JPS62186580A - Manufacture of semiconductor laser device - Google Patents

Manufacture of semiconductor laser device

Info

Publication number
JPS62186580A
JPS62186580A JP2695886A JP2695886A JPS62186580A JP S62186580 A JPS62186580 A JP S62186580A JP 2695886 A JP2695886 A JP 2695886A JP 2695886 A JP2695886 A JP 2695886A JP S62186580 A JPS62186580 A JP S62186580A
Authority
JP
Japan
Prior art keywords
layer
substrate
blocking layer
type
ridge
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2695886A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Masanori Hirose
広瀬 正則
Takashi Sugino
隆 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2695886A priority Critical patent/JPS62186580A/en
Publication of JPS62186580A publication Critical patent/JPS62186580A/en
Pending legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To prevent the annulment of an internal stripe structure, by forming a groove right above a current blocking layer of multi-layer structure formed on a substrate possessing a ridge, and forming a double hetero-structure in the blocking layer containing the groove. CONSTITUTION:A ridge is formed on a GaAs substrate 1, and a current blocking layer 10 is formed thereon by epitaxial growth, wherein a plurality of GaAs layers having a conduction type inverse to the substrate and barrier layers are alternately formed. Using a photo mask, a central portion of the ridge in the blocking layer 10 is eliminated in the form of a stripe, which is used as a mask for etching to expose a part of the substrate 1. After that, a double hetero-structure is grown on the substrate surface, followed by the formations of a clad layer 4, an active layer 5, a clad layer 6 and a cap layer 7. In this manner, the annulment of an internal stripe structure can be prevented, even if the thickness and the carrier density of the current blocking layer disperse irregularly. Consequently, a laser device which operates with a small current and oscillates in a fundamental mode can be manufactured with high reproducibility.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種電子機器、光学機器の光源として、近年
急速に用途が拡大し、需要の高まっている半導体レーザ
装置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor laser device, which has been rapidly used as a light source for various electronic devices and optical devices and is in increasing demand in recent years. be.

(従来の技術) 電子機器、光学機器のコヒーレント光源として、半導体
レーザに要求される重要な性能には、低電流動作、基本
横モード発振があげられる。これらの性能を実現するた
めには、レーザ光が伝播する活性領域付近にレーザ素子
中を流れる電流を集中するようにその拡がりを抑制し、
かつ閉じ込める必要がある。このような構造を有する半
導体レーザは、通常ストライプ型半導体レーザと呼ばれ
ておシ、代表的なストライプ型半導体レーザの1つに内
部ストライゾ型レーザが挙げらゎる。
(Prior Art) Important performances required of semiconductor lasers as coherent light sources for electronic and optical equipment include low current operation and fundamental transverse mode oscillation. In order to achieve these performances, the current flowing through the laser element is concentrated near the active region where the laser light propagates, suppressing its spread.
and needs to be confined. A semiconductor laser having such a structure is usually called a stripe type semiconductor laser, and one typical stripe type semiconductor laser is an internal striso type laser.

v下、図面を参照しながら、上述したような従来の内部
ストライプ型レーザの一例として、BTR8(Buri
ed Twjn−Ridge 5ubstrate 5
tructure )型レーザについて説明する。
Below, with reference to the drawings, BTR8 (Buri
ed Twjn-Ridge 5ubstrate 5
The structure type laser will be explained.

第4図はBTR8型レーザの構成を示しだもので、1は
p型GaAs基板、2はn型GaAs電流阻止層、4は
p型Ga1 yAtxAsクラッド層、5はG a 1
−yAlyA B活性層(0≦y<x )、 6 H,
n型Ga1−XAtXAsクラッド層、7はn型G a
、A sキャップ層、8はp側オーミック電極、9はn
側オーミック電極である。
Figure 4 shows the configuration of the BTR8 type laser, where 1 is a p-type GaAs substrate, 2 is an n-type GaAs current blocking layer, 4 is a p-type Ga1 yAtxAs cladding layer, and 5 is a Ga1
-yAlyA B active layer (0≦y<x), 6H,
n-type Ga1-XAtXAs cladding layer, 7 is n-type Ga
, As cap layer, 8 is p-side ohmic electrode, 9 is n
It is a side ohmic electrode.

以上のように構成されたBTR8型レーザについて、以
下その製造方法および動作を簡単に説明する。
The manufacturing method and operation of the BTR8 type laser configured as described above will be briefly described below.

従来ノBTR8型レーザは、2回の液相エビタギシャル
(LPE )法による結晶成長工程で形成される。
The conventional BTR8 laser is formed using two liquid phase epitaxy (LPE) crystal growth steps.

まず、p型GaAs基板1上にn型GaAs電流阻1F
層2を形成するのが第1回目の結晶成長工程であり、次
に7オトリソグラフイにより内部ストライプ幅Wの7字
溝を形成する。そして、その上に活性層5を含む二重ヘ
テロ構造を形成し、p側、n側にオーミック電極8,9
を形成して作製される。そ[,7て、p側電極8に(ト
)、n側電極9に(−)の電圧をかけると、n型GaA
s電流阻止層2.、Thp型GaAムSクシノド層4の
p−n接合部分だけが、逆り向に電圧を印加されること
となり、注入電流は内部ストライプ幅Wからのみ流れ、
その直トの活性M5に電流が集中することとt【す、そ
の結果、低電流動作、基本横モード発振が実現される。
First, an n-type GaAs current block 1F is placed on a p-type GaAs substrate 1.
The first crystal growth step is to form layer 2, and then 7-shaped grooves with internal stripe width W are formed by 7-otolithography. Then, a double heterostructure including an active layer 5 is formed thereon, and ohmic electrodes 8 and 9 are formed on the p side and the n side.
It is made by forming. Then, when voltage (g) is applied to the p-side electrode 8 and voltage (-) is applied to the n-side electrode 9, n-type GaA
s Current blocking layer 2. , only the p-n junction portion of the Thp type GaA mu S succinode layer 4 is applied with a voltage in the opposite direction, and the injected current flows only from the internal stripe width W.
The current concentrates directly on the active M5, and as a result, low current operation and fundamental transverse mode oscillation are realized.

(発明が解決しようとする問題点) しかしながら、上記の内部ストライプ型構造では、n型
G aA s電流阻止層2の層厚やギヤリア濃度が、1
個のレーザ素子中でばらついていたり、ウェハ面内でば
らつきがあると、活性層5からの発光により、n型Ga
AT4電流阻正層2中に生成された電子−正孔対中の正
孔の拡散距離の方が、n型G a As電流阻止層2中
の一部の層厚より大きくなり、n型GaAs電流阻止層
2のp型基板1との境胃付近に蓄積され、その結果、内
部ストライプ構造を形成1.ていた逆方向のp−n接合
による障壁が失効し、内部ストライプ構造が失われる。
(Problems to be Solved by the Invention) However, in the above internal stripe structure, the layer thickness and gearia concentration of the n-type GaAs current blocking layer 2 are 1
If there are variations in the individual laser elements or variations within the wafer surface, the n-type Ga
The diffusion distance of holes in the electron-hole pairs generated in the AT4 current blocking layer 2 is larger than the thickness of a part of the n-type GaAs current blocking layer 2, and the n-type GaAs The current blocking layer 2 is accumulated near the interface with the p-type substrate 1, and as a result, an internal stripe structure is formed.1. The barrier created by the p-n junction in the opposite direction, which had been maintained, is no longer active, and the internal stripe structure is lost.

それゆえに、同一の光出力を得るのに必要な動作霜流値
が増大し、また、実質的な電流ストライプ幅の増加にょ
シ活性領域での発光部分が増加1〜、多モード発振する
という問題が生ずる。この現象は、電流阻止層が単層で
あること、2回の結晶成長をともに液相上1ぞタギシャ
ル法により行なっていることの相乗効果によると考えら
れる。
Therefore, the operating frost flow value required to obtain the same light output increases, and the effective current stripe width also increases, resulting in an increase in the light emitting area in the active region, resulting in the problem of multimode oscillation. occurs. This phenomenon is considered to be due to the synergistic effect of the fact that the current blocking layer is a single layer and that the two crystal growths are both carried out in the liquid phase by the taggital method.

本発明は、上記問題点に鑑み、n型GaAa電流明止層
2の層厚やキャリア濃度がばらついても、n型GaAl
1電流阻止層2中で、活性層5がらの発光により生成さ
れた電子−正孔対中の正孔を電子と有効に再結合させ、
内部ストライゾ構造の失効を防ぎ、低電流動作、基本横
モード発振する半導体レーザ装置を再現性よく作ること
のできる半導体レーザ装置の製造方法を提供するもので
ある。
In view of the above problems, the present invention provides that even if the layer thickness and carrier concentration of the n-type GaAa current blocking layer 2 vary, the n-type GaAl
1. In the current blocking layer 2, holes in electron-hole pairs generated by light emission from the active layer 5 are effectively recombined with electrons,
The present invention provides a method for manufacturing a semiconductor laser device that can prevent the internal striso structure from expiring and can produce a semiconductor laser device that operates at low current and oscillates in a fundamental transverse mode with good reproducibility.

(問題点を解決するだめの手段) 上記問題点を解決するために、本発明の半導体レーザ装
置の製造方法は、まず、リッジを有する導電性基板上に
、前記基板とは逆の導電型を示しかつ禁止帯幅が他の層
よりも小さい層を少なくとも1層含む3層以上からなる
第1の多層薄膜をエピタキシャル法により形成し、次に
、前記第1の多層薄膜のりツノ直上部分に、その表面か
ら導電性基板に達する溝を形成し、その溝を含む第1の
多層薄膜上に、活性層を含む二重ヘテロ構造を有する第
2の多層薄膜を液相エピタキシャル法により形成する工
程を採るものである。
(Means for Solving the Problem) In order to solve the above problem, the method for manufacturing a semiconductor laser device of the present invention first includes forming a conductive type opposite to that of the substrate on a conductive substrate having a ridge. A first multilayer thin film consisting of three or more layers including at least one layer with a forbidden band width smaller than other layers is formed by an epitaxial method, and then, directly above the horn of the first multilayer thin film, A step of forming a groove reaching the conductive substrate from the surface thereof, and forming a second multilayer thin film having a double heterostructure including an active layer on the first multilayer thin film including the groove by liquid phase epitaxial method. It is something to be taken.

(作 用) この構成により、低電流動作、基本横モード発振する内
部ストライプ構造を持つ半導体レーザ装置を歩留り良く
製造することができる。
(Function) With this configuration, a semiconductor laser device having an internal stripe structure that operates at low current and oscillates in a fundamental transverse mode can be manufactured with high yield.

(実施例) 以下、本発明の一実施例について、図面を参照しながら
説明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例の半導体レーザ装置の断面
を示すものである。第1図において、1はp型GaAa
基板、10は多層薄膜からなる電流阻止層、4はp型C
aAt1+クラッド層、5はGaAtAs活性層、6は
n型GaAtAsクラッド層、7はn型G aA sキ
ャップ層、8はp側オーミック電極、9はn側オーミッ
ク電極である。
FIG. 1 shows a cross section of a semiconductor laser device according to an embodiment of the present invention. In Figure 1, 1 is p-type GaAa
A substrate, 10 a current blocking layer made of a multilayer thin film, 4 a p-type C
5 is a GaAtAs active layer, 6 is an n-type GaAtAs cladding layer, 7 is an n-type GaAs cap layer, 8 is a p-side ohmic electrode, and 9 is an n-side ohmic electrode.

第2図は、本発明に係る半導体レーザの作製過程を示す
図、1はp型GaAs基板、1oは多層の電流阻止層、
3はフォトレジスト膜である。第3図は、多層の電流阻
止層1oの一例の断面を示したものであり、1はp型G
aAs基板、2はn型GaAs層、11はGaAtAs
バリア層、4はp型層 aAtAsクラッド層である。
FIG. 2 is a diagram showing the manufacturing process of a semiconductor laser according to the present invention, in which 1 is a p-type GaAs substrate, 1o is a multilayer current blocking layer,
3 is a photoresist film. FIG. 3 shows a cross section of an example of a multilayer current blocking layer 1o, where 1 is a p-type G
aAs substrate, 2 is n-type GaAs layer, 11 is GaAtAs
The barrier layer 4 is a p-type layer aAtAs cladding layer.

次に、具体的な製造方法について説明する。まず、ここ
では、基板としてp型QaAs基板を用いる。
Next, a specific manufacturing method will be explained. First, here, a p-type QaAs substrate is used as the substrate.

このp型GaAs基板1(キャリア濃度) 〜1019
cm −3)の(100)面上に<01丁〉方向に平行
に250μmピッチで幅50μmのストライプブをフォ
トレジスト膜により形成し、化学エツチングにょシ、高
さ1.5μmのりッジを形成する。表面を洗浄してフォ
トレジスト膜を取った後、とのりッジの付いたp型Ga
As基板1上に多層の薄膜成長が容易で、層厚制御性の
良い有機金属気相エピタキシャル成長法(以下MOCV
D法と呼ぶ)にょシ、第3図に示すように厚さ0.3μ
mのn型GaAs層2(キャリア濃度〜5 X 101
8cm ’)を3層、厚さ005μmのGaAtAs2
97層11を2層交互にエピタキシャル成長させ、計5
層で膜厚1μmの多層の電流阻止層10を形成する。こ
のときの結晶成長条件の一例を述べると、成長温度75
0℃、成長速度3μm/時、総ガス流量5t/分、V族
元素の■族元素に対する供給モル比V/III比20で
ある。
This p-type GaAs substrate 1 (carrier concentration) ~1019
On the (100) plane of cm -3), stripes with a width of 50 μm were formed using a photoresist film at a pitch of 250 μm in parallel to the <01> direction, and by chemical etching, a ridge with a height of 1.5 μm was formed. do. After cleaning the surface and removing the photoresist film, remove the p-type Ga with the ridge.
The metal organic vapor phase epitaxial growth method (hereinafter referred to as MOCV) allows easy growth of multilayer thin films on the As substrate 1 and has good layer thickness control.
(referred to as the D method), the thickness is 0.3μ as shown in Figure 3.
m n-type GaAs layer 2 (carrier concentration ~5 x 101
GaAtAs2 with a thickness of 005 μm and 3 layers of
Two layers of 97 layers 11 were epitaxially grown alternately, resulting in a total of 5 layers.
A multilayer current blocking layer 10 having a thickness of 1 μm is formed. An example of the crystal growth conditions at this time is that the growth temperature is 75
The temperature was 0° C., the growth rate was 3 μm/hour, the total gas flow rate was 5 t/min, and the supply molar ratio of group V elements to group II elements was V/III ratio of 20.

さらに第2図に示すように、フォトレジスト膜3を多層
の電流阻止層10上に塗布し、リッジ中央部の一部を幅
5μmのストライプ状に除去した後、それをマスクとし
て化学エツチングを行なう。エツチングは、多層の電流
阻止層10の一部が、第1図に示すように溝の深さ方向
に完全に除去されるまで、すなわちp型GaAs基板1
が露出するまで行なう。ここでは溝の深さは1.2μm
とした。この後、フォトレジスト膜3を除去し、基板表
面を清浄化したのち、液相エピタキシャル法で二重ヘテ
ロ構造の成長を行なう。成長温度850℃、過飽和度7
℃、0.5℃/分の冷却速度の成長条件で液相エピタキ
シャル成長を行ない、以下に述べる層を順次成長させる
。即ち第1図に示すように多層の電流阻止層10が形成
されたp型GaAs基板1上に、p型層 a 1+xA
tzA sクラッド層4を平坦部で0.3 μm、G 
a 1−ア竹A s活性層5(0≦y〈x)を0.08
μm、n型Ga 1−xAtzAsクラッド層6を2μ
m、n型層 aAsキャップ層7を1.5μm成長させ
た。p型GaAs基板1にAuZnによりp側側御−ミ
ック電極9、n型GaAsキャップ層7上にAuGeN
iによシn側オーミック電極8を形成する。
Furthermore, as shown in FIG. 2, a photoresist film 3 is coated on the multilayer current blocking layer 10, a part of the central part of the ridge is removed in a stripe shape with a width of 5 μm, and then chemical etching is performed using the photoresist film 3 as a mask. . The etching is continued until a part of the multilayer current blocking layer 10 is completely removed in the depth direction of the groove as shown in FIG.
Continue until exposed. Here the depth of the groove is 1.2μm
And so. Thereafter, the photoresist film 3 is removed and the substrate surface is cleaned, after which a double heterostructure is grown by a liquid phase epitaxial method. Growth temperature 850℃, supersaturation degree 7
Liquid phase epitaxial growth is performed under the growth conditions of 0.5° C. and a cooling rate of 0.5° C./min, and the layers described below are sequentially grown. That is, as shown in FIG. 1, on a p-type GaAs substrate 1 on which a multilayer current blocking layer 10 is formed, a p-type layer a 1+xA
tzA s cladding layer 4 with a thickness of 0.3 μm on the flat part, G
a 1-A bamboo A s active layer 5 (0≦y<x) is 0.08
μm, n-type Ga 1-xAtzAs cladding layer 6 is 2 μm
m, n type layer AAs cap layer 7 was grown to a thickness of 1.5 μm. The p-side control electrode 9 is made of AuZn on the p-type GaAs substrate 1, and the AuGeN is made on the n-type GaAs cap layer 7.
An n-side ohmic electrode 8 is formed on the i.

以上のようにして作製した半導体レーザをマウントし電
流を流すと、第1図で示すWのストライプ幅で電流が狭
さくされる。ウェハ内での代表的なレーザ特性の一例を
しきい電流値で表わすと、W=2μmで35 mAの低
しきい電流値が得られ、発振は安定な基本横モード発振
であった。従来の単層の電流阻止層でのBTRSレーザ
と比較すると、本発明方法で作製されたもので、30素
子でのしきい電流値の分散が、従来のものの約2/3と
なり、少数キャリアの実効的拡散長を短かくし、電流阻
止効果が有効に働いていることを示している。
When the semiconductor laser manufactured as described above is mounted and a current is applied, the current is narrowed by the stripe width of W shown in FIG. Expressing an example of typical laser characteristics within a wafer in terms of a threshold current value, a low threshold current value of 35 mA was obtained at W=2 μm, and the oscillation was stable fundamental transverse mode oscillation. Compared to a conventional BTRS laser with a single-layer current blocking layer, the dispersion of the threshold current value for 30 elements in the BTRS laser manufactured using the method of the present invention is approximately 2/3 that of the conventional one, and the number of minority carriers is reduced. This shows that the effective diffusion length is shortened and the current blocking effect is working effectively.

なお、本実施例では、GaAs系、GaAtAs系半導
体レーザについて述べだが、InP系や他の多元混晶系
を含む化合物半導体を材料とする半導体レーザ装置につ
いても同様に本発明を適用できる。さらに多層の電流阻
止層のうち、基板とは逆の導電型を示す1磨を除いて、
ノンドープ層、p型層、n型層のいずれを用いても良く
、GaAs 、 AtGaAsどちらを用いても良い。
In this embodiment, GaAs-based and GaAtAs-based semiconductor lasers are described, but the present invention can be similarly applied to semiconductor laser devices made of compound semiconductors including InP-based and other multi-component mixed crystal systems. Furthermore, among the multilayer current blocking layers, except for one layer, which has a conductivity type opposite to that of the substrate,
Any of a non-doped layer, a p-type layer, and an n-type layer may be used, and either GaAs or AtGaAs may be used.

また、エピタキシャル成長法として、MOCVD 法の
外にMBE (molecular beam epi
taxy )法を用いても同様の結果が得られる。
In addition to MOCVD, MBE (molecular beam epitaxial growth) is also used as an epitaxial growth method.
Similar results can be obtained using the taxi method.

(発明の効果) 以上説明したように、本発明によれば、内部ストライプ
構造を容易に再現性良く形成することが可能で、その結
果、低しきい電流値で基本横モード発振する高性能の半
導体レーザ装置を製造することができ、その実用的効果
は著しい。
(Effects of the Invention) As explained above, according to the present invention, it is possible to easily form an internal stripe structure with good reproducibility, and as a result, it is possible to form a high-performance structure that oscillates in the fundamental transverse mode with a low threshold current value. A semiconductor laser device can be manufactured, and its practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、本発明の一実施例の半導体レーザ装置の断面
図、第2図は、同装置の作製過程を示す図、第3図は、
多層の電流阻止層の一例の断面図、第4図は、従来の半
導体レーザ装置の断面図である。 1・・・p型QaAs基板、2・・・n型GaAs層、
3・・・フォトレジスト膜、4・・・p型GaAtAs
クラッド層、5− GaAtAs活性層、6− n型層
aAtAsクシッド層、7・・・n型GaAsキャップ
層、8・・・p側オーミック電極、9・・・n側オーミ
ック電極、10・・・多層の電流阻止層、11・・・G
aAtAsバリア層、W・・・内部ストライプ幅。 特許出願人 松下電器産業株式会社 第1図 第2図 3−−−フォトレジスト膜 第3図 第4図 隊 レ−”ン
FIG. 1 is a cross-sectional view of a semiconductor laser device according to an embodiment of the present invention, FIG. 2 is a diagram showing the manufacturing process of the same device, and FIG.
FIG. 4, which is a cross-sectional view of an example of a multilayer current blocking layer, is a cross-sectional view of a conventional semiconductor laser device. 1...p-type QaAs substrate, 2...n-type GaAs layer,
3... Photoresist film, 4... p-type GaAtAs
cladding layer, 5- GaAtAs active layer, 6- n-type layer aAtAs clad layer, 7- n-type GaAs cap layer, 8... p-side ohmic electrode, 9... n-side ohmic electrode, 10... Multilayer current blocking layer, 11...G
aAtAs barrier layer, W...internal stripe width. Patent applicant: Matsushita Electric Industrial Co., Ltd. Figure 1 Figure 2 Figure 3--Photoresist film Figure 3 Figure 4 Team lane

Claims (3)

【特許請求の範囲】[Claims] (1)リッジを有する導電性基板上に、前記基板とは逆
の導電型を示しかつ他の層よりも禁止帯幅が小さい層を
少なくとも1層含む3層以上からなる第1の多層薄膜を
エピタキシャル法により形成する工程と、前記第1の多
層薄膜の、前記リッジ中央部直上部分に、その表面から
前記基板に達する深さの溝を形成する工程と、前記溝を
含む第1の多層薄膜上に、活性層を含む二重ヘテロ構造
を有する第2の多層薄膜を液相エピタキシャル成長法に
より形成する工程とを有することを特徴とする半導体レ
ーザ装置の製造方法。
(1) A first multilayer thin film consisting of three or more layers, including at least one layer having a conductivity type opposite to that of the substrate and having a smaller forbidden band width than other layers, is formed on a conductive substrate having a ridge. a step of forming by an epitaxial method, a step of forming a groove with a depth reaching the substrate from the surface of the first multilayer thin film directly above the central portion of the ridge, and a first multilayer thin film including the groove. A method for manufacturing a semiconductor laser device, comprising the step of forming a second multilayer thin film having a double heterostructure including an active layer by liquid phase epitaxial growth.
(2)第1の多層薄膜を形成するエピタキシャル法とし
て、MOCVD法を用いることを特徴とする特許請求の
範囲第(1)項記載の半導体レーザ装置の製造方法。
(2) The method for manufacturing a semiconductor laser device according to claim (1), wherein MOCVD is used as the epitaxial method for forming the first multilayer thin film.
(3)第1の多層薄膜を形成するエピタキシャル法とし
て、MBE法を用いることを特徴とする特許請求の範囲
第(1)項記載の半導体レーザ装置の製造方法。
(3) A method for manufacturing a semiconductor laser device according to claim (1), characterized in that an MBE method is used as the epitaxial method for forming the first multilayer thin film.
JP2695886A 1986-02-12 1986-02-12 Manufacture of semiconductor laser device Pending JPS62186580A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2695886A JPS62186580A (en) 1986-02-12 1986-02-12 Manufacture of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2695886A JPS62186580A (en) 1986-02-12 1986-02-12 Manufacture of semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS62186580A true JPS62186580A (en) 1987-08-14

Family

ID=12207665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2695886A Pending JPS62186580A (en) 1986-02-12 1986-02-12 Manufacture of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS62186580A (en)

Similar Documents

Publication Publication Date Title
EP0103415A2 (en) Light-emitting semiconductor devices and methods of producing the same
JP3206555B2 (en) Gallium nitride based semiconductor light emitting device and method of manufacturing the same
US4948753A (en) Method of producing stripe-structure semiconductor laser
JP3078004B2 (en) Manufacturing method of semiconductor laser
JPS62186580A (en) Manufacture of semiconductor laser device
JPH11145553A (en) Semiconductor laser device and manufacture thereof
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JPH07114301B2 (en) Semiconductor laser device
JPS6276691A (en) Manufacture of semiconductor laser device
KR940011275B1 (en) Laser diode and manufacturing method the same
JPS62196883A (en) Semiconductor laser
JPS6252984A (en) Self-aligning current constriction type semiconductor light emitting element
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS62186582A (en) Semiconductor laser device
KR970009672B1 (en) Method of manufacture for semiconductor laserdiode
JPS6167285A (en) Semiconductor laser device
JPS62186581A (en) Semiconductor laser device
JPS6174383A (en) Semiconductor laser array device and manufacture thereof
JPS60251687A (en) Manufacture of semiconductor laser device
JPS60258991A (en) Semiconductor laser device
JPS62196882A (en) Semiconductor laser
JPH067621B2 (en) Semiconductor laser device and method of manufacturing the same
JPS60235485A (en) Manufacture of semiconductor laser device
JPS63104494A (en) Semiconductor laser device
JPS60258992A (en) Semiconductor laser device