JPH07114301B2 - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH07114301B2
JPH07114301B2 JP61026957A JP2695786A JPH07114301B2 JP H07114301 B2 JPH07114301 B2 JP H07114301B2 JP 61026957 A JP61026957 A JP 61026957A JP 2695786 A JP2695786 A JP 2695786A JP H07114301 B2 JPH07114301 B2 JP H07114301B2
Authority
JP
Japan
Prior art keywords
layer
type
current blocking
type gaas
semiconductor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61026957A
Other languages
Japanese (ja)
Other versions
JPS62185389A (en
Inventor
昭男 ▲吉▼川
正則 広瀬
隆 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP61026957A priority Critical patent/JPH07114301B2/en
Publication of JPS62185389A publication Critical patent/JPS62185389A/en
Publication of JPH07114301B2 publication Critical patent/JPH07114301B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種電子機器、光学機器の光源として、近年
急速に用途が拡大し、需要の高まっている半導体レーザ
装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a semiconductor laser device, which has been rapidly used in recent years as a light source for various electronic devices and optical devices and whose demand is increasing.

(従来の技術) 電子機器、光学機器のコヒーレント光源として、半導体
レーザに要求される重要な性能には、低電流動作、基本
横モード発振があげられる。これらの性能を実現するた
めには、レーザ光が伝播する活性領域付近にレーザ素子
中を流れる電流を集中するようにその拡がりを抑制し、
かつ閉じ込める必要がる。このような構造を有する半導
体レーザは、通常ストライプ型半導体レーザと呼ばれて
おり、代表的なストライプ型半導体レーザの1つに内部
ストライプ型レーザが挙げられる。
(Prior Art) As a coherent light source for electronic devices and optical devices, important performances required for semiconductor lasers include low current operation and fundamental transverse mode oscillation. In order to realize these performances, the spread of the laser light is suppressed so that the current flowing in the laser element is concentrated near the active region where the laser light propagates,
And it needs to be confined. A semiconductor laser having such a structure is usually called a stripe type semiconductor laser, and an internal stripe type laser is one of typical stripe type semiconductor lasers.

以下、図面を参照しながら、上述したような従来の内部
ストライプ型レーザの一例として、BTRS(Buried TWin
−Ridge Substrate Structure)型レーザについて説明
する。
Hereinafter, referring to the drawings, as an example of the conventional internal stripe laser as described above, a BTRS (Buried TWin
-Ridge Substrate Structure) type laser will be explained.

第4図は、BTRS型レーザの構成を示したもので、1はp
型GaAs基板、2はn型GaAs電流阻止層、4はp型Ga1-xA
lxAsクラッド層、5はGa1-yAlyAs活性層(0≦y<
x)、6はn型Ga1-xAlxAsクラッド層、7はn型GaAsキ
ャップ層、8はp側オーミック電極。9はn側オーミッ
ク電極である。
Figure 4 shows the structure of the BTRS laser, where 1 is p
Type GaAs substrate, 2 is n type GaAs current blocking layer, 4 is p type Ga 1-x A
l x As clad layer, 5 are Ga 1-y Al y As active layers (0 ≦ y <
x), 6 is an n-type Ga 1-x Al x As cladding layer, 7 is an n-type GaAs cap layer, and 8 is a p-side ohmic electrode. Reference numeral 9 is an n-side ohmic electrode.

以上のように構成されたBTRS型レーザについて、以下そ
の製造方法および動作を簡単に説明する。
The manufacturing method and operation of the BTRS laser configured as described above will be briefly described below.

従来のBTRS型レーザは、2回のLPE法による結晶成長工
程で形成される、まず、p型GaAs基板1上にn型GaAs電
流阻止層2を形成するのが第1回目の結晶成長工程であ
り、次にフォトリソグラフィにより、内部ストライプ幅
wのV字溝を形成する。そして、その上に活性層5を含
む二重ヘテロ構造を形成し、p側n側にそれぞれオーミ
ック電極8,9を形成して作製される。そして、p側電極
8に(+)、n側電極9に(−)の電圧をかけると、n
型GaAs電流阻止層2とp型GaAlAsクラッド層4のp−n
接合部分だけが、逆方向に電圧を印加されることとな
り、注入電流は内部ストライプ幅wからのみ流れ、その
真上の活性層5に電流が集中することとなり、その結
果、低電流動作、基本横モード発振が実現される。
The conventional BTRS laser is formed by two crystal growth steps by the LPE method. First, the n-type GaAs current blocking layer 2 is formed on the p-type GaAs substrate 1 in the first crystal growth step. Then, a V-shaped groove having an internal stripe width w is formed by photolithography. Then, a double heterostructure including the active layer 5 is formed thereon, and ohmic electrodes 8 and 9 are formed on the p-side and the n-side, respectively. When (+) voltage is applied to the p-side electrode 8 and (-) is applied to the n-side electrode 9,
Of the p-type GaAs current blocking layer 2 and the p-type GaAlAs cladding layer 4
A voltage is applied in the opposite direction only to the junction portion, and the injection current flows only from the internal stripe width w, and the current concentrates on the active layer 5 immediately above, resulting in low current operation, basic operation. Transverse mode oscillation is realized.

(発明が解決しようとする問題点) しかしながら、上記の内部ストライプ型構造では、n型
GaAs電流阻止層2の層厚やキャリア濃度が、1個のレー
ザ素子中でばらついていたり、ウェハ面内でばらつきが
あると、活性層5からの発光により、n型GaAs電流阻止
層2中に生成された電子−正孔対中の正孔の拡散距離の
方が、n型GaAs電流阻止層2中の一部の層厚より大きく
なり、n型GaAs電流阻止層2のp型基板1との境界付近
に蓄積され、その結果、内部ストライプ構造を形成して
いた逆方向のp−n接合による障壁が失効し、内部スト
ライプ構造が失われる。それゆえに、同一の光出力を得
るのに必要な動作電流値が増大し、また、実質的な電流
ストライプ幅の増加により活性領域での発光部分が増加
し、多モード発振するという問題が生ずる。
(Problems to be Solved by the Invention) However, in the above internal stripe type structure,
If the layer thickness and carrier concentration of the GaAs current blocking layer 2 vary within one laser element or within the wafer surface, light emission from the active layer 5 causes the GaAs current blocking layer 2 to enter the n-type GaAs current blocking layer 2. The diffusion distance of the holes in the generated electron-hole pairs is larger than the thickness of a part of the n-type GaAs current blocking layer 2, and the n-type GaAs current blocking layer 2 and the p-type substrate 1 are Of the internal stripe structure, and as a result, the barrier due to the reverse pn junction forming the internal stripe structure expires, and the internal stripe structure is lost. Therefore, the operating current value required to obtain the same light output is increased, and the substantial current stripe width is increased, so that the light emitting portion in the active region is increased to cause multimode oscillation.

本発明は、上記問題点に鑑み、n型GaAs電流阻止層2の
層厚やキャリア濃度がばらついても、n型GaAs電流阻止
層2中で、活性層5からの発光により生成された電子−
正孔対中の正孔を電子と有効に再結合させ、内部ストラ
イプ構造の失効を防ぎ、再現性良く、低電流動作、基本
横モード発振する半導体レーザ装置を提供するものであ
る。
In view of the above problems, the present invention provides an electron-generated electron from the active layer 5 in the n-type GaAs current blocking layer 2 even if the layer thickness or carrier concentration of the n-type GaAs current blocking layer 2 varies.
(EN) Provided is a semiconductor laser device capable of effectively recombining holes in a hole pair with electrons to prevent the internal stripe structure from being invalidated, and having good reproducibility, low current operation, and fundamental transverse mode oscillation.

(問題点を解決するための手段) 上記問題点を解決するために、本発明の半導体レーザ装
置は、一導電型の半導体基板と、前記半導体基板上に、
前記半導体基板とは反対導電型を示しかつ他のどの層よ
りも禁止帯幅が小さく0.1μm以上の膜厚を有する層と
正孔を阻止するバリア層とが交互に3層以上積層され、
さらに所定の位置に前記半導体基板に達する溝を有する
多層の電流阻止層と、前記溝を含む前記電流阻止層上に
形成され、活性層を含む二層ヘテロ構造を有する多層薄
膜と、前記半導体基板及び前記多層薄膜上にそれぞれ設
けられた電極とを具備する構成とする。
(Means for Solving the Problems) In order to solve the above problems, a semiconductor laser device of the present invention is a semiconductor substrate of one conductivity type, and on the semiconductor substrate,
A layer having a conductivity type opposite to that of the semiconductor substrate, having a bandgap smaller than that of any other layer and having a film thickness of 0.1 μm or more, and a barrier layer for blocking holes are alternately laminated in three or more layers;
Further, a multilayer current blocking layer having a groove reaching the semiconductor substrate at a predetermined position, a multilayer thin film having a two-layer hetero structure including an active layer formed on the current blocking layer including the groove, and the semiconductor substrate. And an electrode respectively provided on the multilayer thin film.

(作用) この構成により、基板とは逆の導電型を示す層中の少数
キャリアが有効に多数キャリアと再結合するように障壁
が設けられ、実質的に少数キャリアの拡散距離を小さく
して、再現性良く低電流動作、基本横モード発振する内
部ストライプ構造を持つ半導体レーザ装置を実現するこ
とができる。
(Operation) With this configuration, a barrier is provided so that the minority carriers in the layer having a conductivity type opposite to that of the substrate are effectively recombined with the majority carriers, and the diffusion distance of the minority carriers is substantially reduced, It is possible to realize a semiconductor laser device having an internal stripe structure capable of low current operation with good reproducibility and fundamental transverse mode oscillation.

(実施例) 以下、本発明の実施例について、図面を参照しながら説
明する。
(Example) Hereinafter, the Example of this invention is described, referring drawings.

第1図は、本発明の一実施例の半導体レーザ装置の断面
を示したものである。第1図において、1はp型GaAs基
板、10は多層薄膜からなる電流阻止層、4はp型GaAlAs
クラッド層、5はGaAlAs活性層、6はn型GaAlAsクラッ
ド層、7はn型GaAsキャップ層、8はp側オーミック電
極、9はn側オーミック電極である。
FIG. 1 shows a cross section of a semiconductor laser device according to an embodiment of the present invention. In FIG. 1, 1 is a p-type GaAs substrate, 10 is a current blocking layer composed of a multilayer thin film, and 4 is p-type GaAlAs.
The cladding layer, 5 is a GaAlAs active layer, 6 is an n-type GaAlAs cladding layer, 7 is an n-type GaAs cap layer, 8 is a p-side ohmic electrode, and 9 is an n-side ohmic electrode.

第2図は、本発明に係る半導体レーザの作製過程を示す
図で、1はp型GaAs基板、10は多層の電流阻止層、3は
フォトレジスト膜である。第3図は、多層の電流阻止層
10の一例の断面を示したものであり、1はp型GaAs基
板、2はn型GaAs層、11はGaAlAsバリア層、4はp型Ga
AlAsクラッド層である。
FIG. 2 is a diagram showing a manufacturing process of the semiconductor laser according to the present invention, in which 1 is a p-type GaAs substrate, 10 is a multilayer current blocking layer, and 3 is a photoresist film. FIG. 3 shows a multilayer current blocking layer.
10 shows a cross section of an example, 1 is a p-type GaAs substrate, 2 is an n-type GaAs layer, 11 is a GaAlAs barrier layer, and 4 is p-type Ga.
The AlAs clad layer.

次に、具体的な製造方法について説明する。まず、ここ
では、基板としてp型GaAs基板を用いる。このp型GaAs
基板1(キャリア濃度>〜1019cm-3)の(100)面上に
<01>方向に平行に250μmピッチで幅50μmのスト
ライプをフォトレジスト膜により形成し、化学エッチン
グにより、高さ1.5μmのリッジを形成する。表面を洗
浄してフォトレジスト膜を除去した後、このリッジの付
いたp型GaAs基板1上に有機金属気相エピタキシャル成
長法(以下MOCVD法と呼ぶ)により、第3図に示すよう
に厚さ0.3μmのn型GaAs層2(キャリア濃度〜5×10
18cm-3)を3層、厚さ0.05μmのGaAlAsバリア層11を2
層、交互にエピタキシャル成長させ、計5層で膜厚1μ
mの多層の電流阻止層10を形成する。このときの結晶成
長条件の一例を述べると、成長温度750℃、成長速度3
μm/時、総ガス流量5l/分、V族元素のIII族元素に対す
る供給モル比V/III比は20である。
Next, a specific manufacturing method will be described. First, here, a p-type GaAs substrate is used as the substrate. This p-type GaAs
On the (100) plane of the substrate 1 (carrier concentration> ~ 10 19 cm -3 ), stripes of width 50 μm with a pitch of 250 μm are formed parallel to the <01> direction with a photoresist film, and the height is 1.5 μm by chemical etching. To form a ridge. After the surface is washed to remove the photoresist film, a metal-organic vapor phase epitaxial growth method (hereinafter referred to as MOCVD method) is applied to the p-type GaAs substrate 1 having the ridge to a thickness of 0.3 as shown in FIG. μm n-type GaAs layer 2 (carrier concentration ~ 5 x 10
18 cm -3 ), 3 layers, GaAlAs barrier layer 11 with a thickness of 0.05 μm 2
Layers alternately grown epitaxially, total 5 layers, film thickness 1μ
The m current blocking layer 10 is formed. An example of the crystal growth conditions at this time is as follows. The growth temperature is 750 ° C. and the growth rate is 3
μm / hour, total gas flow rate 5 l / min, supply molar ratio V / III ratio of group V element to group III element was 20.

さらに第2図に示すように、フォトレジスト膜3を多層
の電流阻止層10上に塗布し、リッジ中央部の一部を幅5
μmのストライプ状に除去した後、それをマスクとして
化学エッチングを行なう。エッチングは、多層の電流阻
止層10の一部が、第1図に示すように溝の深さ方向に完
全に除去されるまで、すなわちp型GaAs基板1が露出す
るまで行なう。ここでは溝の深さは1.2μmとした。こ
の後、フォトレジスト膜3を除去し、基板表面を清浄化
したのち、液相エピタキシャル法で二重ヘテロ構造の成
長を行なう。成長温度850℃、過飽和度7℃、0.5℃/分
の冷却速度の成長条件で液相エピタキシャル成長を行な
い、以下に述べる層を順次成長させる。即ち、第1図に
示すように多層の電流阻止層10が形成されたp型GaAs基
板1上に、p型Ga1-xAlxAsクラッド層4を平坦部で0.3
μm、Ga1-yAlyAs活性層5(0≦y<x)を0.08μm、
n型Ga1-xAlxAsクラッド層6を2μm、n型GaAsキャッ
プ層7を1.5μm成長させた。p型GaAs基板1にAuZnに
よりp側オーミック電極9を、n型GaAsキャップ層7上
にAuGeNiによりn側オーミック電極8を形成する。
Further, as shown in FIG. 2, a photoresist film 3 is coated on the multi-layered current blocking layer 10, and a part of the central portion of the ridge has a width of 5 mm.
After removing the stripes of μm, chemical etching is performed using the stripes as a mask. The etching is performed until a part of the multilayer current blocking layer 10 is completely removed in the depth direction of the groove as shown in FIG. 1, that is, until the p-type GaAs substrate 1 is exposed. Here, the depth of the groove was 1.2 μm. After that, the photoresist film 3 is removed, the surface of the substrate is cleaned, and then a double hetero structure is grown by a liquid phase epitaxial method. Liquid phase epitaxial growth is performed under the growth conditions of a growth temperature of 850 ° C., a supersaturation degree of 7 ° C., and a cooling rate of 0.5 ° C./min, and the layers described below are sequentially grown. That is, as shown in FIG. 1, a p-type Ga 1-x Al x As cladding layer 4 is formed on the p-type GaAs substrate 1 on which a multi-layered current blocking layer 10 is formed in a flat portion of 0.3.
μm, Ga 1-y Al y As active layer 5 (0 ≦ y <x) is 0.08 μm,
The n-type Ga 1-x Al x As cladding layer 6 was grown to 2 μm, and the n-type GaAs cap layer 7 was grown to 1.5 μm. A p-side ohmic electrode 9 is formed of AuZn on the p-type GaAs substrate 1, and an n-side ohmic electrode 8 is formed of AuGeNi on the n-type GaAs cap layer 7.

以上のようにして作製した半導体レーザをマウントし、
電流を流すと、第1図で示すwのストライプ幅で電流が
狭さくされる。ウェハ内での代表的なレーザ特性の一例
をしきい電流値で表わすと、w=2μmで35mAの低しき
い電流値が得られ、発振は安定な基本横モード発振であ
った。従来の単層の電流阻止層でのBTRS型レーザと比較
すると、本発明の構成のもので、30素子でのしきい電流
値の分散が従来のものの約2/3となり、少数キャリアの
実効的拡散長を短かくし、電流阻止効果が有効に働いて
いることを示している。
Mount the semiconductor laser manufactured as described above,
When a current is passed, the current is narrowed by the w stripe width shown in FIG. When an example of typical laser characteristics in a wafer is expressed by a threshold current value, a low threshold current value of 35 mA was obtained at w = 2 μm, and oscillation was stable fundamental transverse mode oscillation. Compared with the conventional BTRS type laser with a single current blocking layer, in the configuration of the present invention, the dispersion of the threshold current value in 30 elements is about 2/3 of the conventional one, and the effective minority carrier It shows that the diffusion length is shortened and the current blocking effect is working effectively.

なお、本実施例では、GaAs系、GaAlAs系半導体レーザに
ついて述べたが、InP系や他の多元混晶系を含む化合物
半導体を材料とする半導体レーザ装置についても同様に
本発明を適用できる。さらに多層の電流阻止層のうち、
基板とは逆の導電型を示す層を除いて、ノンドープ層、
p型層、n型層のいずれを用いても良く、GaAs,AlGaAs
どちらを用いても良い。
In this embodiment, the GaAs-based and GaAlAs-based semiconductor lasers are described, but the present invention can be similarly applied to a semiconductor laser device made of a compound semiconductor containing InP-based or other multi-element mixed crystal system. Of the multiple current blocking layers,
A non-doped layer, except for the layer showing the conductivity type opposite to the substrate,
Either p-type layer or n-type layer may be used.
Either may be used.

(発明の効果) 以上説明したように、本発明によれば、内部ストライプ
構造を容易に再現性良く形成することが可能で、その結
果、低しきい電流値で基本横モード発振する高性能な半
導体レーザ装置を提供することができ、その実用的効果
は著しい。
(Effects of the Invention) As described above, according to the present invention, it is possible to easily form the internal stripe structure with good reproducibility, and as a result, it is possible to realize a high performance of fundamental transverse mode oscillation at a low threshold current value. A semiconductor laser device can be provided, and its practical effect is remarkable.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本発明の一実施例の半導体レーザ装置の断面
図、第2図は、同装置の作製過程を示す図、第3図は、
多層の電流阻止層の一例の断面図、第4図は、従来の半
導体レーザ装置の断面図である。 1…p型GaAs基板、2…n型GaAs層、3…フォトレジス
ト膜、4…p型GaAlAsクラッド層、5…GaAlAs活性層、
6…n型GaAlAsクラッド層、7…n型GaAsキャップ層、
8…p側オーミック電極、9…n側オーミック電極、10
…多層の電流阻止層、11…GaAlAsバリア層、w…内部ス
トライプ幅。
FIG. 1 is a sectional view of a semiconductor laser device according to an embodiment of the present invention, FIG. 2 is a diagram showing a manufacturing process of the device, and FIG.
FIG. 4 is a sectional view of an example of a multilayer current blocking layer, and FIG. 4 is a sectional view of a conventional semiconductor laser device. 1 ... p-type GaAs substrate, 2 ... n-type GaAs layer, 3 ... photoresist film, 4 ... p-type GaAlAs cladding layer, 5 ... GaAlAs active layer,
6 ... n-type GaAlAs cladding layer, 7 ... n-type GaAs cap layer,
8 ... p-side ohmic electrode, 9 ... n-side ohmic electrode, 10
... Multi-layered current blocking layer, 11 ... GaAlAs barrier layer, w ... Internal stripe width.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】一導電型の半導体基板と、 前記半導体基板上に、前記半導体基板とは反対導電型を
示しかつ他のどの層よりも禁止帯幅が小さく0.1μm以
上の膜厚を有する層と正孔を阻止するバリア層とが交互
に3層以上積層され、さらに所定の位置に前記半導体基
板に達する溝を有する多層の電流阻止層と、 前記溝を含む前記電流阻止層上に形成され、活性層を含
む二層ヘテロ構造を有する多層薄膜と、 前記半導体基板及び前記多層薄膜上にそれぞれ設けられ
た電極と からなることを特徴とする半導体レーザ装置。
1. A semiconductor substrate of one conductivity type, and a layer having a conductivity type opposite to that of the semiconductor substrate and having a bandgap smaller than that of any other layer and having a film thickness of 0.1 μm or more on the semiconductor substrate. And three or more barrier layers for blocking holes are alternately laminated, and a multilayer current blocking layer having a groove reaching the semiconductor substrate at a predetermined position, and formed on the current blocking layer including the groove. A semiconductor laser device comprising: a multi-layer thin film having a two-layer hetero structure including an active layer; and an electrode provided on each of the semiconductor substrate and the multi-layer thin film.
JP61026957A 1986-02-12 1986-02-12 Semiconductor laser device Expired - Lifetime JPH07114301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61026957A JPH07114301B2 (en) 1986-02-12 1986-02-12 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61026957A JPH07114301B2 (en) 1986-02-12 1986-02-12 Semiconductor laser device

Publications (2)

Publication Number Publication Date
JPS62185389A JPS62185389A (en) 1987-08-13
JPH07114301B2 true JPH07114301B2 (en) 1995-12-06

Family

ID=12207637

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61026957A Expired - Lifetime JPH07114301B2 (en) 1986-02-12 1986-02-12 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPH07114301B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60116188A (en) * 1983-11-28 1985-06-22 Sharp Corp Semiconductor laser element
JPS60226191A (en) * 1984-04-25 1985-11-11 Sharp Corp Semiconductor laser element

Also Published As

Publication number Publication date
JPS62185389A (en) 1987-08-13

Similar Documents

Publication Publication Date Title
US4719633A (en) Buried stripe-structure semiconductor laser
US5149670A (en) Method for producing semiconductor light emitting device
KR20060132467A (en) Optical element
US5173913A (en) Semiconductor laser
JPH0632331B2 (en) Semiconductor laser device and method of manufacturing the same
JP3078004B2 (en) Manufacturing method of semiconductor laser
JPH07114301B2 (en) Semiconductor laser device
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0682886B2 (en) Method of manufacturing semiconductor laser device
JPH0572118B2 (en)
JP2751306B2 (en) Semiconductor light emitting device
JP2865325B2 (en) Semiconductor laser device
JPS62186580A (en) Manufacture of semiconductor laser device
JP2527197B2 (en) Optical integrated device
JPS62279688A (en) Manufacture of semiconductor laser element
JPH067621B2 (en) Semiconductor laser device and method of manufacturing the same
KR940011275B1 (en) Laser diode and manufacturing method the same
JPS6252984A (en) Self-aligning current constriction type semiconductor light emitting element
JPH02181491A (en) Semiconductor light-emitting device
JPH06291414A (en) Surface emitting type semiconductor laser element
JPH0443690A (en) Semiconductor laser element
JPS6174383A (en) Semiconductor laser array device and manufacture thereof
JPS62196883A (en) Semiconductor laser
JPH0632327B2 (en) Semiconductor laser device and method of manufacturing the same
JPS63104494A (en) Semiconductor laser device