JPH01295438A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01295438A
JPH01295438A JP12640288A JP12640288A JPH01295438A JP H01295438 A JPH01295438 A JP H01295438A JP 12640288 A JP12640288 A JP 12640288A JP 12640288 A JP12640288 A JP 12640288A JP H01295438 A JPH01295438 A JP H01295438A
Authority
JP
Japan
Prior art keywords
film
semiconductor substrate
semiconductor
insulating film
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12640288A
Other languages
Japanese (ja)
Inventor
Shinichi Yamamoto
真一 山本
Ichiro Nakao
中尾 一郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP12640288A priority Critical patent/JPH01295438A/en
Publication of JPH01295438A publication Critical patent/JPH01295438A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To make it possible to form a minute element isolating structure which is equal to the size of a mask, by implanting oxygen ions or nitrogen ions into a polycrystalline silicon film, performing heat treatment transforming the upper surface of the polycrystalline silicon film into an oxide film or a nitride film, and forming a cap layer. CONSTITUTION:First insulating films 110 and 120 are formed on a semiconductor substrate 100. The first insulating films 110 and 120 at a desired regions are etched. The semiconductor substrate 100 is further etched to a desired depth, and an opening part is formed. A second insulating film 150 is formed at the opening part. Thereafter, a semiconductor film 160 is deposited on the entire surface and in the opening part. Back etching is performed, and the semiconductor film 160 is made to remain only in the opening part. Then, oxygen ions or nitrogen ions are implanted. Heat treatment is further performed. Thus, a third insulating film 180 is formed on the upper surface of the semiconductor film 160. Thereafter, the first insulating films 110 and 120 are removed. In this way, miniaturization can be achieved.

Description

【発明の詳細な説明】 産業上の利用分野 半導体装置特に溝を用いた素子分離構造を有する半導体
装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device, particularly a semiconductor device having an element isolation structure using grooves.

従来の技術 半導体装置の高集積化、高速化を実現するためには素子
分離領域の幅を狭く形成する必要がある。
2. Description of the Related Art In order to achieve higher integration and higher speed of semiconductor devices, it is necessary to form element isolation regions with narrower widths.

上記の問題を解決し得る方法として半導体基板上に溝を
形成し該構内を絶縁膜等で埋め込んで素子分離を行う溝
を用いた素子分離法が発表されている。さらに熱処理時
の半導体基板に及ぼすストレスを考えるならば多結晶シ
リコン膜を埋め込む素子分離法がを望である。例えば上
記溝分離構造を形成する方法として第3図(a)に示す
ようにP形半導体基板1の表面に500A程度の熱酸化
膜2および1500A程度の窒化11E3を順次形成し
た後フォトリソグラフィにより溝形成予定領域以外を覆
うレジスト4を形成する。次に第3図(b)に示すよう
にレジスト4をマスクとして窒化膜3および熱酸化膜2
をエツチングしさらに半導体基板1を深さ3μm程度エ
ツチングして素子分離用の溝5を形成し、その後溝5の
底面にホウ素をイオン注入してチャンネルストッパ領域
6を形成する。その後レジスト4を除去して溝5を熱酸
化する。次に第3図(C)に示すように溝5内および半
導体基板1の表面上に多結晶シリコン膜7を堆積する。
As a method capable of solving the above problem, an element isolation method using a groove has been announced, in which a groove is formed on a semiconductor substrate and the groove is filled with an insulating film or the like to isolate the elements. Furthermore, considering the stress exerted on the semiconductor substrate during heat treatment, an element isolation method in which a polycrystalline silicon film is buried is desirable. For example, as shown in FIG. 3(a), a method for forming the groove isolation structure is to sequentially form a thermal oxide film 2 of about 500 Å and a nitride film 11E3 of about 1500 Å on the surface of a P-type semiconductor substrate 1, and then use photolithography to form grooves. A resist 4 is formed to cover areas other than the area to be formed. Next, as shown in FIG. 3(b), using the resist 4 as a mask, the nitride film 3 and the thermal oxide film 2 are removed.
Further, the semiconductor substrate 1 is etched to a depth of about 3 μm to form a groove 5 for element isolation, and then boron ions are implanted into the bottom of the groove 5 to form a channel stopper region 6. Thereafter, the resist 4 is removed and the groove 5 is thermally oxidized. Next, as shown in FIG. 3C, a polycrystalline silicon film 7 is deposited within the trench 5 and on the surface of the semiconductor substrate 1.

第3図(d)に示すように多結晶シリコン膜7を窒化膜
′3が露出するまでエツチングする。
As shown in FIG. 3(d), the polycrystalline silicon film 7 is etched until the nitride film '3 is exposed.

次に第3図(e)に示すように多結晶シリコン膜7の表
面を酸化して溝5の上部に厚い酸化膜8を形成する。そ
の後半導体基板1に残存する窒化膜3および熱酸化膜2
を除去すると第3図(f)に示す素子分離構造が得られ
る。
Next, as shown in FIG. 3(e), the surface of the polycrystalline silicon film 7 is oxidized to form a thick oxide film 8 above the groove 5. After that, the nitride film 3 and thermal oxide film 2 remaining on the semiconductor substrate 1
By removing , an element isolation structure shown in FIG. 3(f) is obtained.

発明が解決しようとする課題 上記従来技術を半導体装置に適用すると第3図(e)に
示すように多結晶シリコン膜7の表面を酸化すると窒化
膜3直下の素子領域へ酸化膜8がしみ込む。このため出
来上りの分離領域幅とマスク寸法とのパターン変換差が
生じ微細化を妨げる。
Problems to be Solved by the Invention When the above-mentioned conventional technique is applied to a semiconductor device, as shown in FIG. 3(e), when the surface of the polycrystalline silicon film 7 is oxidized, the oxide film 8 seeps into the element region directly under the nitride film 3. For this reason, a pattern conversion difference occurs between the width of the finished isolation region and the mask dimension, which impedes miniaturization.

また多結晶シリコン膜7の表面を酸化すると酸化膜8の
しみ込みは、素子領域ばかりでなく溝5の側壁に形成し
た酸化膜に沿ってもまた起こる。この結果半導体基板1
にストレスを加えることになり半導体基板中に結晶欠陥
を引き起こす。
Furthermore, when the surface of the polycrystalline silicon film 7 is oxidized, the oxide film 8 penetrates not only into the element region but also along the oxide film formed on the side walls of the trench 5. As a result, semiconductor substrate 1
This adds stress to the semiconductor substrate, causing crystal defects in the semiconductor substrate.

課題を解決するための手段 本発明による半導体装置の製造方法は以下の工程から構
成される。
Means for Solving the Problems A method of manufacturing a semiconductor device according to the present invention includes the following steps.

半導体基板上に第1の絶縁膜を形成し所望領域の第1の
絶縁膜をエツチングし更に所望の深さまで前記半導体基
板をエツチングして開口部を形成する工程と、前記開口
部に第2の絶縁膜を形成する工程と全面および開口部内
に半導体膜を堆積し、バックエッチすることより開口部
内だけ半導体膜を残存させる工程と酸素イオンまたは窒
素イオンをイオン注入し、さらに熱処理を行うことによ
り半導体膜上面に第3の絶縁膜を形成する工程と前記第
1の絶縁膜を除去する工程から構成される。
forming a first insulating film on a semiconductor substrate, etching the first insulating film in a desired region, further etching the semiconductor substrate to a desired depth to form an opening; and etching a second insulating film in the opening. The process of forming an insulating film, the process of depositing a semiconductor film on the entire surface and inside the opening, and the process of leaving the semiconductor film only in the opening by back-etching, the process of implanting oxygen ions or nitrogen ions, and further heat-treating the semiconductor film. The method includes a step of forming a third insulating film on the upper surface of the film and a step of removing the first insulating film.

作用 本発明においては多結晶シリコン膜の表面を酸化してキ
ャップ層を形成する代わりに酸素イオンまたは窒素イオ
ンをイオン注入して、その後熱処理を行うことにより多
結晶シリコン膜の上面を酸化膜または窒化膜に変えてキ
ャップ層を形成する。
Function In the present invention, instead of oxidizing the surface of a polycrystalline silicon film to form a cap layer, oxygen ions or nitrogen ions are ion-implanted, and then heat treatment is performed to form an oxide film or a nitrided film on the top surface of the polycrystalline silicon film. A cap layer is formed instead of a membrane.

そのため素子領域へ酸化膜のしみ込みは起こらず、出来
上りの分離領域幅とマスク寸法とのパターン変換差は起
こらない。また素子領域および溝の側壁に形成された酸
化膜に沿って酸化膜のしみ込みは起こらないため半導体
基板に結晶欠陥を引き起こすことはない。
Therefore, the oxide film does not seep into the element region, and no difference in pattern conversion occurs between the width of the finished isolation region and the mask dimension. Further, since the oxide film does not seep along the oxide film formed on the sidewalls of the element region and the trench, no crystal defects are caused in the semiconductor substrate.

実施例 (実施例1) 本発明の実施例1を第1図(a)〜(g)を用いて以下
に説明する。第1図(a)に示すようにP形半導体基板
100の表面上に500A程度の熱酸化WXllOおよ
び1500A程度の窒化膜120を順次形成した後フォ
トリングラフィにより溝形成予定領域以外を覆うレジス
) 130を形成する。第1図(b)に示すようにレジ
スト130をマスクとして窒化膜320および熱酸化膜
110をエツチングし、さらに半導体基板100を深さ
3μm程度エツチングして素子分離用の溝を形成し、そ
の後溝の底面にホウ素をイオン注入してチャンネルスト
ッパ領域140を形成する。その後レジスト130を除
去して溝に1000A程度の熱酸化膜150を形成する
。次に第1図(C)に示すように溝内および半導体基板
100の表面上に多結晶シリコン16Gを堆積する。第
1図(d)に示すように多結晶シリコン膜111i0を
窒化膜120が露出するまでエツチングする。次に第1
図(e)に示すように加速電圧20 K e V、  
ドーズ110I6〜10”/cm”で0◆をイオン注入
する。その後N2雰囲気で30〜60分間、  115
0°Cで熱処理すると第1図(f)に示すように酸化膜
キャップ層180を厚さ200OA程度形成される。次
に窒化膜120および熱酸化膜110をそれぞれ除去す
ると第1図(g)に示す溝を用いた素子分離構造が得ら
れる。
Example (Example 1) Example 1 of the present invention will be described below using FIGS. 1(a) to (g). As shown in FIG. 1(a), on the surface of the P-type semiconductor substrate 100, a thermally oxidized WXllO film of about 500 amps and a nitride film 120 of about 1500 amps are sequentially formed, and then photolithography is applied to cover areas other than the area where the groove is to be formed. 130 is formed. As shown in FIG. 1(b), the nitride film 320 and the thermal oxide film 110 are etched using the resist 130 as a mask, and the semiconductor substrate 100 is further etched to a depth of about 3 μm to form a trench for element isolation. A channel stopper region 140 is formed by implanting boron ions into the bottom surface. Thereafter, the resist 130 is removed and a thermal oxide film 150 of about 1000 Å is formed in the groove. Next, as shown in FIG. 1C, polycrystalline silicon 16G is deposited in the trench and on the surface of the semiconductor substrate 100. As shown in FIG. 1(d), the polycrystalline silicon film 111i0 is etched until the nitride film 120 is exposed. Then the first
As shown in figure (e), the acceleration voltage is 20 K e V,
Ion implantation of 0◆ is performed at a dose of 110I6 to 10''/cm''. After that, for 30 to 60 minutes in N2 atmosphere, 115
When heat-treated at 0° C., an oxide film cap layer 180 with a thickness of about 200 OA is formed as shown in FIG. 1(f). Next, by removing the nitride film 120 and the thermal oxide film 110, an element isolation structure using grooves as shown in FIG. 1(g) is obtained.

(実施例2) 本発明の実施例2を第2図(a)〜(g)を用いて以下
に説明する。第2図(a)に示すようにP形半導体基板
200の表面上に2000A程度の熱酸化膜210を形
成した後フォトリソグラフィにより溝形成予定領域以外
を覆うレジスト220を形成する。
(Example 2) Example 2 of the present invention will be described below using FIGS. 2(a) to (g). As shown in FIG. 2(a), after a thermal oxide film 210 of about 2000 Å is formed on the surface of a P-type semiconductor substrate 200, a resist 220 is formed by photolithography to cover areas other than the area where the groove is to be formed.

第2図(b)に示すようにレジスト220をマスクとし
て熱酸化膜210をエツチングし、さらに半導体基板2
00を深さ3μm程度エツチングして素子分離用の溝を
形成し、その後溝の底面にホウ素をイオン注入してチャ
ンネルストッパ領域230を形成する。
As shown in FIG. 2(b), the thermal oxide film 210 is etched using the resist 220 as a mask, and then the semiconductor substrate 210 is etched.
00 to a depth of about 3 μm to form a groove for element isolation, and then boron ions are implanted into the bottom of the groove to form a channel stopper region 230.

その後レジスト22Gを除去して溝に100OA程度の
熱酸化膜240を形成する。次に第2図(C)に示すよ
うに溝内および半導体基板200の表面上に多結晶シリ
コン250を堆積する。第2図(d)に示すように多結
晶シリコン膜250を熱酸化M210が露出するまでエ
ツチングする。次に第3図(e)に示すように加速電圧
40 K e V、  ドーズ量1016〜10”/c
m”でN2φをイオン注入する。その後N2雰囲気で3
0分間、900℃で熱処理すると第2図(f)に示すよ
うに窒化膜キャップ層270を厚さ200OA程度形成
される。次に熱酸化膜210を除去すると第2図(g)
に示す溝を用いた素子分離構造が得られる。
Thereafter, the resist 22G is removed and a thermal oxide film 240 of about 100 OA is formed in the groove. Next, as shown in FIG. 2C, polycrystalline silicon 250 is deposited in the trench and on the surface of semiconductor substrate 200. As shown in FIG. 2(d), the polycrystalline silicon film 250 is etched until the thermally oxidized M210 is exposed. Next, as shown in FIG. 3(e), the acceleration voltage was set to 40 K e V and the dose was set to 1016 to 10"/c.
ion implantation of N2φ at a temperature of
When heat-treated at 900° C. for 0 minutes, a nitride film cap layer 270 is formed with a thickness of about 200 OA, as shown in FIG. 2(f). Next, when the thermal oxide film 210 is removed, FIG. 2(g)
An element isolation structure using grooves shown in FIG. 1 can be obtained.

発明の効果 以上に述べた本発明によると、多結晶シリコン膜のキャ
ップ層形成を従来技術のように酸化を用いることなく酸
素イオンまたは窒素イオンのイオン注入と熱処理で形成
するので出来上りの分離領域幅とマスク寸法とのパター
ン変換差は生じない。
Effects of the Invention According to the present invention described above, the cap layer of the polycrystalline silicon film is formed by ion implantation of oxygen ions or nitrogen ions and heat treatment without using oxidation as in the conventional technology, so that the width of the finished isolation region can be reduced. There is no difference in pattern conversion between the mask dimensions and the mask dimensions.

またキャップ層形成を従来技術のように酸化を用いない
ので、素子領域および溝の側壁に形成された酸化膜に沿
って酸化膜のしみ込みは起こらないため半導体基板に結
晶欠陥を引き起こすことはない。その結果リーク電流は
減少する。以上のように本発明はマスク寸法に等しい微
細な素子分離構造が形成でき、素子特性が大幅に改善さ
れる。
In addition, since oxidation is not used to form the cap layer as in the conventional technology, the oxide film does not seep along the oxide film formed on the element region and the sidewalls of the trench, so it does not cause crystal defects in the semiconductor substrate. . As a result, leakage current is reduced. As described above, according to the present invention, a fine element isolation structure equal to the mask size can be formed, and the element characteristics are significantly improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(g)および第2図(a)〜(g)は本
発明を用いた溝を用いる分離構造の形成の実施例を示す
工程断面図、第3図(a)〜(ヂ)は従来技術を用いた
溝を用いる分離構造の形成の工程断面図である。 100、 200・・・P形半導体基板、110. 1
50. 210. 240・・・熱酸化膜、130. 
220・・・レジスト、140. 230・・・チャン
ネルストッパ、IGo、  250・・・多結晶シリコ
ン、17G・・・0◆イオン注入領域、260・・・N
2”イオン注入領域、180・・・酸化膜キャップ層、
270・・・窒化膜キャップ層。 代理人の氏名 弁理士 中尾敏男 はか18第 l 図
              too’”F堅千IIA
体基板tto、tsθ・・−ナヘ醗イヒ膜 第1図 第2図 第3図
1(a)-(g) and FIG. 2(a)-(g) are process sectional views showing an example of forming an isolation structure using a groove using the present invention, and FIG. 3(a)-(g). (D) is a process cross-sectional view of forming an isolation structure using a groove using a conventional technique. 100, 200...P-type semiconductor substrate, 110. 1
50. 210. 240... thermal oxide film, 130.
220... resist, 140. 230...Channel stopper, IGo, 250...Polycrystalline silicon, 17G...0◆Ion implantation region, 260...N
2” ion implantation region, 180... oxide film cap layer,
270...Nitride film cap layer. Name of agent Patent attorney Toshio Nakao Figure 18 too'”F Kensen IIA
Body substrate tto, tsθ...-naheihihi membrane Figure 1 Figure 2 Figure 3

Claims (1)

【特許請求の範囲】[Claims]  半導体基板上に第1の絶縁膜を形成し所望領域の第1
の絶縁膜をエッチングし更に所望の深さまで前記半導体
基板をエッチングして開口部を形成する工程と、前記開
口部に第2の絶縁膜を形成する工程と全面および開口部
内に半導体膜を堆積し、バックエッチすることより開口
部内だけ半導体膜を残存させる工程と酸素イオンまたは
窒素イオンをイオン注入し、さらに熱処理を行うことに
より半導体膜上面に第3の絶縁膜を形成する工程と前記
第1の絶縁膜を除去する工程を備え、前記開口部の表面
領域に第3の絶縁膜、低面領域および側面領域に第2の
絶縁膜に囲まれる構造を有し、前記半導体膜を前記開口
部内に埋め込むことを特徴とする半導体装置の製造方法
A first insulating film is formed on a semiconductor substrate, and a first insulating film is formed on a desired region.
etching the insulating film and further etching the semiconductor substrate to a desired depth to form an opening, forming a second insulating film in the opening, and depositing a semiconductor film on the entire surface and inside the opening. , a step of leaving the semiconductor film only in the opening by back-etching, a step of ion-implanting oxygen ions or nitrogen ions, and forming a third insulating film on the upper surface of the semiconductor film by further performing heat treatment; a step of removing an insulating film, the semiconductor film is surrounded by a third insulating film in a surface region of the opening, a second insulating film in a lower surface region and a side region, and the semiconductor film is placed in the opening. A method for manufacturing a semiconductor device characterized by embedding.
JP12640288A 1988-05-24 1988-05-24 Manufacture of semiconductor device Pending JPH01295438A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12640288A JPH01295438A (en) 1988-05-24 1988-05-24 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12640288A JPH01295438A (en) 1988-05-24 1988-05-24 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH01295438A true JPH01295438A (en) 1989-11-29

Family

ID=14934270

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12640288A Pending JPH01295438A (en) 1988-05-24 1988-05-24 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH01295438A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201979A (en) * 1993-12-23 1995-08-04 Internatl Business Mach Corp <Ibm> Formation of semiconductor device and integrated circuit device
JPH08172087A (en) * 1994-06-16 1996-07-02 Lg Semicon Co Ltd Structure of separation membrane of semiconductor element and its formation
US6156603A (en) * 1998-12-01 2000-12-05 United Mircroelectronics Corp. Manufacturing method for reducing the thickness of a dielectric layer
KR100540850B1 (en) * 1997-06-26 2006-02-28 지멘스 악티엔게젤샤프트 Integrated circuit devices including shallow trench isolation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07201979A (en) * 1993-12-23 1995-08-04 Internatl Business Mach Corp <Ibm> Formation of semiconductor device and integrated circuit device
JPH08172087A (en) * 1994-06-16 1996-07-02 Lg Semicon Co Ltd Structure of separation membrane of semiconductor element and its formation
KR100540850B1 (en) * 1997-06-26 2006-02-28 지멘스 악티엔게젤샤프트 Integrated circuit devices including shallow trench isolation
US6156603A (en) * 1998-12-01 2000-12-05 United Mircroelectronics Corp. Manufacturing method for reducing the thickness of a dielectric layer

Similar Documents

Publication Publication Date Title
JPH0697665B2 (en) Method of manufacturing integrated circuit structure
JPH0964323A (en) Manufacture of semiconductor substrate
JPH01295438A (en) Manufacture of semiconductor device
JPH06232247A (en) Manufacturing of semiconductor layer isolated on insulation layer
JPH03152954A (en) Formation of electric field separation construction and gate construction in integrated misfet device
JPH098020A (en) Manufacture of semiconductor device
JPH08125010A (en) Isolation structure of semiconductor device and formation thereof
JP2775765B2 (en) Semiconductor device manufacturing method
KR100275111B1 (en) Method forming gateoxide in semiconductor device
KR0120571B1 (en) Device isolation method of semiconductor
JPS603157A (en) Manufacture of semiconductor device
JPH08264634A (en) Separate formation in semiconductor device
JPH04267336A (en) Manufacture of semiconductor device
KR940001813B1 (en) Isolation method and device of semiconductor
JPS5846647A (en) Manufacture of semiconductor device
JPH0467648A (en) Manufacture of semiconductor device
KR0124643B1 (en) Forming method of isolation film in semiconductor device
JPS61174645A (en) Manufacture of semiconductor device
JP2000357665A (en) Method of forming insulation region in semiconductor substrate
JPS62291941A (en) Method for isolating elements in semiconductor device
JPH01274448A (en) Method for forming element isolating region
JPS61241941A (en) Manufacture of semiconductor device
JPH04309226A (en) Manufacture of semiconductor device
JPS632349A (en) Manufacture of semiconductor device
JPS62131538A (en) Manufacture of semiconductor device