JPH04309226A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04309226A
JPH04309226A JP7346491A JP7346491A JPH04309226A JP H04309226 A JPH04309226 A JP H04309226A JP 7346491 A JP7346491 A JP 7346491A JP 7346491 A JP7346491 A JP 7346491A JP H04309226 A JPH04309226 A JP H04309226A
Authority
JP
Japan
Prior art keywords
oxide film
film
silicon nitride
silicon
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7346491A
Other languages
Japanese (ja)
Inventor
Takahiro Kitamura
喜多村 隆弘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP7346491A priority Critical patent/JPH04309226A/en
Publication of JPH04309226A publication Critical patent/JPH04309226A/en
Pending legal-status Critical Current

Links

Landscapes

  • Local Oxidation Of Silicon (AREA)
  • Element Separation (AREA)

Abstract

PURPOSE:To restrain the decrease of effective area of an element, by selectively forming an oxidation resistant film on a semiconductor substrate, introducing impurities in the semiconductor substrate in an aperture of the oxidation resistant film, and forming a thermal oxidation film in the aperture. CONSTITUTION:After a silicon oxide film 2 and a silicon nitride film 3 are formed on a silicon substrate 1, a recessed part 5 is formed by etching both of the films 2, 3. An silicon oxide film 7 and a silicon nitride film are formed in the recessed part 5, and said silicon nitride film is etched back, thereby forming a silicon nitride film 6 on the side surface of the recessed part 5. At this time, the silicon oxide film on the bottom surface of the recessed part 5 is also etched. Next, for example, phosphorus is diffused, and a high concentration N-type impurity diffusion layer 8 is formed. An oxide film 9 is formed by using the silicon nitride films 3, 6 as masks, and an silicon oxide film 9 turning to a field oxide film is completed by etching the silicon nitride films 3, 6 and the silicon oxide film 2. Thereby the decrease of effective area of an element is restrained.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は半導体装置の製造方法に
関し、特に選択酸化法による素子分離領域の形成方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of forming element isolation regions by selective oxidation.

【0002】0002

【従来の技術】従来技術による選択酸化法による素子分
離領域の形成方法について、図3(a)〜(c)および
図4(a)〜(c)を参照して説明する。
2. Description of the Related Art A conventional method for forming element isolation regions by selective oxidation will be described with reference to FIGS. 3A to 3C and 4A to 4C.

【0003】はじめに図3(a)に示すように、シリコ
ン基板1に薄い酸化シリコン膜2を形成してから減圧C
VD法により窒化シリコン膜3を形成する。その上にパ
ターニングしたレジスト4をマスクとして窒化シリコン
膜3および酸化シリコン膜2をエッチングする。
First, as shown in FIG. 3(a), a thin silicon oxide film 2 is formed on a silicon substrate 1, and then a reduced pressure C
A silicon nitride film 3 is formed by the VD method. Using the resist 4 patterned thereon as a mask, the silicon nitride film 3 and the silicon oxide film 2 are etched.

【0004】つぎに図3(b)に示すように、レジスト
4をマスクとして異方性エッチングしてシリコン基板1
に凹部5を形成する。
Next, as shown in FIG. 3(b), the silicon substrate 1 is etched by anisotropic etching using the resist 4 as a mask.
A recess 5 is formed in.

【0005】つぎに図3(c)に示すように、レジスト
4を除去したのち凹部5に薄い酸化シリコン膜7を形成
してから、減圧CVD法により窒化シリコン膜11を形
成する。
Next, as shown in FIG. 3C, after removing the resist 4, a thin silicon oxide film 7 is formed in the recess 5, and then a silicon nitride film 11 is formed by low pressure CVD.

【0006】つぎに図4(a)に示すように、異方性エ
ッチングにより窒化シリコン膜11をエッチバックして
、凹部5の側面に窒化シリコン膜11からなる側壁を残
す。
Next, as shown in FIG. 4A, the silicon nitride film 11 is etched back by anisotropic etching to leave side walls made of the silicon nitride film 11 on the sides of the recess 5. As shown in FIG.

【0007】つぎに図4(b)に示すように、窒化シリ
コン膜3,11をマスクとしてLOCOS選択酸化法に
よりフィールド酸化膜となる酸化シリコン膜9を形成す
る。
Next, as shown in FIG. 4B, a silicon oxide film 9 to be a field oxide film is formed by LOCOS selective oxidation using the silicon nitride films 3 and 11 as masks.

【0008】つぎに図4(c)に示すように、窒化シリ
コン膜3,11および酸化シリコン膜2をエッチングし
てフィールド酸化膜となる酸化シリコン膜9が完成する
Next, as shown in FIG. 4C, the silicon nitride films 3 and 11 and the silicon oxide film 2 are etched to complete a silicon oxide film 9 that will become a field oxide film.

【0009】[0009]

【発明が解決しようとする課題】従来の選択酸化法によ
る素子分離領域の形成方法では、選択酸化を行なう際に
縦方向と同じ厚さだけ横方向にも酸化してしまう。横方
向への酸化の進行を充分に抑えることができないので、
素子の有効面積が減ってしまうという問題があった。
In the conventional selective oxidation method for forming element isolation regions, when performing selective oxidation, the same thickness is oxidized in the horizontal direction as in the vertical direction. Since the progress of oxidation in the lateral direction cannot be sufficiently suppressed,
There was a problem that the effective area of the element was reduced.

【0010】0010

【課題を解決するための手段】本発明の半導体装置の製
造方法は、半導体基板上に耐酸化性膜を選択的に形成す
る工程と、前記耐酸化性膜の開口部の前記半導体基板内
に不純物を導入する工程と、前記開口部に熱酸化膜を形
成する工程とを含むものである。
[Means for Solving the Problems] A method for manufacturing a semiconductor device of the present invention includes a step of selectively forming an oxidation-resistant film on a semiconductor substrate, and a step of forming an oxidation-resistant film in an opening of the oxidation-resistant film in the semiconductor substrate. The method includes a step of introducing impurities and a step of forming a thermal oxide film in the opening.

【0011】[0011]

【実施例】本発明の第1の実施例について、図1(a)
〜(c)および図2(a)〜(c)を参照して説明する
[Example] Regarding the first example of the present invention, FIG. 1(a)
-(c) and FIGS. 2(a)-(c).

【0012】はじめに図1(a)に示すように、シリコ
ン基板1に厚さ500Aの酸化シリコン膜2を形成した
のち、減圧CVD法により厚さ1000Aの窒化シリコ
ン膜3を形成する。その上にパターニングしたレジスト
4をマスクとして窒化シリコン膜3および酸化シリコン
膜2をエッチングする。
First, as shown in FIG. 1A, a silicon oxide film 2 with a thickness of 500 Å is formed on a silicon substrate 1, and then a silicon nitride film 3 with a thickness of 1000 Å is formed by low pressure CVD. Using the resist 4 patterned thereon as a mask, the silicon nitride film 3 and the silicon oxide film 2 are etched.

【0013】つぎに図1(b)に示すように、レジスト
4をマスクとして異方性エッチングして、シリコン基板
1に凹部5を形成する。
Next, as shown in FIG. 1B, anisotropic etching is performed using the resist 4 as a mask to form a recess 5 in the silicon substrate 1.

【0014】つぎに図1(c)に示すように、レジスト
4を除去したのち凹部5に厚さ500Aの酸化シリコン
膜7を形成してから減圧CVD法により全面に厚さ50
0Aの窒化シリコン膜を形成する。つぎに異方性エッチ
ングによりエッチバックして凹部5の側面に窒化シリコ
ン膜6を形成する。このとき凹部5の底面部の酸化シリ
コン膜7も同時にエッチングされる。
Next, as shown in FIG. 1(c), after removing the resist 4, a silicon oxide film 7 with a thickness of 500 Å is formed in the recess 5, and then a silicon oxide film 7 with a thickness of 500 Å is deposited on the entire surface by low pressure CVD.
A silicon nitride film of 0A is formed. Next, silicon nitride film 6 is formed on the side surface of recess 5 by etching back by anisotropic etching. At this time, the silicon oxide film 7 on the bottom surface of the recess 5 is also etched at the same time.

【0015】つぎに図2(a)に示すように、例えば燐
を拡散して高濃度N型不純物拡散層8を形成する。
Next, as shown in FIG. 2A, a high concentration N-type impurity diffusion layer 8 is formed by diffusing, for example, phosphorus.

【0016】つぎに図2(b)に示すように、窒化シリ
コン膜3,6をマスクとしてLOCOS選択酸化法によ
りフィールド酸化膜となる酸化シリコン膜9を形成する
Next, as shown in FIG. 2B, a silicon oxide film 9, which will become a field oxide film, is formed by LOCOS selective oxidation using the silicon nitride films 3 and 6 as masks.

【0017】つぎに図2(c)に示すように、窒化シリ
コン膜3,6および酸化シリコン膜2をエッチングして
、フィールド酸化膜となる酸化シリコン膜9が完成する
Next, as shown in FIG. 2C, the silicon nitride films 3 and 6 and the silicon oxide film 2 are etched to complete a silicon oxide film 9 that will become a field oxide film.

【0018】ここで拡散条件および酸化条件について説
明する。
The diffusion conditions and oxidation conditions will now be explained.

【0019】シリコン基板1内に形成する不純物拡散層
8の不純物濃度は少なくとも1×1018cm−3、で
きれば1×1019cm−3以上の濃度にするのが好ま
しい。1×1020cm−3の不純物拡散層8は、不純
物を導入していないシリコン基板に比べて酸化速度が2
.5倍以上になることを発明者は確認した。
The impurity concentration of the impurity diffusion layer 8 formed in the silicon substrate 1 is preferably at least 1.times.10.sup.18 cm.sup.-3, preferably 1.times.10.sup.19 cm.sup.-3 or more. The impurity diffusion layer 8 of 1×10 20 cm −3 has an oxidation rate of 2 compared to a silicon substrate into which no impurity is introduced.
.. The inventor has confirmed that the amount increases by more than five times.

【0020】本実施例では900℃の燐雰囲気で50分
間熱処理して1×1020cm−3の不純物濃度を得た
。つづいて5気圧で900℃、30分の加圧酸化を行な
って厚さ1μmの酸化シリコン膜を形成した。このとき
不純物を導入していない横方向の酸化膜は約4000A
に抑えることができた。
In this example, heat treatment was performed in a phosphorus atmosphere at 900° C. for 50 minutes to obtain an impurity concentration of 1×10 20 cm −3 . Subsequently, pressure oxidation was performed at 900° C. for 30 minutes at 5 atmospheres to form a silicon oxide film with a thickness of 1 μm. At this time, the horizontal oxide film without introducing impurities is approximately 4000A.
I was able to keep it down to

【0021】つぎに本発明の第2の実施例について説明
する。
Next, a second embodiment of the present invention will be explained.

【0022】本実施例では不純物拡散層8の形成を熱拡
散の代りにイオン注入によって行なう。ただし図1(b
)の断面構造になったときに、レジスト4をマスクとし
てイオン注入を行なう。
In this embodiment, the impurity diffusion layer 8 is formed by ion implantation instead of thermal diffusion. However, Figure 1 (b
), ion implantation is performed using the resist 4 as a mask.

【0023】ここでイオン注入条件について説明する。The ion implantation conditions will now be explained.

【0024】例えば不純物として燐を用いると、1×1
019cm−3以上の濃度を得るために加速エネルギー
200keV、注入量(ドース)1×1016cm−2
イオン注入する。表面付近の不純物濃度を上げるために
加速エネルギー50keV、注入量(ドース)1×10
16cm−2追加イオン注入するのが好ましい。
For example, when phosphorus is used as an impurity, 1×1
To obtain a concentration of 019 cm-3 or more, acceleration energy was 200 keV and implantation dose was 1 x 1016 cm-2.
Implant ions. To increase the impurity concentration near the surface, the acceleration energy was 50 keV and the implantation amount (dose) was 1×10
Preferably, an additional 16 cm −2 ion implantation is performed.

【0025】イオン注入を用いることにより不純物拡散
層8は熱拡散に比べて横方向拡がりが小さい。そのため
横方向への酸化膜をさらに小さく抑えることができる。
By using ion implantation, the impurity diffusion layer 8 has a smaller lateral extent than when thermal diffusion is used. Therefore, the oxide film in the lateral direction can be further suppressed.

【0026】[0026]

【発明の効果】LOCOS選択酸化法により酸化シリコ
ン膜を形成する前に予め高濃度の不純物を導入すること
により、縦方向の酸化速度を大きくした。その結果相対
的に横方向への酸化を抑えることができ、素子の有効面
積の減少を抑えることができた。
[Effects of the Invention] The oxidation rate in the vertical direction is increased by introducing high concentration impurities in advance before forming a silicon oxide film using the LOCOS selective oxidation method. As a result, it was possible to relatively suppress oxidation in the lateral direction, thereby suppressing a decrease in the effective area of the device.

【0027】従来は厚さ1μmのフィールド酸化膜を形
成しようとすると、横方向へ片側で約1μm、両側で約
2μm酸化膜が形成されてしまう。
Conventionally, when attempting to form a field oxide film with a thickness of 1 μm, an oxide film of about 1 μm on one side and about 2 μm on both sides is formed laterally.

【0028】一方本発明では片側で約0.4μm、両側
で約0.8μmと横方向への酸化膜の形成を小さくでき
るので、半導体装置の微細化に有効である。
On the other hand, according to the present invention, the formation of the oxide film in the lateral direction can be reduced to about 0.4 μm on one side and about 0.8 μm on both sides, which is effective for miniaturization of semiconductor devices.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】本発明の一実施例の前半工程を示す断面図であ
る。
FIG. 1 is a sectional view showing the first half of an embodiment of the present invention.

【図2】本発明の一実施例の後半工程を示す断面図であ
る。
FIG. 2 is a cross-sectional view showing the latter half of the process in an embodiment of the present invention.

【図3】従来技術による素子分離領域の形成方法の前半
工程を示す断面図である。
FIG. 3 is a cross-sectional view showing the first half of a method for forming an element isolation region according to the prior art.

【図4】従来技術による素子分離領域の形成方法の後半
工程を示す断面図である。
FIG. 4 is a cross-sectional view showing the latter half of a method for forming an element isolation region according to the prior art.

【符号の説明】[Explanation of symbols]

1    シリコン基板 2    酸化シリコン膜 3    窒化シリコン膜 4    レジスト 5    凹部 6    窒化シリコン膜 7    酸化シリコン膜 8    不純物拡散層 9    酸化シリコン膜 1 Silicon substrate 2 Silicon oxide film 3 Silicon nitride film 4 Resist 5 Recessed part 6 Silicon nitride film 7 Silicon oxide film 8 Impurity diffusion layer 9 Silicon oxide film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  半導体基板上に耐酸化性膜を選択的に
形成する工程と、前記耐酸化性膜の開口部の前記半導体
基板内に選択的に不純物を導入する工程と、前記開口部
に熱酸化膜を形成する工程とを含む半導体装置の製造方
法。
1. A step of selectively forming an oxidation-resistant film on a semiconductor substrate, a step of selectively introducing an impurity into the semiconductor substrate at an opening of the oxidation-resistant film, and a step of selectively introducing an impurity into the opening of the oxidation-resistant film. A method for manufacturing a semiconductor device, including a step of forming a thermal oxide film.
【請求項2】  半導体基板上に耐酸化性膜を選択的に
形成する工程と、前記耐酸化性膜の開口部の前記半導体
基板表面をエッチングして凹部を形成する工程と、前記
凹部の前記半導体基板内に選択的に不純物を導入する工
程と、前記凹部に熱酸化膜を形成する工程とを含む半導
体装置の製造方法。
2. A step of selectively forming an oxidation-resistant film on a semiconductor substrate, a step of etching the surface of the semiconductor substrate in an opening of the oxidation-resistant film to form a recess, and A method for manufacturing a semiconductor device, comprising the steps of selectively introducing impurities into a semiconductor substrate, and forming a thermal oxide film in the recess.
【請求項3】  半導体基板上に耐酸化性膜を選択的に
形成する工程と、前記耐酸化性膜の開口部の前記半導体
基板表面をエッチングして凹部を形成する工程と、前記
凹部の側面に耐酸化性膜からなる側壁を形成する工程と
、前記凹部の前記半導体基板内に選択的に不純物を導入
する工程と、前記凹部に熱酸化膜を形成する工程とを含
む半導体装置の製造方法。
3. A step of selectively forming an oxidation-resistant film on a semiconductor substrate, a step of etching a surface of the semiconductor substrate at an opening of the oxidation-resistant film to form a recess, and a step of forming a recess on a side surface of the recess. A method for manufacturing a semiconductor device, comprising the steps of: forming a sidewall made of an oxidation-resistant film on the semiconductor substrate; selectively introducing impurities into the semiconductor substrate in the recess; and forming a thermal oxide film in the recess. .
JP7346491A 1991-04-08 1991-04-08 Manufacture of semiconductor device Pending JPH04309226A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7346491A JPH04309226A (en) 1991-04-08 1991-04-08 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7346491A JPH04309226A (en) 1991-04-08 1991-04-08 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04309226A true JPH04309226A (en) 1992-10-30

Family

ID=13519009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7346491A Pending JPH04309226A (en) 1991-04-08 1991-04-08 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04309226A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330413A (en) * 1995-05-31 1996-12-13 Nec Corp Manufacture of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08330413A (en) * 1995-05-31 1996-12-13 Nec Corp Manufacture of semiconductor device

Similar Documents

Publication Publication Date Title
JPH05102427A (en) Manufacture of semiconductor memory element
JPH05160355A (en) Manufacture of cmos with twin well
JPH0324727A (en) Manufacture of semiconductor device
JPS6252950B2 (en)
JPH04309226A (en) Manufacture of semiconductor device
JPH0268930A (en) Manufacture of semiconductor device
JP2788889B2 (en) Separation forming method in semiconductor device
JPH01295438A (en) Manufacture of semiconductor device
JPH0316150A (en) Manufacture of semiconductor element
JP3344162B2 (en) Method for manufacturing field effect semiconductor device
JPS59177941A (en) Manufacture of element isolation region
JPS62248236A (en) Manufacture of semiconductor device
JPH01253932A (en) Manufacture of semiconductor device
JPH04267336A (en) Manufacture of semiconductor device
JPH02102558A (en) Manufacture of semiconductor element
JPS62131538A (en) Manufacture of semiconductor device
JPH0152900B2 (en)
JPS63240044A (en) Manufacture of semiconductor device
JPH02307227A (en) Manufacture of semiconductor device
JPH0233932A (en) Manufacture of semiconductor device
JPH0227813B2 (en) HANDOTAISOCHINOSEIZOHOHO
JPS60130173A (en) Manufacture of semiconductor device
JPH053210A (en) Manufacture of semiconductor device
JPS6288335A (en) Element isolating method in semiconductor device
JPS643349B2 (en)