JPS61241941A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS61241941A
JPS61241941A JP8342385A JP8342385A JPS61241941A JP S61241941 A JPS61241941 A JP S61241941A JP 8342385 A JP8342385 A JP 8342385A JP 8342385 A JP8342385 A JP 8342385A JP S61241941 A JPS61241941 A JP S61241941A
Authority
JP
Japan
Prior art keywords
film
oxidation
oxide film
semiconductor substrate
silicon oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP8342385A
Other languages
Japanese (ja)
Other versions
JPH0680726B2 (en
Inventor
Hideharu Nakajima
中嶋 英晴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP60083423A priority Critical patent/JPH0680726B2/en
Publication of JPS61241941A publication Critical patent/JPS61241941A/en
Publication of JPH0680726B2 publication Critical patent/JPH0680726B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components

Abstract

PURPOSE:To reduce a conversion difference in shape and an electrical conversion difference by oxidizing the surface of a semiconductor substrata selectively by using a non-oxidizable film after forming the non-oxidizable film in the groove formed around the semiconductor substrate and its non-oxidizable film. CONSTITUTION:On a silicon oxide film 2 formed on a surface of a silicon semiconductor substrate, a nitride film 3 is formed, after which the silicon oxide film 2 and the nitride film 3 are removed selectively and a channel stopper 4 is formed by ion implantation of impurities of conductive type and a selective oxidation film 5 is formed. The selective oxidation film 5 becomes thin in the beak part 6 close to the nitride film 3 and it is continuous to the silicon oxide film 2 as a pad. The surface of the substrate 1 is exposed in the beak part 6 and a groove 7 and a channel stopper are formed. A nitride film 9 is deposited over the whole surface of the semiconductor substrate 1 and etching is made till the surface of the selective oxidation film 5 is exposed. The surface of the substrate 1 is selectively oxidized to form a selective oxidation film 10 and it is properly etched to level the surface of the semiconductor substrate 1. Consequently, a conversion difference in shape is made almost zero and also an electrical conversion difference can be made an approximate value to zero.

Description

【発明の詳細な説明】 本発明半導体装置の製造方法を以下の順序で説明する。[Detailed description of the invention] A method for manufacturing a semiconductor device of the present invention will be explained in the following order.

A、産業上の利用分野 B0発発明概要 C6従来技術 り0発明が解決しようとする問題点 E6問題点を解決するための手段 21作用 G、実施例〔第1図、第2図] H0発明の効果 (A、産業上の利用分野) 本発明は半導体装置の製造方法、特に半導体基板の表面
部を選択的に酸化することにより素子間分離用の絶縁膜
を形成する半導体装置の製造方法に関するものである。
A. Industrial field of application B0 Overview of the invention C6 Prior art Problems to be solved by the invention E6 Means for solving the problems 21 Effects G. Examples [Figures 1 and 2] H0 Invention Effects (A, Industrial Application Field) The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device in which an insulating film for isolation between elements is formed by selectively oxidizing the surface portion of a semiconductor substrate. It is something.

(B、発明の概要) 本発明半導体装置の製造方法は、選択酸化の際にマスク
として用いる耐酸化膜を半導体基板上に形成した後半導
体基板のその耐酸化膜周辺に溝を形成し、その溝に耐酸
化物を形成した後上記耐酸化膜をマスクとして半導体基
板表面を選択的に酸化することにより、その酸化のマス
クたる耐酸化膜下への進行を溝内の耐酸化物によって阻
み、バードビークの発生を防止、延いては変換差を0な
いしはそれにきわめて近似した小さい値にしようとする
ものである。
(B. Summary of the Invention) The method for manufacturing a semiconductor device of the present invention includes forming an oxidation-resistant film on a semiconductor substrate to be used as a mask during selective oxidation, and then forming a groove around the oxidation-resistant film on the semiconductor substrate. After forming an oxide-resistant material in the groove, the surface of the semiconductor substrate is selectively oxidized using the oxidation-resistant film as a mask, and the oxidation-resistant material in the trench prevents the oxidation from proceeding below the oxidized film, which serves as a mask, thereby eliminating bird beaks. The aim is to prevent this from occurring and to reduce the conversion difference to 0 or a small value very close to it.

(C1従来技術) 素子間分離法として半導体基板表面に耐酸化膜を選択的
に形成し、該耐酸化膜をマスクとして半導体基板表面部
を選択的に酸化して選択酸化膜を形成し、該選択酸化膜
により素子間を分離する方法(LOCO3法)がある。
(C1 Prior Art) As an element isolation method, an oxidation-resistant film is selectively formed on the surface of a semiconductor substrate, and the surface of the semiconductor substrate is selectively oxidized using the oxidation-resistant film as a mask to form a selective oxide film. There is a method (LOCO3 method) of isolating elements using a selective oxide film.

このような選択酸化膜により素子間を絶縁分離するLO
CO5法においては耐酸化膜としてナイトライド膜が用
いられ、該耐酸化膜はシリコンからなる半導体基板上に
パッドとして機能するシリコン酸化膜(S i O2)
を介して形成される。
LO that insulates and isolates elements using such a selective oxide film
In the CO5 method, a nitride film is used as an oxidation-resistant film, and the oxidation-resistant film is a silicon oxide film (S i O2) that functions as a pad on a semiconductor substrate made of silicon.
formed through.

(D、発明が解決しようとする問題点)ところで、上記
した選択酸化膜により素子間を分離する方法にはバード
ビークが発生するという問題があった。バードビークは
選択酸化時にパッドであるシリコン酸化膜(S i O
2)を通して酸素が耐酸化膜の周辺からマスクたる耐酸
化膜下へ侵入し、選択酸化膜の周辺が鳥の嘴状に耐酸化
膜下内に拡がったものであり、このバードビークが変換
差を発生させる要因となる。そのため、能動領域がバー
ドビークによって実効的に狭められることになり、好ま
しくない。
(D. Problems to be Solved by the Invention) By the way, the above-described method of isolating elements using a selective oxide film has a problem in that bird's beak occurs. Bird beak is a silicon oxide film (S i O ) which is a pad during selective oxidation.
2), oxygen enters from the periphery of the oxidation resistant film to the bottom of the oxidation resistant film that serves as a mask, and the area around the selective oxide film spreads under the oxidation resistant film in the shape of a bird's beak, and this bird's beak causes the conversion difference. It becomes a factor that causes it to occur. Therefore, the active area is effectively narrowed by the bird's beak, which is undesirable.

そこで、酸素の侵入経路となるパッド用シリコン酸化膜
(sio2)を薄くすることによりバードビークの発生
量を小なくし、耐酸化膜であるナイトライド膜を厚くす
ることが考えられるが、このようにすると選択酸化によ
り半導体基板と耐酸化膜との間に生じるストレスが大き
くなり、欠陥が発生しやすいので好ましくない。
Therefore, it is possible to reduce the amount of bird's beak by thinning the silicon oxide film (SIO2) for the pad, which is the path for oxygen to enter, and thickening the nitride film, which is an oxidation-resistant film. Selective oxidation increases the stress generated between the semiconductor substrate and the oxidation-resistant film, which is undesirable because defects are likely to occur.

又、選択酸化膜を形成した後半導体基板表面を全面エツ
チングすることによりバードビークを小さくすることも
考えられる。しかし、そのようにしてバードビークを小
さくしてもチャンネルストッパーを成す拡散領域が酸化
の際の押し込み拡散により拡がり、その押し込み拡散に
よる能動領域の実効的減少は防止することはできなかっ
た。
It is also possible to reduce the bird's beak by etching the entire surface of the semiconductor substrate after forming a selective oxide film. However, even if the bird's beak is reduced in this way, the diffusion region forming the channel stopper expands due to forced diffusion during oxidation, and the active area cannot be prevented from effectively decreasing due to the forced diffusion.

即ち、形状的に変換差をなくしたとしてもチャンネルの
延び等を考慮した電気的な意味における変換差自身は小
さくできなかった。
That is, even if the conversion difference is eliminated in terms of shape, the conversion difference itself cannot be reduced in an electrical sense considering the length of the channel and the like.

そのため、形状的な変換差を小さくするだけでなく電気
的な変換差をも小さくすことが要請されていた。
Therefore, it has been required to reduce not only the geometrical conversion difference but also the electrical conversion difference.

本発明はこの要請に応えるべく為されたもので、形状的
な変換差を略0にすると共に電気的な変換差も小さくす
ることを目的とする。
The present invention was made in response to this demand, and aims to reduce the geometrical conversion difference to approximately 0 and also reduce the electrical conversion difference.

(E、問題点を解決するための手段) 本発明半導体装置の製造方法は、上記問題点を解決する
ため、選択酸化の際にマスクとして用いる耐酸化膜を半
導体基板上に形成した後半導体基板のその耐酸化膜周辺
に溝を形成し、その溝に耐酸化膜を形成した後耐酸化膜
をマスクとして半導体基板表面を選択的に酸化す、るこ
とを特徴とする。
(E. Means for Solving Problems) In order to solve the above problems, the method for manufacturing a semiconductor device of the present invention includes forming an oxidation-resistant film on a semiconductor substrate to be used as a mask during selective oxidation. A groove is formed around the oxidation-resistant film, and after forming an oxidation-resistant film in the groove, the surface of the semiconductor substrate is selectively oxidized using the oxidation-resistant film as a mask.

(F、作用) 本発明半導体装置の製造方法によれば、耐酸化膜形成領
域周縁に設けた溝に耐酸化物を形成するのでバードビー
クの発生をその耐酸化物により阻止することができる。
(F. Effect) According to the method for manufacturing a semiconductor device of the present invention, since the oxidation resistant material is formed in the groove provided at the periphery of the oxidation resistant film formation region, the occurrence of bird's beak can be prevented by the oxidation resistant material.

従って、形状的な変換差を略0にできる。又、その耐酸
化物により選択酸化の際のチャンネルストッパー拡散層
の押し込み拡散を防止することも可能となり電気的な変
換差も0に近似したきわめて小さな値にすることができ
る。
Therefore, the shape conversion difference can be reduced to approximately zero. Furthermore, the oxidation resistance makes it possible to prevent forced diffusion of the channel stopper diffusion layer during selective oxidation, and the electrical conversion difference can be reduced to an extremely small value close to zero.

(G、実施例)[第1図、第2図] 以下に5本発明半導体装置の製造方法を添附図面に示し
た実施例に従って説明する。
(G. Embodiment) [FIGS. 1 and 2] Below, five methods of manufacturing a semiconductor device of the present invention will be described according to embodiments shown in the accompanying drawings.

第1図(A)乃至(E)は本発明半導体装置の製造方法
の実施の一例を工程順に示すものである。
FIGS. 1A to 1E show an example of the method of manufacturing a semiconductor device of the present invention in the order of steps.

(A)シリコン半導体基板表面部を加熱酸化することに
より300A程度の膜厚を有するシリコン酸化膜2を形
成し、該シリコン酸化膜2上に耐酸化性を有するナイト
ライド膜3を成長させる。
(A) A silicon oxide film 2 having a thickness of about 300 Å is formed by heating and oxidizing the surface portion of a silicon semiconductor substrate, and a nitride film 3 having oxidation resistance is grown on the silicon oxide film 2.

ナイトライド膜3の膜厚は例えば100OA程度である
The thickness of the nitride film 3 is, for example, about 100 OA.

その後、フォトレジストをマスクとしてRIE等により
シリコン酸化M2及びナイトライド膜3の選択酸化すべ
き領域上に位置する部分を除去する。その後、半導体基
板1表面部にシリコン酸化膜2及びナイトライドl!i
 3をマスクとしである導電型の不純物をイオン打込み
し、アニールすることにより半導体基板1表面部におい
て選択酸化膜を形成すべき領域にチャンネルストッパ4
を形成する。第1図(A)はチャンネルスト−/パ4を
形成した後の状態を示す。
Thereafter, using a photoresist as a mask, the silicon oxide M2 and the portions of the nitride film 3 located on the regions to be selectively oxidized are removed by RIE or the like. Thereafter, a silicon oxide film 2 and a nitride l! i
A channel stopper 4 is formed on the surface of the semiconductor substrate 1 in a region where a selective oxide film is to be formed by ion-implanting impurities of a certain conductivity type using 3 as a mask and annealing.
form. FIG. 1(A) shows the state after the channel stop/pa 4 has been formed.

(B)次いで、半導体基板1表面部を上記選択酸化膜3
をマスクとして酸化することにより例えば100OA程
度の膜厚を有する選択酸化膜(Si02)5を形成する
。この段階における選択酸化膜5は、後でセルフアライ
メントにより溝を形成するために形成されるものである
。該選択酸化膜5はナイトライド膜3と近接した部分(
ピーク部)6において膜厚が薄くなり、パッドたるシリ
コン酸化膜2と連なっている。81図(B)は選択酸化
膜5を形成した後の状態を示す。
(B) Next, the surface portion of the semiconductor substrate 1 is covered with the selective oxide film 3.
A selective oxide film (Si02) 5 having a film thickness of, for example, about 100 OA is formed by oxidizing using as a mask. The selective oxide film 5 at this stage is formed to form a groove later by self-alignment. The selective oxide film 5 has a portion close to the nitride film 3 (
The film thickness becomes thinner at the peak portion) 6 and is continuous with the silicon oxide film 2 serving as a pad. FIG. 81(B) shows the state after the selective oxide film 5 is formed.

(C)RIEによりシリコン酸化膜(SiO2)に対す
るエツチングをすることによりピーク部6において半導
体基板(シリコン)1表面部を露出させる。その後、や
はりRIEによりナイトライド膜3及び選択酸化膜5を
マスクとして半導体基板1をRIEによりエツチングす
ることによりピーク部6に溝(トレンチ)7を形成する
。その後チャンネルストッパーを形成するため上記チャ
ンネルストッパー4と同じ導電型の不純物を例えばイオ
ン打込みし、その後アニールすることにより溝7の表面
にチャンネルストッパー8を形成する。第1図(C)は
チャンネルス)−/パー8を形成した後の状態を示す。
(C) The surface portion of the semiconductor substrate (silicon) 1 is exposed at the peak portion 6 by etching the silicon oxide film (SiO2) by RIE. Thereafter, the semiconductor substrate 1 is etched by RIE using the nitride film 3 and the selective oxide film 5 as masks, thereby forming a groove (trench) 7 in the peak portion 6. Thereafter, in order to form a channel stopper, an impurity of the same conductivity type as the channel stopper 4 is implanted, for example, by ion implantation, and then annealing is performed to form a channel stopper 8 on the surface of the groove 7. FIG. 1(C) shows the state after forming the par 8 (Channels).

(D)その後ナイトライド膜(あるいはoxY−3iN
でも良い、)9を半導体基板1表面部上に全面的にデポ
ジションする。このデポジションはナイトライド9が溝
7内に完全に充填されるように行うことが必要である。
(D) Then nitride film (or oxY-3iN
) 9 is deposited on the entire surface of the semiconductor substrate 1. This deposition must be carried out so that the nitride 9 is completely filled in the grooves 7.

第1図(D)はナイトライド膜9を形成した後の状態を
示すものである。
FIG. 1(D) shows the state after the nitride film 9 has been formed.

(E)その後、ナイトライド膜9を選択酸化膜5表面が
露出する深さまでエツチングする。その結果は溝7内に
充填された部分を除いて除去され、溝7内にナイトライ
ド9を充填した状態になる。第1図(E)はナイトライ
ド膜9に対するエツチングを終了した後の状態を示す。
(E) After that, the nitride film 9 is etched to a depth where the surface of the selective oxide film 5 is exposed. As a result, the portion filled in the groove 7 is removed, leaving the groove 7 filled with nitride 9. FIG. 1(E) shows the state after the etching of the nitride film 9 is completed.

(F)半導体基板1表面部を上記ナイトライド膜3をマ
スクとして選択酸化することにより素子分離用の選択酸
化膜10を形成する。
(F) A selective oxide film 10 for element isolation is formed by selectively oxidizing the surface portion of the semiconductor substrate 1 using the nitride film 3 as a mask.

この選択酸化に際して上記溝7内に充填された耐酸化物
9は選択酸化される領域から耐酸化膜たるナイトライド
膜3によりマスクされた領域への酸化の進行を完全に阻
む機能を発揮する。従って、バードビークが発生し得な
い、そして、耐酸化物9は酸化の進行を阻むと同時にチ
ャンネルストッパーを形成する不純物の酸化に際しての
押し込み拡散をも阻むので、チャンネルストッパーが押
し込み拡散によって拡がり能動領域の実効的面積が狭ま
ることを防止することができる。
During this selective oxidation, the oxidation resistant material 9 filled in the groove 7 functions to completely prevent the progress of oxidation from the region to be selectively oxidized to the region masked by the nitride film 3 serving as the oxidation resistant film. Therefore, a bird's beak cannot occur, and since the oxidation resistor 9 prevents the progress of oxidation and at the same time prevents the intrusion diffusion of the impurity that forms the channel stopper during oxidation, the channel stopper expands due to the intrusion diffusion and effectively reduces the active area. This can prevent the target area from becoming narrower.

尚、この選択酸化による体積の膨張により選択酸化膜1
0の表面の高さが高くなる。81図(F)は選択酸化終
了後の状態を示す。
Note that due to volume expansion due to this selective oxidation, the selective oxide film 1
The height of the surface of 0 becomes higher. Figure 81 (F) shows the state after selective oxidation.

(G)その後、選択酸化膜lOの表面部を適宜な厚さエ
ツチングし、その表面の高さが半導体基板lのシリコン
酸化膜2及びナイトライド膜3が形成された部分のシリ
コン酸化膜2どの界面の高さと略同じになるようにする
。その後、シリコン酸化膜2及びナイトライド膜3を除
去し、半導体基板1表面の平担化を図る。第1図(G)
はそのシリコン酸化膜2及びナイトライド膜3除去後の
状態を示す。
(G) After that, the surface portion of the selective oxide film lO is etched to an appropriate thickness, and the height of the surface is equal to that of the silicon oxide film 2 of the portion of the semiconductor substrate l where the silicon oxide film 2 and the nitride film 3 are formed. Make it approximately the same height as the interface. Thereafter, the silicon oxide film 2 and the nitride film 3 are removed to planarize the surface of the semiconductor substrate 1. Figure 1 (G)
shows the state after the silicon oxide film 2 and nitride film 3 are removed.

このような半導体装置の製造方法によれば、半導体基板
1の選択酸化膜3によってマスクした領域の周辺に溝7
を形成し、線溝7に耐酸化物9を右横したうえで素子間
分離用の選択酸化膜10形成するので、その選択酸化膜
10に際して選択酸化される領域から耐酸化膜たるナイ
トライド膜3によりマスクされた領域への酸化の進行を
溝7内の耐酸化物9によって阻止することができる。
According to such a method of manufacturing a semiconductor device, a groove 7 is formed around the region masked by the selective oxide film 3 of the semiconductor substrate 1.
The selective oxide film 10 for isolation between elements is formed after oxidation-resistant material 9 is placed horizontally in the line groove 7, so that the nitride film 3, which is an oxidation-resistant film, is formed from the region to be selectively oxidized in the selective oxide film 10. The oxidation resistor 9 in the trench 7 can prevent the progress of oxidation to the region masked by the oxide.

従って、バードビークの発生を防止することができ形状
的に変換率を0にすることができる。そして、ナイトラ
イド膜3によってマスクされた領域への酸化の進行を溝
7内に耐酸化物9によって阻止することができるので、
酸化による押し込み酸化を防止することができ、延いて
はチャンネルストッパー8の拡散を防止することができ
る。従って、チャンネルの延びをも考慮に入れた電気的
な意味における変換率も小さくすることができる。
Therefore, the occurrence of bird's beak can be prevented and the conversion rate can be reduced to zero in terms of shape. Since the progress of oxidation to the region masked by the nitride film 3 can be prevented by the oxidation resistant material 9 in the groove 7,
Intrusion oxidation caused by oxidation can be prevented, and diffusion of the channel stopper 8 can also be prevented. Therefore, the conversion rate in an electrical sense, which also takes into account the length of the channel, can also be reduced.

尚、木実施例においては溝7を選択的エツチングにより
形成するために選択酸化膜5を形成し、これをエツチン
グマスクの一部として用いるという方法をとっているが
、このようにして選択的エツチングを行なうことは必ず
しも必要ではない。
In the wood embodiment, in order to form the grooves 7 by selective etching, a selective oxide film 5 is formed and used as a part of an etching mask. It is not necessarily necessary to do so.

第2図(A)乃至CD)は本発明半導体装置の製造方法
の変形例を工程順に示すものである。
FIGS. 2A to 2D) show a modification of the method for manufacturing a semiconductor device of the present invention in the order of steps.

(A)第1図(A)乃至CD)に示したと略同じような
工程で半導体基板1表面部に選択酸化膜10を選択的に
形成する。但し、第1図(A)乃至(D)に示した工程
とはパッドたるシリコン酸化膜2及び酸化マスクたるナ
イトライド膜3を形成し、シリコン酸化膜2及びナイト
ライド膜3をパターニングした後、半導体基板1の露出
した選択酸化すべき領域の表面部にチャンネルストッパ
ーを形成するための導電性不純物の添加をしないという
点で異なっている。従って1選択酸化膜10下にはチャ
ンネルストッパーは存在していない、第2図(A)は選
択酸化膜10形成した後の状態を示す。
(A) A selective oxide film 10 is selectively formed on the surface of the semiconductor substrate 1 in substantially the same steps as shown in FIGS. 1A to 1C. However, the steps shown in FIGS. 1A to 1D are steps in which a silicon oxide film 2 serving as a pad and a nitride film 3 serving as an oxide mask are formed, and after patterning the silicon oxide film 2 and nitride film 3, The difference is that a conductive impurity for forming a channel stopper is not added to the surface of the exposed region of the semiconductor substrate 1 to be selectively oxidized. Therefore, no channel stopper exists under the first selective oxide film 10. FIG. 2A shows the state after the selective oxide film 10 is formed.

(B)次いで、選択酸化M10をエツチングにより除去
する。その後、半導体基板lの選択酸化膜10の除去に
より露出した表面部にチャンネルストッパー11を形成
するための不純物のイオン打込みを行い、その後アニー
ルする。第2図(B)はチャンネルストッパー11を形
成した後の状態を示す。
(B) Next, selectively oxidized M10 is removed by etching. Thereafter, impurity ions are implanted to form a channel stopper 11 on the surface exposed by removing the selective oxide film 10 of the semiconductor substrate 1, and then annealing is performed. FIG. 2(B) shows the state after the channel stopper 11 is formed.

(C)次いで、加熱酸化処理により選択酸化膜12を形
成する。この加熱酸化は酸化膜12の表面の高さが半導
体基板lのナイトライド膜3、シリコン酸化膜2によっ
てマスクされた部分のシリコン酸化膜2との界面の高さ
と略同じになるまで行う、そして、この変形例において
はこの選択酸化膜12を形成した後の状態を示す。
(C) Next, a selective oxide film 12 is formed by thermal oxidation treatment. This thermal oxidation is performed until the height of the surface of the oxide film 12 becomes approximately the same as the height of the interface with the silicon oxide film 2 of the portion masked by the nitride film 3 and the silicon oxide film 2 of the semiconductor substrate l, and In this modification, the state after the selective oxide film 12 is formed is shown.

(D)その後1選択的に形成されたシリコン酸化膜2及
びナイトライド膜3を除去し、能動素子を形成すべき領
域表面を露出させる。第2図(D)はシリコン酸化膜2
及びナイトライド膜3を除去した後の状態を示す。
(D) Thereafter, the silicon oxide film 2 and nitride film 3 that have been selectively formed are removed to expose the surface of the region where the active element is to be formed. Figure 2 (D) shows silicon oxide film 2.
The state after removing the nitride film 3 is shown.

(H,発明の効果) 以上に述べたように、本発明半導体装置の製造方法によ
れば、耐酸化膜形成領域周縁に設けた溝に耐酸化物を形
成するのでバードビークの発生をその耐酸化物により阻
止することができる。従って、形状的な変換差を略Oに
できる。又、溝の耐酸化物によりチャンネルストッパー
拡散層の押し込み拡散を抑制することができるので電気
的な意味における変換差もOに近似したきわめて小さな
値にすることができる。
(H, Effects of the Invention) As described above, according to the method for manufacturing a semiconductor device of the present invention, since the oxide resistant material is formed in the groove provided at the periphery of the oxidized resistant film formation region, the occurrence of bird's beak can be prevented by the oxide resistant material. can be prevented. Therefore, the difference in shape conversion can be reduced to approximately O. Furthermore, since the oxidation-resistant material in the groove can suppress the forced diffusion of the channel stopper diffusion layer, the conversion difference in an electrical sense can also be made to an extremely small value close to O.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)乃至CG)は本発明半導体装置の製造方法
の実施の一例を示す工程順に示す断面図、第2図(A)
乃至CD)は本発明半導体装置の製造方法の変形例を工
程順に示す断面図である。 符号の説明 1・・Φ半導体基板、 3・・Φ耐酸化膜、  7・・・溝、 9・・・耐酸化物、  12・・・選択酸化膜(,4) 第1図 (F) (G) U七法セニル帽く感イー′(支)聞 第1図
1(A) to CG) are cross-sectional views showing an example of the method of manufacturing a semiconductor device of the present invention in the order of steps, and FIG. 2(A)
to CD) are cross-sectional views showing a modification of the method for manufacturing a semiconductor device of the present invention in the order of steps. Explanation of symbols 1...Φ semiconductor substrate, 3...Φ oxidation-resistant film, 7... groove, 9... oxide-resistant material, 12... selective oxide film (,4) Figure 1 (F) (G ) U Seven Law Senil Hat Kan Yi' (branch) Mon Figure 1

Claims (1)

【特許請求の範囲】[Claims] (1)半導体基板上に選択的に耐酸化膜を形成する工程
と、 上記半導体基板の上記耐酸化膜の周辺に溝を形成する工
程と、 上記溝内に耐酸化物を形成する工程と、 上記耐酸化膜をマスクとして上記半導体基板表面部を選
択的に酸化する工程と、 からなることを特徴とする半導体装置の製造方法
(1) a step of selectively forming an oxidation-resistant film on a semiconductor substrate; a step of forming a groove around the oxidation-resistant film of the semiconductor substrate; a step of forming an oxide-resistant material in the groove; A method for manufacturing a semiconductor device, comprising: selectively oxidizing the surface portion of the semiconductor substrate using an oxidation-resistant film as a mask.
JP60083423A 1985-04-18 1985-04-18 Method for manufacturing semiconductor device Expired - Fee Related JPH0680726B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60083423A JPH0680726B2 (en) 1985-04-18 1985-04-18 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60083423A JPH0680726B2 (en) 1985-04-18 1985-04-18 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS61241941A true JPS61241941A (en) 1986-10-28
JPH0680726B2 JPH0680726B2 (en) 1994-10-12

Family

ID=13802024

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60083423A Expired - Fee Related JPH0680726B2 (en) 1985-04-18 1985-04-18 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0680726B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028559A (en) * 1989-03-23 1991-07-02 Motorola Inc. Fabrication of devices having laterally isolated semiconductor regions
US5851887A (en) * 1994-09-07 1998-12-22 Cypress Semiconductor Corporation Deep sub-micron polysilicon gap formation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935445A (en) * 1982-08-24 1984-02-27 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JPS59139643A (en) * 1983-01-31 1984-08-10 Hitachi Ltd Semiconductor device and manufacture thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5935445A (en) * 1982-08-24 1984-02-27 Nippon Telegr & Teleph Corp <Ntt> Manufacture of semiconductor device
JPS59139643A (en) * 1983-01-31 1984-08-10 Hitachi Ltd Semiconductor device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5028559A (en) * 1989-03-23 1991-07-02 Motorola Inc. Fabrication of devices having laterally isolated semiconductor regions
US5851887A (en) * 1994-09-07 1998-12-22 Cypress Semiconductor Corporation Deep sub-micron polysilicon gap formation

Also Published As

Publication number Publication date
JPH0680726B2 (en) 1994-10-12

Similar Documents

Publication Publication Date Title
JP2802600B2 (en) Method for manufacturing semiconductor device
JPH06318634A (en) Isolating method for element in semiconductor device
JPH06163532A (en) Method for isolation of semiconductor element
JPS6123657B2 (en)
JP3039978B2 (en) Method of forming an electric field isolation structure and a gate structure in an integrated MISFET device
JPS61214446A (en) Manufacture of semiconductor device
JPH08125010A (en) Isolation structure of semiconductor device and formation thereof
JPS61241941A (en) Manufacture of semiconductor device
KR100468674B1 (en) Isolation method of semiconductor device
US5763316A (en) Substrate isolation process to minimize junction leakage
JPH0268930A (en) Manufacture of semiconductor device
KR0183718B1 (en) Method of manufacturing semiconductor device
JPS5856436A (en) Manufacture of semiconductor device
JP2883242B2 (en) Method for manufacturing semiconductor device
JPH01295438A (en) Manufacture of semiconductor device
JPH08264634A (en) Separate formation in semiconductor device
JPS59177940A (en) Manufacture of element isolation region
JPS59177941A (en) Manufacture of element isolation region
KR100287916B1 (en) Method for manufacturing isolation layer of semiconductor device
JPS62291941A (en) Method for isolating elements in semiconductor device
KR100444315B1 (en) Method for manufacturing isolation layer with improved uniformity with active region of semiconductor device
JPS62248236A (en) Manufacture of semiconductor device
KR20000003508A (en) Method of forming isolation film of semiconductor device
JPS63308932A (en) Interelement isolating method for semiconductor device
JPS58180062A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees