JPS62186582A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS62186582A
JPS62186582A JP2800286A JP2800286A JPS62186582A JP S62186582 A JPS62186582 A JP S62186582A JP 2800286 A JP2800286 A JP 2800286A JP 2800286 A JP2800286 A JP 2800286A JP S62186582 A JPS62186582 A JP S62186582A
Authority
JP
Japan
Prior art keywords
layer
type
current blocking
gaas
blocking layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2800286A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Takashi Sugino
隆 杉野
Masanori Hirose
広瀬 正則
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2800286A priority Critical patent/JPS62186582A/en
Publication of JPS62186582A publication Critical patent/JPS62186582A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain an element having uniform characteristics with excellent reproducibility, by making the carrier density of the both end-layers of a multilayer-type current blocking layer formed on a clad layer ununiform in the direction of layer thickness, and providing a stripe-type window at a specified position of the current blocking layer. CONSTITUTION:On an N-type GaAs substrate 1 the following layers are grown in order; a buffer layer 3, a clad layer 3, an active layer 4, a clad layer 5 and a multilayer-type current blocking layer 6 composed of a GaAs buffer layer 12 and an N-type GaAs layer 13. In this process, the carrier density of the N-type GaAs layer is made ununiform in the direction of layer thickness. The current blocking layer 6 is subjected to etching, and a stripe-type window W is formed, on which a clad layer 8, a contact layer 9 and an electrode 10 are formed. An electrode 11 is formed on the opposite surface of the substrate 1. Thereby, a laser device can be manufactured with excellent reproducibility, which has uniform characteristics and oscillates in a fundamental transversal mode with a small current.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、各種電子機器、光学機器の光源として、近年
急速に用途が拡大し、需要の高まっている半導体レーザ
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser device, which has been rapidly used as a light source for various electronic devices and optical devices in recent years, and is in increasing demand.

(従来の技術) 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要な性能には、低電流動作、基本横
モード発振があげられる。これらの性能を実現するため
には、レーザ光が伝播する活性領域付近に電流を集中さ
せるように、その拡が9ヲ抑制し、かつ閉じ込める必要
がある。このような構造を内部につくりつけた半導体レ
ーザは、通常内部ストライプ型レーザと呼ばれる。(例
えば、今井哲二他編著化合物半導体デバイス(If)p
(Prior Art) Important performances required of semiconductor lasers as coherent light sources for electronic and optical equipment include low current operation and fundamental transverse mode oscillation. In order to achieve these performances, it is necessary to suppress and confine the current so as to concentrate it near the active region where the laser light propagates. A semiconductor laser with such a structure built inside is usually called an internal stripe type laser. (For example, Compound Semiconductor Devices (If) edited by Tetsuji Imai et al.
.

214〜p、215参照) 以下、図面を参照しながら、上述したような従来の内部
ストライプ型レーザな説明する。
214-p, 215) Hereinafter, the conventional internal stripe type laser as described above will be explained with reference to the drawings.

第3図において、1はn型GaAs基板、2はn型Ga
Asバッファ層、3はn型AtGaAsクラッド層、4
はAtGaAS活性層、5はp型AtGaAsクラッド
層、14はn型GaAs電流阻止層、8はp型AtGa
Agクラッド層、9はp型GaAsコンタクト層、10
はp側オーミック電極、11はn側オーミック電極であ
る。
In FIG. 3, 1 is an n-type GaAs substrate, 2 is an n-type GaAs substrate, and 2 is an n-type GaAs substrate.
As buffer layer, 3 is n-type AtGaAs cladding layer, 4
5 is an AtGaAs active layer, 5 is a p-type AtGaAs cladding layer, 14 is an n-type GaAs current blocking layer, and 8 is a p-type AtGaAs layer.
Ag cladding layer, 9 p-type GaAs contact layer, 10
is a p-side ohmic electrode, and 11 is an n-side ohmic electrode.

以上のように構成された内部ストライプ型レ−ザについ
て、以下その製造方法および動作を簡単に説明する。
The manufacturing method and operation of the internal stripe type laser constructed as described above will be briefly described below.

内部ストライプ型レーザは、2回の結晶成長工程で形成
される。ここでは結晶成長工程にMOCVD法を用いる
。1回目の結晶成長として、n型基板1上にn型GaA
sバッファ層2、n型A7GaAsクラッド層3、At
Ga、As活性層4、p型A7GaAsクラッド層5、
n型GaAs電流阻止層14を順次成長させる。
Internal stripe lasers are formed in two crystal growth steps. Here, the MOCVD method is used for the crystal growth process. As the first crystal growth, n-type GaA is grown on the n-type substrate 1.
s buffer layer 2, n-type A7GaAs cladding layer 3, At
Ga, As active layer 4, p-type A7GaAs cladding layer 5,
An n-type GaAs current blocking layer 14 is sequentially grown.

成長条件は、成長温度800℃、■族元素に対する■族
元素の供給モル比(い1比)は20.成長速度は5μm
/時である。次に、成長したn型GaAs層−トに25
0μm ピッチで幅5μmのストライプブを7オトレジ
スト膜により形成する。この時ストライプはn型GaA
s基板の(Oli)方向に平行となるようにする。化学
エツチングにより選択的にn型GaA s電流阻止層1
4を内部ストライプ幅Wだけ完全に除去し、n型AtG
aAsクラッド層5を露出させる。さらに、この内部ス
トライプを形成した面」二にMOCVD法により、2回
目の結晶成長を行なう。
The growth conditions were that the growth temperature was 800°C, and the molar ratio (I1 ratio) of the group II element to the group II element was 20. Growth rate is 5μm
/It's time. Next, the grown n-type GaAs layer is
Stripes with a width of 5 μm at a pitch of 0 μm are formed using 7 photoresist films. At this time, the stripe is n-type GaA
parallel to the (Oli) direction of the s-substrate. Selective n-type GaAs current blocking layer 1 by chemical etching
4 by the internal stripe width W, and the n-type AtG
The aAs cladding layer 5 is exposed. Furthermore, a second crystal growth is performed on the surface on which the internal stripes are formed by MOCVD.

即ち、n型AtGaAsクラッド層8、p型GaAsコ
ンタクト層9を順次成長させる。■〕側、n側(Cそれ
ぞれオーミック電極10 F 11−に形成し、素子が
完成する。
That is, an n-type AtGaAs cladding layer 8 and a p-type GaAs contact layer 9 are sequentially grown. (2) side and n side (C are respectively formed on ohmic electrodes 10 F 11-, and the device is completed.

p側電極10に(+)、n(lll電極11tu−1の
電圧を印加すると、n型層aAs電流阻市層14とp型
A/!GaAsクラッド層5の界面のp−n接合部分だ
けが通力向に、他は順方向Vr−電圧が印加されること
となり9注入電流は内部ストライプ幅Wからのみ流れ、
その直下の活性層4に電流が集中し、その結果、低電流
動作基本槽モー ド発振が実現される。
When voltages of (+) and n(lll electrode 11tu-1 are applied to the p-side electrode 10, only the p-n junction at the interface between the n-type aAs current blocking layer 14 and the p-type A/!GaAs cladding layer 5 is applied in the power direction, and the other voltage is applied in the forward direction, so that the injected current flows only from the internal stripe width W.
Current concentrates in the active layer 4 directly below it, and as a result, low current operation basic tank mode oscillation is realized.

(発明が解決しようとする問題点) しかしながら上記のように、800C以上の結晶成長温
度でエピタキシャル成長を行々うと、n型AtGaAs
クラッド層5.8中のp型ドーノぐントのZnがn型層
aAs電流阻II一層14中に拡散し、n型層aAs電
流阻11−、層14の一部に、高濃度にZnで補償され
た変成層が形成されることがある。1/こ、n型GaA
B Tt電流阻止層14層厚およびぞれに伴なう電流限
1)、効果に局所的なばらつきを生じ、結果として、例
えば同一ウエバ内の谷し−ザ素了−間の動作電流値のば
らつき全大きくする。
(Problems to be Solved by the Invention) However, as mentioned above, when epitaxial growth is performed at a crystal growth temperature of 800C or higher, n-type AtGaAs
Zn in the p-type layer 5.8 in the cladding layer 5.8 diffuses into the n-type layer aAs current barrier II layer 14, and a part of the n-type layer aAs current barrier layer 11- and layer 14 are heavily concentrated with Zn. Compensated metamorphic strata may be formed. 1/ko, n-type GaA
B The thickness of the Tt current blocking layer 14 and the resulting current limit 1) cause local variations in effectiveness, resulting in, for example, variations in the operating current value between the valley and the end within the same web. Increase the total variation.

本発明は、上記問題点に鑑み、ウェハ面内でn型GaA
s電流阻止層の層厚および電流阻止効果のばらつきを抑
え、n型GaAs電流阻止層とこれを挾むp型AtGa
Asクラッド層の間に、層厚方向にキャリア濃度が不均
一になるバッファ層を挿入し、その結果同一ウエバ内の
各レーザ素子間の動作電流等のばらつきを抑え、均一な
素子を得やすい構造を持つ半導体レーザ装置を提供する
ものである。
In view of the above problems, the present invention provides n-type GaA in the wafer plane.
s suppressing variations in the layer thickness and current blocking effect of the current blocking layer, and suppressing variations in the layer thickness and current blocking effect of the n-type GaAs current blocking layer and the p-type AtGa sandwiching it.
A buffer layer with non-uniform carrier concentration in the layer thickness direction is inserted between the As cladding layers, resulting in a structure that suppresses variations in operating current, etc. between each laser element within the same wafer, making it easier to obtain uniform elements. The present invention provides a semiconductor laser device having the following features.

(問題点を解決するための手段) 」−記問題点を解決するために、本発明の半導体レーザ
装置は、基板上に活性層を含みかつ活性層上にクラッド
層を有する二重ヘテロ構造からなる多層薄膜が形成され
、前記クラッド層上に、クラッド層とは反対導電型を示
す層を少なくとも1層含む多層からなり、さらに所定の
位置にストライプ状の窓を有する電流阻止層が形成され
、その多層の電流阻止層の両端の層内では層厚方向にキ
ャリア濃度が不均一になっていることから構成されてい
る。
(Means for Solving the Problems) In order to solve the problems mentioned above, the semiconductor laser device of the present invention has a double heterostructure including an active layer on a substrate and a cladding layer on the active layer. A current blocking layer is formed on the cladding layer, the current blocking layer comprising at least one layer having a conductivity type opposite to that of the cladding layer, and having striped windows at predetermined positions. This is because the carrier concentration is non-uniform in the layer thickness direction within the layers at both ends of the multilayer current blocking layer.

(作 用) この構成により、ウェハ面内で均一性の良い、内部スト
ライブ構造をもつ、低l−きい値、低電流動作、基本横
モード発振する半導体し・−ザ装置を実現することがで
きる。
(Function) With this configuration, it is possible to realize a semiconductor device with good uniformity within the wafer plane, an internal stripe structure, a low l-threshold, low current operation, and fundamental transverse mode oscillation. can.

(実施例) 以下、本発明の一実施例について図面を参照しながら説
明する。
(Example) Hereinafter, an example of the present invention will be described with reference to the drawings.

第1図は、本発明の一実施例の半導体レーザ装置の断面
を示したものである。第1図において、1はn型GaA
s基板、2はn型GaAsバッファ層、3はn型AtG
aAsクラッド層、4はA7GaA 8活性層、5はp
型AtGaAl1クラッド層、6は多層の電流阻止層、
8はp型AtGaAsクラッド層、9はp型GaAsコ
ンタクト層、10はp側オーミック電極、11はn側オ
ーミック電極、12t 12はG aA sバッファ層
、13はn型GaAs層である。
FIG. 1 shows a cross section of a semiconductor laser device according to an embodiment of the present invention. In Figure 1, 1 is n-type GaA
s substrate, 2 is n-type GaAs buffer layer, 3 is n-type AtG
aAs cladding layer, 4 is A7GaA 8 active layer, 5 is p
type AtGaAl1 cladding layer, 6 is a multilayer current blocking layer,
8 is a p-type AtGaAs cladding layer, 9 is a p-type GaAs contact layer, 10 is a p-side ohmic electrode, 11 is an n-side ohmic electrode, 12t is a GaAs buffer layer, and 13 is an n-type GaAs layer.

第2図は、本実施例の半導体レーザ装置の作製過程を示
す図で、5はp型A7GaAsクラッド層、6は多層の
電流阻止層、7はフメトレジスト膜である。
FIG. 2 is a diagram showing the manufacturing process of the semiconductor laser device of this example, in which 5 is a p-type A7GaAs cladding layer, 6 is a multilayer current blocking layer, and 7 is a fumetresist film.

次に、上記構成の半導体レーザ装置の製造方法を説明す
る。
Next, a method for manufacturing the semiconductor laser device having the above configuration will be explained.

ここでは、基板としてn型GaAs基板を用いる。Here, an n-type GaAs substrate is used as the substrate.

まず、このn型GaAs基板1上に有機金属気相エピタ
キシャル成長法(MOCVD法)によpn型GaAsバ
ッファ層2を0.5 fim”、n型AtxGa 1−
 xA sクラッド層3を1.2μm SAt、Ga1
−、As活性層4(0≦y<X)を0.1μffZ s
 p型AtXGa、−xAs クラッド層5を0.3μ
m、さらに、厚さ0.211mのGaAsバッファ層1
2、厚さ0.5μmのn型GaAs層13(キャリア濃
度5×10 crn )及び厚さ0.2pmのGaAs
バッファ層12からなる多層の電流阻止層6を順次成長
させる。成長条件は、成長温度800℃、■族元素に対
する■族元素の供給モル比は50、成長速度は5μm時
、全ガス流量は10々勿である。
First, on this n-type GaAs substrate 1, a pn-type GaAs buffer layer 2 of 0.5 fi'' was formed by metal organic vapor phase epitaxial growth (MOCVD), and an n-type AtxGa 1-
xA s cladding layer 3 of 1.2 μm SAt, Ga1
-, As active layer 4 (0≦y<X) by 0.1 μffZ s
p-type AtXGa, -xAs cladding layer 5 with a thickness of 0.3μ
m, and a GaAs buffer layer 1 with a thickness of 0.211 m.
2. 0.5 μm thick n-type GaAs layer 13 (carrier concentration 5×10 crn) and 0.2 pm thick GaAs layer 13
A multilayer current blocking layer 6 consisting of a buffer layer 12 is sequentially grown. The growth conditions were as follows: growth temperature 800° C., supply molar ratio of group Ⅰ elements to group ① elements was 50, growth rate was 5 μm, and total gas flow rate was 10 μm.

次に、第2図に示すように、n型GaAs基板1の(o
 11>方向に平行に、250μmピッチで幅50μm
の7オトレジスト膜7によるストライプを多層の電流阻
止層6上に形成する。次いでフォトレジスト7をマスク
として化学エツチング法により多層の電流阻止層6の一
部をp型AtGaAaクラッド層5の表面が出るまで深
さ方向にエツチングし、窓を形成する。
Next, as shown in FIG.
11> Parallel to the direction, 50 μm wide at a pitch of 250 μm
7. Stripes of the photoresist film 7 are formed on the multilayer current blocking layer 6. Next, using the photoresist 7 as a mask, a part of the multilayer current blocking layer 6 is etched in the depth direction by chemical etching until the surface of the p-type AtGaAa cladding layer 5 is exposed, thereby forming a window.

表面を清浄化した後、第1図に示すようにp型kl、G
 a 1−2A s  クラッド層8を1.2μm 、
 p型GaAsコンタクト層9を1.5μmの厚さでM
OCVD法により成長させる。成長条件は1回目の結晶
成長条件と同じである。
After cleaning the surface, p-type kl, G
a 1-2A s cladding layer 8 with a thickness of 1.2 μm,
The p-type GaAs contact layer 9 is made of M with a thickness of 1.5 μm.
It is grown by OCVD method. The growth conditions are the same as those for the first crystal growth.

n型GaAs基板1上にAuGeNiによりn側オーミ
ック電極11を、p型GaAaコンタクト層9上にAu
Znによりp側片−ミック電極10を形成し、素子が完
成する。
An n-side ohmic electrode 11 is formed of AuGeNi on the n-type GaAs substrate 1, and an Au layer is formed on the p-type GaAa contact layer 9.
A p-side half-mick electrode 10 is formed of Zn, and the device is completed.

作製した半導体レーザ素子をマウントし、電流を流して
動作させると、第1図に示すWのストライプ幅で電流が
狭窄される。ウェハ内での代表的なレーザ特性の一例を
しきい電流値で表わすとw=2μmで35 mAの低し
きい電流値が得られ、発振は安定な基本横モード発振で
あった。
When the fabricated semiconductor laser device is mounted and operated by passing a current, the current is constricted to the stripe width of W shown in FIG. Expressing an example of typical laser characteristics within a wafer in terms of a threshold current value, a low threshold current value of 35 mA was obtained at w=2 μm, and the oscillation was stable fundamental transverse mode oscillation.

ところで、2回のMOCVD法によるエピタキシャル成
長中、p型AZxGa 1−x A sクラッド層5と
p型At2Ga1−2A8 クラッド層8中のZnが、
多層の電流阻止層6中に拡散する。SIMSにより、エ
ピタキシャル層厚方向での多層の電流阻止層6中のGa
Asバッファ層12.12内のZn濃度分布を調べた結
果、p型AtGaAsクラッド層5,8のキャリア濃度
の値から、lX10  crn tでに不均一に変化し
ていた。一方、第3図に示す従来の内部ストライズ構造
では、w=2μmで50艷程度の比較的高いしきい電流
値で発振するものが多く見られた。
By the way, during the epitaxial growth by MOCVD twice, Zn in the p-type AZxGa1-xAs cladding layer 5 and the p-type At2Ga1-2A8 cladding layer 8 was
It diffuses into the multilayer current blocking layer 6. Ga in the multilayer current blocking layer 6 in the epitaxial layer thickness direction is measured by SIMS.
As a result of examining the Zn concentration distribution in the As buffer layer 12.12, it was found that the carrier concentration of the p-type AtGaAs cladding layers 5 and 8 varied non-uniformly at lX10 crn t. On the other hand, in the conventional internal striation structure shown in FIG. 3, many of them oscillated at a relatively high threshold current value of about 50 volts at w=2 μm.

また30素子でのしきい電流値の分散は、本発明のもの
が、従来のものに比較して約172となった。
Further, the dispersion of threshold current values among 30 elements was approximately 172 in the device of the present invention compared to the conventional device.

理由は明らかでないが、従来の構造だと、クラッド層5
,8中のZnがn型電流阻止層中に高濃度に拡散し、拡
散以前のクラッド層とn型電流阻止層の界面に変成層が
できるためであると考えられる。
The reason is not clear, but in the conventional structure, the cladding layer 5
, 8 diffuses into the n-type current blocking layer at a high concentration, and a metamorphosed layer is formed at the interface between the cladding layer and the n-type current blocking layer before diffusion.

また、本発明の場合、不均一濃度のためにn型層のバン
ドが傾き、均一濃度の場合に比べ光生成された電子は接
合付近に長く停まり、再結合する確率が高くなる。その
結果、光起電力が発生しに<<、電流阻止効果が失効し
にくくなると考えられる。
Furthermore, in the case of the present invention, the band of the n-type layer is tilted due to the non-uniform concentration, and the photo-generated electrons stay near the junction for a longer time than in the case of uniform concentration, increasing the probability of recombination. As a result, it is thought that the current blocking effect becomes less likely to lapse due to generation of photovoltaic force.

なお、本実施例では、GaA s系、Ga AtA a
系半導体レーザについて述べたが、InP系や他の多元
混晶系を含む化合物半導体を材料とする半導体レーザ装
置についても同様に本発明を適用することができる。ま
た、GaAsバッファ層の代わりにAtGaAa層をバ
ッファ層に用いてもよい。
Note that in this example, GaAs s-based, GaAtA a
Although the description has been made regarding a semiconductor laser based on InP, the present invention can be similarly applied to a semiconductor laser device made of a compound semiconductor including an InP-based or other multi-component mixed crystal system. Furthermore, an AtGaAa layer may be used as the buffer layer instead of the GaAs buffer layer.

(発明の効果) 以上説明したように、本発明によれば、内部ストライプ
構造を容易に再現性良く形成することが可能で、その結
果、熾しきい電流値で基本横モード発振する高性能半導
体レーザ装置を提供することができ、その実用的効果は
著しい。
(Effects of the Invention) As explained above, according to the present invention, it is possible to easily form an internal stripe structure with good reproducibility, and as a result, a high-performance semiconductor laser that oscillates in the fundamental transverse mode at a severe current value can be obtained. The device can be provided, and its practical effects are significant.

図、第2図は、同実施例の作製過程を示す図、第3図は
、従来の半導体レーザ装置の断面図である。
2 are diagrams showing the manufacturing process of the same embodiment, and FIG. 3 is a sectional view of a conventional semiconductor laser device.

1・・・n型GaAs基板、2・・・n型GaAsバッ
ファ層、3− n型AtGaAaクラッド層、4− A
tGaAg活性層、5・・・p型Aj!GaAsクラッ
ド層、6・・・多層の電流阻止層、7・・・フォトレジ
スト膜、8・・・p型A/、GaAsクラッド層、9・
・・p型GaAsコンタクト層、10・・・p側オーミ
ック電極、11・・・n側オーミック電極、12 =−
GaAsバッファ層、1:l−n型GaAs層、w”’
内部ストライプ幅。
1... n-type GaAs substrate, 2... n-type GaAs buffer layer, 3- n-type AtGaAa cladding layer, 4- A
tGaAg active layer, 5...p-type Aj! GaAs cladding layer, 6... multilayer current blocking layer, 7... photoresist film, 8... p-type A/, GaAs cladding layer, 9...
...p-type GaAs contact layer, 10...p-side ohmic electrode, 11...n-side ohmic electrode, 12 =-
GaAs buffer layer, 1:l-n type GaAs layer, w"'
Internal stripe width.

第1図 1−n型GaAskk 2   n型層OASパップy1 9  9里GaAs コンククト奮 W 、内秤ストラ4フ゛嶋Figure 1 1-n type GaAskk 2 N-type layer OAS pap y1 9 9 9riGaAs Conclude W, Inner scale strut 4 ゛shima

Claims (1)

【特許請求の範囲】[Claims] 基板上に形成され、活性層を含みかつ活性層上にクラッ
ド層を有する二重ヘテロ構造からなる多層薄膜と、前記
クラッド層上に形成され、前記クラッド層とは反対導電
型を示す層を少なくとも1層含む多層からなり、さらに
所定の位置にストライプ状の窓を有する電流阻止層とを
具備し、前記多層の電流阻止層の両端の層内では層厚方
向にキャリア濃度が不均一になっていることを特徴とす
る半導体レーザ装置。
A multilayer thin film formed on a substrate and consisting of a double heterostructure including an active layer and having a cladding layer on the active layer; and a layer formed on the cladding layer and having a conductivity type opposite to that of the cladding layer. The current blocking layer has a stripe-like window at a predetermined position, and the carrier concentration is nonuniform in the layer thickness direction in the layers at both ends of the multilayer current blocking layer. A semiconductor laser device characterized by:
JP2800286A 1986-02-13 1986-02-13 Semiconductor laser device Pending JPS62186582A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2800286A JPS62186582A (en) 1986-02-13 1986-02-13 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2800286A JPS62186582A (en) 1986-02-13 1986-02-13 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS62186582A true JPS62186582A (en) 1987-08-14

Family

ID=12236589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2800286A Pending JPS62186582A (en) 1986-02-13 1986-02-13 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS62186582A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314850A (en) * 1993-03-03 1994-11-08 Nec Corp Semiconductor laser
JP2002033553A (en) * 2000-07-18 2002-01-31 Mitsubishi Electric Corp Semiconductor laser device and its manufacturing method
US6822989B1 (en) 1999-03-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and a manufacturing method for the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06314850A (en) * 1993-03-03 1994-11-08 Nec Corp Semiconductor laser
US6822989B1 (en) 1999-03-03 2004-11-23 Matsushita Electric Industrial Co., Ltd. Semiconductor laser and a manufacturing method for the same
JP2002033553A (en) * 2000-07-18 2002-01-31 Mitsubishi Electric Corp Semiconductor laser device and its manufacturing method

Similar Documents

Publication Publication Date Title
US4932033A (en) Semiconductor laser having a lateral p-n junction utilizing inclined surface and method of manufacturing same
KR100232993B1 (en) Semiconductor laser device and method of fabricating semiconductor laser device
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
US5588016A (en) Semiconductor laser device
JPH11284280A (en) Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element
JPS62186582A (en) Semiconductor laser device
JPH11121860A (en) Compound semiconductor light emitting device and its forming method
JPS61168981A (en) Semiconductor laser device
JPH09214045A (en) Semiconductor laser and its fabrication method
JPS6174382A (en) Semiconductor laser device and manufacture thereof
JP3139886B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6237557B2 (en)
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
JPH08316572A (en) Laser device
JPH02114583A (en) Manufacture of semiconductor laser
JPS6167285A (en) Semiconductor laser device
JPS62296582A (en) Semiconductor laser device
JPS62196883A (en) Semiconductor laser
JPS58118178A (en) Semiconductor light emitting element
JPS62186581A (en) Semiconductor laser device
JPH088482A (en) Semiconductor laser and manufacture thereof
JPS62296577A (en) Semiconductor laser device
JPH08167757A (en) Semiconductor laser element
JPS60258992A (en) Semiconductor laser device
JPS63221689A (en) Semiconductor light emitting device