JPH067621B2 - Semiconductor laser device and method of manufacturing the same - Google Patents
Semiconductor laser device and method of manufacturing the sameInfo
- Publication number
- JPH067621B2 JPH067621B2 JP59058712A JP5871284A JPH067621B2 JP H067621 B2 JPH067621 B2 JP H067621B2 JP 59058712 A JP59058712 A JP 59058712A JP 5871284 A JP5871284 A JP 5871284A JP H067621 B2 JPH067621 B2 JP H067621B2
- Authority
- JP
- Japan
- Prior art keywords
- thin film
- convex portion
- substrate
- conductivity type
- layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/227—Buried mesa structure ; Striped active layer
Landscapes
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Optics & Photonics (AREA)
- Semiconductor Lasers (AREA)
Description
【発明の詳細な説明】 産業上の利用分野 本発明は、各種電子機器、光学機器の光源として、近年
急速に用途が拡大し、需要が高まっている半導体レーザ
装置に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, which has been rapidly expanded in use and is in high demand as a light source for various electronic devices and optical devices.
従来例の構成とその問題点 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要は性能の一つに単一スポットでの
発振、すなわち単一横モード発振があげられる。これを
実現するためには、レーザ光が伝播する活性領域付近
に、レーザ素子中を流れる電流を集中するように、その
拡がりを抑制し、かつ光を閉じ込める必要がある。この
ような半導体レーザは、通常、ストライプ型半導体レー
ザと呼ばれている。Configuration of Conventional Example and its Problems One of the important performances required of a semiconductor laser as a coherent light source for electronic equipment and optical equipment is single-spot oscillation, that is, single transverse mode oscillation. In order to realize this, it is necessary to suppress the spread and confine the light so that the current flowing in the laser element is concentrated near the active region where the laser light propagates. Such a semiconductor laser is usually called a stripe type semiconductor laser.
比較的簡単なストライプ化の方法に、電流狭さくだけを
用いるものがある。これらのレーザは単一横モード発振
を実現するもののしきい値は高い。最もしきい値を低く
するストライプ構造として、埋め込みストライプ型半導
体レーザ(通常、BHレーザと呼ばれる。)がある。し
かしながら、このレーザを作製するには、通常他のレー
ザでは1回ですむ結晶成長工程が2回必要であり、他に
技術的にやや作製が困難である。A relatively simple striping method uses only current narrowing. Although these lasers realize single transverse mode oscillation, their threshold value is high. There is a buried stripe type semiconductor laser (generally called a BH laser) as a stripe structure which has the lowest threshold value. However, in order to manufacture this laser, the crystal growth step, which is usually performed once with other lasers, is required twice, and it is technically somewhat difficult to manufacture.
発明の目的 本発明は上記欠点に鑑み、単一横モード発振し、かつ低
しきい値動作にするのに必要な埋め込みストライプ構造
を1回の結晶成長で作製可能な半導体レーザ装置および
その製造方法を提供するものである。SUMMARY OF THE INVENTION In view of the above drawbacks, the present invention provides a semiconductor laser device capable of producing a single lateral mode oscillation and a buried stripe structure required for low threshold operation by a single crystal growth and a method of manufacturing the same. Is provided.
発明の構成 この目的を達成するために本発明の半導体レーザ装置は
導電性基板のストライプ状凸部上に活性層を含む二重ヘ
テロ構造を持つ多層薄膜からなり、前記凸部の両側面に
おいても、少なくとも前記活性層直上の薄膜層までは、
積層方向に、同一の順序で多層薄膜が独立に構成され、
前記多層薄膜直上に、前記基板と同じ導電性を示す薄膜
よりなる。To achieve this object, the semiconductor laser device of the present invention comprises a multi-layer thin film having a double heterostructure including an active layer on a stripe-shaped convex portion of a conductive substrate, and also on both side surfaces of the convex portion. , At least up to the thin film layer directly above the active layer,
In the stacking direction, multilayer thin films are independently configured in the same order,
Immediately above the multilayer thin film, a thin film having the same conductivity as the substrate is formed.
以上の構成により、ストライプ状の凸部上の活性層中に
電流を狭さくし、単一横モード発振,低しきい値動作の
半導体レーザ装置が実現できる。また、上記半導体レー
ザ装置の製造方法として、有機金属気相エピタキシャル
成長法、又は分子線エピタキシャル成長法を用いると、
1回の結晶成長で、埋め込みストライプ構造が容易に形
成できる。With the above structure, a current can be narrowed in the active layer on the stripe-shaped convex portion, and a semiconductor laser device with single transverse mode oscillation and low threshold operation can be realized. Further, as a method of manufacturing the above semiconductor laser device, if a metal organic vapor phase epitaxial growth method or a molecular beam epitaxial growth method is used,
A buried stripe structure can be easily formed by performing crystal growth once.
実施例の説明 本発明の半導体レーザ装置およびその製造方法につい
て、一実施例を用いて具体的に説明する。Description of Embodiments A semiconductor laser device and a method of manufacturing the same according to the present invention will be specifically described with reference to an embodiment.
一例として導電性基板にn型GaAs基板を用いる。n型Ga
As基板10の(100)面上に、第2図に示す様に幅d
のフォトレジスト16をマスクとして、化学エッチング
により<011>方向に平行に凹凸を設ける。このよう
にして第3図に示すように幅5μm、高さ1.5μmの
ストライプ状凸形とする。As an example, an n-type GaAs substrate is used as the conductive substrate. n-type Ga
On the (100) surface of the As substrate 10, as shown in FIG.
Using the photoresist 16 as a mask, chemical etching is used to form irregularities parallel to the <011> direction. Thus, as shown in FIG. 3, a stripe-shaped convex shape having a width of 5 μm and a height of 1.5 μm is formed.
次に有機金属気相エピタキシャル成長法(通常MOCV
D法)により、n型Ga1-xAlxAsクラッド層11を1.5
μm,アンドープGa1-yAlyAs(0≦y≦x)活性層12
を0.08μm,p型Ga1-xAlxAsクラッド層13を1.
2μm形成したのち、n型GaAs基板キャップ層14を2
μm結晶成長させる。一例として、結晶成長条件は、成
長速度2μm/時,成長温度770℃、全ガス流量5
/分,III族元素に対するV族元素のモル比は40であ
る。Next, metalorganic vapor phase epitaxial growth method (usually MOCV
D method), the n-type Ga 1-x Al x As cladding layer 11 is
μm, undoped Ga 1-y Al y As (0 ≦ y ≦ x) active layer 12
Is 0.08 μm, and the p-type Ga 1-x Al x As cladding layer 13 is 1.
After forming 2 μm, the n-type GaAs substrate cap layer 14 is formed to 2
Grow a μm crystal. As an example, the crystal growth conditions are a growth rate of 2 μm / hour, a growth temperature of 770 ° C., and a total gas flow rate of 5
/ Min, the molar ratio of Group V element to Group III element is 40.
第4図に示す様に、p型Ga1-xAlxAsクラッド層13まで
は、凸部上と他の部分のは、独立にエピタキシャル成長
しており、成長材料の成長基板面に平行な方向での拡散
等の効果の加わった結晶成長は見られない。As shown in FIG. 4, up to the p-type Ga 1-x Al x As clad layer 13, the convex portion and the other portion are epitaxially grown independently, and the direction parallel to the growth substrate surface of the growth material. No crystal growth with additional effects such as diffusion is observed.
結晶成長後、表面を洗浄処理したのち、フォトレジスト
17を塗布し、5000rpmで回転すると、第4図に示
す様に、凸部でフォトレジスト膜17は薄くなり、他の
部分で厚くなる。露光条件を最適化することにより、凸
部上のフォトレジスト膜17のみ取り去り、エッチング
により、n型GaAsキャップ層の凸部を取り去り、第4図
に示す面18,19となるようにし、平坦にする。さら
に幅wで、Zn拡散を行ない、ストライプを形成する。結
果として第1図に示す半導体レーザ構造が形成され、オ
ーミック電極を面20,21に付ける。電流注入を行な
うと電流はn型GaAs基板10の凸部と拡散により形成さ
れたp型GaAs領域15により上下で狭さくされる。その
結果、30mAのしきい電流値で単一横モード発振する
半導体レーザ装置が得られた。After the crystal growth, the surface is washed, and then the photoresist 17 is applied and rotated at 5000 rpm. As shown in FIG. 4, the photoresist film 17 becomes thin at the convex portions and becomes thick at other portions. By optimizing the exposure conditions, only the photoresist film 17 on the convex portion is removed, and the convex portion of the n-type GaAs cap layer is removed by etching to form the surfaces 18 and 19 shown in FIG. To do. Further, Zn is diffused with a width w to form stripes. As a result, the semiconductor laser structure shown in FIG. 1 is formed, and ohmic electrodes are attached to the surfaces 20 and 21. When current injection is performed, the current is narrowed in the vertical direction by the convex portion of the n-type GaAs substrate 10 and the p-type GaAs region 15 formed by diffusion. As a result, a semiconductor laser device having a single transverse mode oscillation with a threshold current value of 30 mA was obtained.
また、本発明の半導体レーザ構造は埋め込み型となって
おり、他の埋め込み型レーザは2回の結晶成長が必要で
あるのに対し、本発明の埋め込み型レーザは1回の結晶
成長で作製が可能である。Further, the semiconductor laser structure of the present invention is of a buried type, and other buried lasers require crystal growth twice, whereas the buried laser of the present invention can be manufactured by one crystal growth. It is possible.
なお、第1図で、n型GaAs基板10とn型Ga1-xAlxAsク
ラッド層11の間に、n型GaAsバッファ層を入れた構造
にしても同様の結果が得られた。Similar results were obtained with the structure shown in FIG. 1 in which an n-type GaAs buffer layer was inserted between the n-type GaAs substrate 10 and the n-type Ga 1-x Al x As cladding layer 11.
なお、本実施例では、GaAs系,GaAlAs系,半導体レーザ
について述べたが、InP系や他の多元混晶系を含む化合
物半導体を材料とする半導体レーザについても同様に本
発明を適用可能である。さらに、導電性基板については
p型基板を用いても、結晶成長には、他の物質供給律速
と結晶成長方法、たとえば、分子線エピタキシャル成長
法(MBE法)を用いてもよい。In this embodiment, the GaAs-based, GaAlAs-based, and semiconductor lasers are described, but the present invention can be similarly applied to a semiconductor laser made of a compound semiconductor containing InP-based or other multi-element mixed crystal. . Further, a p-type substrate may be used as the conductive substrate, or another substance supply rate controlling and crystal growth method, for example, a molecular beam epitaxial growth method (MBE method) may be used for crystal growth.
発明の効果 本発明の半導体レーザ装置およびその製造方法は、1回
の結晶成長で、低しきい値で単一横モード発振する埋め
込み型レーザを実現するものであり、その実用的効果は
著しい。EFFECTS OF THE INVENTION The semiconductor laser device and the method of manufacturing the same according to the present invention realize an embedded laser that oscillates in a single transverse mode at a low threshold with a single crystal growth, and its practical effects are remarkable.
第1図は本発明実施例の半導体レーザ装置の断面図、第
2図,第3図,第4図は同装置の製造工程を示す図であ
る。 10……n型GaAs基板、11……n型Ga1-xAlxAsクラッ
ド層、12……Ga1-yAlyAs活性層、13……p型Ga1-xA
lxAsクラッド層、14……n型GaAs領域、15……p型
GaAs領域、16……メサエッチ用フォトレジスト膜、1
7……フォトレジスト膜、18……エピ成長表面、19
……エッチング後の表面、20,21……オーミック電
極作製面、w……電流狭さくストライプ幅、d……メサ
マスクの幅。FIG. 1 is a sectional view of a semiconductor laser device according to an embodiment of the present invention, and FIGS. 2, 3, and 4 are views showing manufacturing steps of the device. 10 ... n-type GaAs substrate, 11 ... n-type Ga 1-x Al x As clad layer, 12 ... Ga 1-y Al y As active layer, 13 ... p-type Ga 1-x A
l x As clad layer, 14 ... n-type GaAs region, 15 ... p-type
GaAs region, 16 ... Photoresist film for mesa etching, 1
7 ... Photoresist film, 18 ... Epi growth surface, 19
…… Surface after etching, 20, 21 …… Ohmic electrode fabrication surface, w …… Current narrowing stripe width, d …… Mesa mask width.
Claims (3)
層を含む二重ヘテロ構造を持つ第1の多層薄膜が形成さ
れ、前記凸部の両側面においても、前記活性層直上の薄
膜層までは、積層方向に同一の順序で第2の多層薄膜が
独立に形成され、前記第1の多層薄膜直上に、前記基板
とは逆の導電型を示す薄膜が形成され、かつ前記第2の
多層薄膜上に前記基板と同じ導電型を示す薄膜が形成さ
れていることを特徴とする半導体レーザ装置。1. A first multi-layered thin film having a double heterostructure including an active layer is formed on a stripe-shaped convex portion of a substrate of one conductivity type, and the thin film immediately above the active layer is formed on both side surfaces of the convex portion. Up to the layer, a second multilayer thin film is independently formed in the same order in the stacking direction, a thin film having a conductivity type opposite to that of the substrate is formed immediately above the first multilayer thin film, and the second multilayer thin film is formed. 2. A semiconductor laser device, wherein a thin film having the same conductivity type as the substrate is formed on the multilayer thin film.
に、有機金属気相エピタキシャル成長法により、前記凸
部上と前記凸部以外の領域上に活性層を含む二重ヘテロ
構造を前記活性層直上の薄膜層までは独立に形成し、さ
らに前記二重ヘテロ接合上の最上層に前記基板と同じ導
電型を示す薄膜を成長し、Zn拡散により、前記最上層
の前記凸部直上の領域のみを前記基板とは逆の導電型を
示す薄膜層とすることを特徴とする半導体レーザ装置の
製造方法。2. A double heterostructure including an active layer on the convex portion and a region other than the convex portion is formed on the one conductivity type substrate having a stripe-shaped convex portion by a metal organic vapor phase epitaxial growth method. The thin film layer directly above the layers is independently formed, and a thin film having the same conductivity type as that of the substrate is grown on the uppermost layer on the double heterojunction, and the region immediately above the convex portion of the uppermost layer is formed by Zn diffusion. A method of manufacturing a semiconductor laser device, wherein only the thin film layer has a conductivity type opposite to that of the substrate.
に、分子線エピタキシャル成長法により、前記凸部上と
前記凸部以外の領域上に活性層を含む二重ヘテロ構造を
前記活性層直上の薄膜層までは独立に形成し、さらに前
記二重ヘテロ接合上の最上層に前記基板と同じ導電型を
示す薄膜を成長し、Zn拡散により、前記最上層の前記
凸部直上の領域のみを前記基板とは逆の導電型を示す薄
膜層とすることを特徴とする半導体レーザ装置の製造方
法。3. A double heterostructure including an active layer on the convex portion and on a region other than the convex portion is formed directly on the active layer by a molecular beam epitaxial growth method on a one conductivity type substrate having a stripe-shaped convex portion. Up to the thin film layer, and a thin film showing the same conductivity type as that of the substrate is grown on the uppermost layer on the double heterojunction, and only the region immediately above the convex portion of the uppermost layer is grown by Zn diffusion. A method of manufacturing a semiconductor laser device, comprising forming a thin film layer having a conductivity type opposite to that of the substrate.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59058712A JPH067621B2 (en) | 1984-03-27 | 1984-03-27 | Semiconductor laser device and method of manufacturing the same |
DE8585301989T DE3579929D1 (en) | 1984-03-27 | 1985-03-22 | SEMICONDUCTOR LASER AND METHOD FOR ITS FABRICATION. |
EP85301989A EP0157555B1 (en) | 1984-03-27 | 1985-03-22 | A semiconductor laser and a method of producing the same |
US06/715,392 US4719633A (en) | 1984-03-27 | 1985-03-25 | Buried stripe-structure semiconductor laser |
US07/114,065 US4948753A (en) | 1984-03-27 | 1987-10-29 | Method of producing stripe-structure semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59058712A JPH067621B2 (en) | 1984-03-27 | 1984-03-27 | Semiconductor laser device and method of manufacturing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60201684A JPS60201684A (en) | 1985-10-12 |
JPH067621B2 true JPH067621B2 (en) | 1994-01-26 |
Family
ID=13092103
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59058712A Expired - Lifetime JPH067621B2 (en) | 1984-03-27 | 1984-03-27 | Semiconductor laser device and method of manufacturing the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH067621B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3877750T2 (en) * | 1988-06-28 | 1993-07-08 | Ibm | METHOD FOR SELECTIVE GROWING OF GAAS. |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58216486A (en) * | 1982-06-10 | 1983-12-16 | Kokusai Denshin Denwa Co Ltd <Kdd> | Semiconductor laser and manufacture thereof |
-
1984
- 1984-03-27 JP JP59058712A patent/JPH067621B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58216486A (en) * | 1982-06-10 | 1983-12-16 | Kokusai Denshin Denwa Co Ltd <Kdd> | Semiconductor laser and manufacture thereof |
Also Published As
Publication number | Publication date |
---|---|
JPS60201684A (en) | 1985-10-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69032451T2 (en) | Semiconductor laser and method of manufacturing the same | |
US4932033A (en) | Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same | |
JP2827326B2 (en) | Manufacturing method of semiconductor laser | |
US4948753A (en) | Method of producing stripe-structure semiconductor laser | |
JPH0632331B2 (en) | Semiconductor laser device and method of manufacturing the same | |
US5805628A (en) | Semiconductor laser | |
US5887011A (en) | Semiconductor laser | |
JPH067621B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH07254750A (en) | Semiconductor laser | |
JP2523643B2 (en) | Semiconductor laser device | |
JPH084180B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPH0572118B2 (en) | ||
JP2554192B2 (en) | Semiconductor laser manufacturing method | |
JPH0632327B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JP2973215B2 (en) | Semiconductor laser device | |
JP2547459B2 (en) | Semiconductor laser device and manufacturing method thereof | |
JP2751306B2 (en) | Semiconductor light emitting device | |
JP2628638B2 (en) | Semiconductor laser device | |
JP2000174388A (en) | Semiconductor laser and manufacture thereof | |
KR100304658B1 (en) | Semiconductor laser device and method for fabricating the same | |
JP2500588B2 (en) | Semiconductor laser and manufacturing method thereof | |
JP3206573B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH0430758B2 (en) | ||
JPS60235485A (en) | Manufacture of semiconductor laser device | |
JPH1174616A (en) | Semiconductor light emitting device and fabrication thereof |