can be obtained by this method.

■ チャネル部分に対して垂直な接合面を作らない。■ Do not create a joint surface perpendicular to the channel part.

■ ゲート電極近傍で接合深さを0にする。■ Make the junction depth 0 near the gate electrode.

■ 階段形接合を形成する場合に比べ、1回で形成する
■ Compared to forming a stepped joint, it can be formed in one step.

■ 階段形接合を形成する場合に比べ、ゲート電極近傍
の不純物濃度を高くする。
■ Increase the impurity concentration near the gate electrode compared to when forming a stepped junction.

(実施例〕 以下、本発明を図示の実施例により具体的に説明する。(Example〕 Hereinafter, the present invention will be specifically explained with reference to illustrated embodiments.

第1図は本発明の方法を実施する工程を示す図である。FIG. 1 is a diagram showing the steps of carrying out the method of the present invention.

第1図(a)参照: 後の工程でチャネルとなる領域をマスクするように、半
導体(例えばシリコン)基板11上に酸化膜(SiO□
膜)12と窒化膜(SiN膜)12′からなる2層膜を
成長しバターニングする。SiO□膜12膜下2は。
Refer to FIG. 1(a): An oxide film (SiO □
A two-layer film consisting of a film) 12 and a nitride film (SiN film) 12' is grown and patterned. SiO□ film 12 film bottom 2.

約200人、SiN膜12′の膜厚は約500人とする
The number of participants is approximately 200, and the thickness of the SiN film 12' is approximately 500.

第1図(b)参照: 例えばヒドラジン(NZI+4) 80%、水(H2O
) 20%、100″Cの溶液で基板11を深さ0.2
μmエツチングして、SiO□膜12膜下2傾斜面11
aをもった台形部にbを作る。
See Figure 1(b): For example, hydrazine (NZI+4) 80%, water (H2O
) 20%, 100″C solution to the substrate 11 to a depth of 0.2
After μm etching, the SiO□ film 12 film bottom 2 inclined surface 11
Make b on the trapezoid part with a.

第1図(C)参照: 全面に基板11と反対導電型にドープした半導体(例え
ばシリコン)を0.5μmの厚さにエピタキシャル成長
して半導体層13を作る。図で破線で囲む領域には多結
晶シリコン13′が成長するが、基板11に接する部分
には単結晶シリコンが成長し、この単結晶シリコンは基
板と反対導電型にドープされているので、後工程でソー
ス・ドレインを形成するための不純物拡散工程(例えば
イオン注入)が省略される利点がある。
Refer to FIG. 1(C): A semiconductor layer 13 is formed by epitaxially growing a semiconductor (for example, silicon) doped with a conductivity type opposite to that of the substrate 11 to a thickness of 0.5 μm. Polycrystalline silicon 13' grows in the area surrounded by the broken line in the figure, but single-crystal silicon grows in the area in contact with the substrate 11, and since this single-crystal silicon is doped to have the opposite conductivity type as the substrate, it is difficult to There is an advantage that an impurity diffusion step (for example, ion implantation) for forming sources and drains is omitted in the process.

第1図(d)参照ニ レジストなどを用いて従来知られた平坦化工程を行ない
、SiN膜12′が露出したところで平坦化を止める。
Referring to FIG. 1(d), a conventional planarization process is performed using a resist or the like, and the planarization is stopped when the SiN film 12' is exposed.

なおこの平坦化によって多結晶シリコン13′は除去さ
れ、形成されるべきMOSFETの第1と第2の電極と
なる半導体層13が残る。
Note that this planarization removes the polycrystalline silicon 13', leaving the semiconductor layer 13 that will become the first and second electrodes of the MOSFET to be formed.

第1図(e)参照: 半導体層13の上に0.1μm程度の絶縁用の酸化膜1
4が成長するように酸化を行なう。このとき、SiN膜
12′は耐酸化マスクとなる。
See FIG. 1(e): An insulating oxide film 1 of about 0.1 μm is formed on the semiconductor layer 13.
Oxidation is performed so that 4 grows. At this time, the SiN film 12' serves as an oxidation-resistant mask.

第1図げ)参照: チャネル領域上のSiO□膜に、SiN膜12′を除去
し、新たにゲート絶縁膜15を例えば500人の厚さに
成長させ、ゲート電極16となるポリシリコンを成長さ
せ、所定の寸法にパターニングする。
Refer to Figure 1): Remove the SiN film 12' from the SiO□ film on the channel region, grow a new gate insulating film 15 to a thickness of, for example, 500 nm, and grow polysilicon that will become the gate electrode 16. and pattern it to a predetermined size.

以後、通常の工程を用いて半導体層13を第1と第2の
電極とし、ゲート絶縁膜15の下の基板部分をチャネル
とするMOSFETを完成するが、本発明の適用範囲は
その場合に限定されるものでない。
Thereafter, a MOSFET in which the semiconductor layer 13 is used as the first and second electrodes and the substrate portion under the gate insulating film 15 is used as a channel is completed using a normal process, but the scope of application of the present invention is limited to that case. It is not something that can be done.

(発明の効果] 以上のように本発明によれば、MOSFETのソース・
ドレイン電極としてゲート直下に近いところで浅くゲー
トから離れるにつれて深くなる接合が簡単に得られ、こ
れは短チャネルFETを作成しても短チヤネル効果が現
われずまた特性劣化を防ぐことができる。またこの傾斜
型接合領域はソースからドレインに向かう直線に対し垂
直な面を持たないので、ソース・ドレイン間電界の傾き
と電流の向きが平行にならずホットキャリアが発生しに
くくなる効果がある。
(Effects of the Invention) As described above, according to the present invention, the MOSFET source
As the drain electrode, a junction that is shallow near the gate and becomes deeper as it moves away from the gate can be easily obtained, and even if a short channel FET is fabricated, short channel effects will not appear and characteristic deterioration can be prevented. Furthermore, since this inclined junction region does not have a plane perpendicular to the straight line from the source to the drain, the slope of the electric field between the source and drain does not become parallel to the direction of the current, which has the effect of making it difficult for hot carriers to be generated.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(f)は本発明実施例断面図、第2図(
a)〜((2)はLDD構造形成工程断面図である。 図中、 11は半導体基板、 11aは傾斜面、 11bは台形部、 12はSiO□膜、 12′はSiN膜、 13は半導体層、 14は酸化膜、 15はゲート絶縁膜、 16はゲート電極 を示す。
Figures 1 (a) to (f) are cross-sectional views of embodiments of the present invention, and Figure 2 (
a) to (2) are cross-sectional views of the LDD structure formation process. In the figure, 11 is a semiconductor substrate, 11a is an inclined surface, 11b is a trapezoidal part, 12 is a SiO□ film, 12' is a SiN film, and 13 is a semiconductor 14 is an oxide film, 15 is a gate insulating film, and 16 is a gate electrode.

Claims (1)

【特許請求の範囲】  半導体基板(11)上にマスク領域(12、12′)
を設けて該基板を異方性エッチングする工程、 該異方性エッチングによって作られた傾斜面(11a)
を有する該基板(11)上に基板と反対導電形の半導体
層(13)を成長させる工程、および該半導体層13を
平坦化する工程 とを含み前記半導体層13を第1、第2の電極とし、傾
斜面(11a)にはさまれた領域(11b)の基板をチ
ャネル領域とする半導体装置の製造方法。
[Claims] Mask regions (12, 12') on a semiconductor substrate (11)
anisotropically etching the substrate by providing an inclined surface (11a) created by the anisotropic etching;
a step of growing a semiconductor layer (13) of a conductivity type opposite to that of the substrate on the substrate (11) having a substrate, and a step of planarizing the semiconductor layer 13. A method of manufacturing a semiconductor device in which a region (11b) of the substrate sandwiched between inclined surfaces (11a) is used as a channel region.
JP13440788A 1988-06-02 1988-06-02 Method for manufacturing semiconductor device Expired - Lifetime JP2614745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13440788A JP2614745B2 (en) 1988-06-02 1988-06-02 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13440788A JP2614745B2 (en) 1988-06-02 1988-06-02 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01304783A true JPH01304783A (en) 1989-12-08
JP2614745B2 JP2614745B2 (en) 1997-05-28

Family

ID=15127662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13440788A Expired - Lifetime JP2614745B2 (en) 1988-06-02 1988-06-02 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2614745B2 (en)

Also Published As

Publication number Publication date
JP2614745B2 (en) 1997-05-28

Similar Documents

Publication Publication Date Title
US7423321B2 (en) Double gate MOSFET device
US6812104B2 (en) MIS semiconductor device and method of fabricating the same
EP0083088A2 (en) Method of producing field effect transistors having very short channel length
JP2006261703A (en) Mesa separated silicon on insulator transistor and manufacturing method of the same
KR20160088213A (en) Semiconductor device including fin structures and manufacturing method thereof
US20080001227A1 (en) Structure and method for manufacturing double gate finfet with asymmetric halo
JP2001284598A (en) Semiconductor device and manufacturing method thereof
JPH08264789A (en) Insulated gate semiconductor device and manufacture
KR20030047371A (en) A semiconductor device and A method for forming the same
KR100218299B1 (en) Manufacturing method of transistor
JPH05218415A (en) Semiconductor device
JP2005332993A (en) Semiconductor device and method for manufacturing the same
JPH05206459A (en) Semiconductor device and its manufacture
KR100488099B1 (en) A mos transistor having short channel and a manufacturing method thereof
JPH04276662A (en) Manufacture of semiconductor device
JP3166911B2 (en) Method for manufacturing semiconductor device
JP3049496B2 (en) Method of manufacturing MOSFET
JPH06310718A (en) Preparation of mosfet element
JP5158197B2 (en) Semiconductor device and manufacturing method thereof
JPH01304783A (en) Manufacture of semiconductor device
JPH05235345A (en) Semiconductor device and manufacture thereof
JP2007123519A (en) Semiconductor device and method for manufacturing the same
JPH05343680A (en) Manufacturing method of semiconductor device
JPH04245642A (en) Mos transistor and its manufacture
JPS61220372A (en) Manufacture of semiconductor device