JPS60258992A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS60258992A
JPS60258992A JP11447884A JP11447884A JPS60258992A JP S60258992 A JPS60258992 A JP S60258992A JP 11447884 A JP11447884 A JP 11447884A JP 11447884 A JP11447884 A JP 11447884A JP S60258992 A JPS60258992 A JP S60258992A
Authority
JP
Japan
Prior art keywords
substrate
layer
type
stepwise difference
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11447884A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Masaru Kazumura
数村 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11447884A priority Critical patent/JPS60258992A/en
Publication of JPS60258992A publication Critical patent/JPS60258992A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3077Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure plane dependent doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/323Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/32308Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
    • H01S5/32316Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm comprising only (Al)GaAs

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To accomplish current stricture and light confinement with good efficiency by a method wherein a double layer thin film consisting of a layer of reverse conductivity type to that of a substrate and a layer of the same conductivity type as that of the substrate is formed on the flat part other than the stepwise difference of the substrate having a stepwise difference, and a thin film of the same conductivity type as that of the substrate is formed at the stepwise difference. CONSTITUTION:A stepwise difference is provided on the (100)-plane of the p type GaAs substrate 10 in parallel with the <01-1> direction by wet-etching with a photo mask and an H2SO4 series. Next, an n type GaAs current block layer 11 is grown by MOCVD (organic metal vapor phase growth). After the growth, Zn is diffused over the whole region only in the slope of the stepwise difference by diffusion with a depth (h) from the surface 21 of the n type GaAs layer, so that the diffusion front may reach the substrate 10. At this time, this element does not diffuse to the substrate in the presence of the diffusion front in the current block layer 11 in the upper and lower parts of the stepwise difference. Further, a p type Ga1-xAlxAs clad layer 12, a Ga1-yAlyAs active layer 13, an n type Ga1-x AlxAs clad layer 14, and an n type GaAs layer 15 are grown on the current block layer 11 by MOCVD.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、近年、民生用及び産業用の各種電子機器・電
気機器用光源として、用途が急速に拡大している半導体
レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser device whose use has been rapidly expanding in recent years as a light source for various electronic and electrical devices for both consumer and industrial use. be.

(従来例の構成とその問題点) 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要な性能の1つに単一1= 一スポットでの発振、すなわち、単−横モード発振があ
げられる。これを実現するためには、活性領域付近で、
半導体レーザ素子中を流れる電流の拡がりを抑制し、か
つ、光を閉じ込める必要がある。このような半導体レー
ザは、ストライプ型半導体レーザと一般には呼ばれてい
る。
(Conventional structure and its problems) One of the important performances required of a semiconductor laser as a coherent light source for electronic and optical equipment is oscillation at a single spot, that is, single-transverse mode oscillation. can give. To achieve this, near the active region,
It is necessary to suppress the spread of the current flowing through the semiconductor laser element and to confine the light. Such a semiconductor laser is generally called a striped semiconductor laser.

比較的簡単なストライプ化の方法としては、電流狭さく
だけによる方法がある。
A relatively simple method for forming stripes is to use only current narrowing.

具体的には、プレーナ型半導体レーザにプロトン照射を
施したもの、Zn拡散を施したもの、酸化膜などの絶縁
膜を形成したものが挙げられる。これらの方法にはそれ
ぞれ重大な欠点がある。すなわち、プロトン照射を施す
と、プロトン照射時に、半導体レーザの各層の一部の結
晶が損傷を受け、半導体レーザの特性を損うことがある
。Zn拡散型の場合、700〜850℃というような高
温で処理を行なうことが多く、Zn等のドーパントの結
晶中での移動が起こり、ストライプ化は、可能であるが
、狭ストライプ化が難しい。酸化膜などの絶縁膜による
方法は、前記二つの方法と比べて作製された2− 半導体レーザ中での電流狭さくの効果が弱いという欠点
がある。
Specifically, examples include those in which a planar semiconductor laser is subjected to proton irradiation, one in which Zn is diffused, and one in which an insulating film such as an oxide film is formed. Each of these methods has significant drawbacks. That is, when proton irradiation is applied, some crystals in each layer of the semiconductor laser may be damaged during the proton irradiation, which may impair the characteristics of the semiconductor laser. In the case of the Zn diffusion type, processing is often performed at a high temperature of 700 to 850° C., and dopants such as Zn move in the crystal, making it possible to form stripes, but making narrow stripes difficult. The method using an insulating film such as an oxide film has a drawback that the effect of current narrowing in the fabricated 2-semiconductor laser is weaker than the above two methods.

(発明の目的) 本発明は、上記欠点に鑑み、強い電流狭さくと光の閉じ
込みの構造を有し、しかもその製造方法が比較的容易な
半導体レーザ装置を提供するものである。
(Object of the Invention) In view of the above-mentioned drawbacks, the present invention provides a semiconductor laser device which has a structure with strong current confinement and light confinement, and which is relatively easy to manufacture.

(発明の構成) この目的を達成するために本発明の半導体レーザ装置は
、段差下部の面と段差傾斜部の面のなす角が90”を越
える様な段差を有する導電性基板上に、薄膜が基板底面
に垂直な方向で膜厚が一定となる様に形成され、前記薄
膜は段差傾斜部直上では前記薄膜は段差傾斜部直上では
前記基板と同じ導電型を有し、他では表面部のみが前記
基板と同じ導電型を有するように構成され、前記薄膜上
に二重へテロ構造を含む多層膜が形成されている。
(Structure of the Invention) In order to achieve this object, the semiconductor laser device of the present invention has a thin film formed on a conductive substrate having a step such that the angle between the surface of the lower part of the step and the surface of the sloped part of the step exceeds 90". is formed so that the film thickness is constant in the direction perpendicular to the bottom surface of the substrate, and the thin film has the same conductivity type as the substrate just above the sloped step part, and has the same conductivity type as the substrate in the other area. has the same conductivity type as the substrate, and a multilayer film including a double heterostructure is formed on the thin film.

この構成により、単−横モード発振、低しきい値動作の
半導体レーザ装置を比較的容易に作製することがで、き
る。
With this configuration, a semiconductor laser device with single transverse mode oscillation and low threshold operation can be manufactured relatively easily.

3− (実施例の説明) 本発明の半導体レーザ装置について、実施例を以下本発
明の一実施例について図面を参照しながら具体的に説明
する。
3- (Description of Embodiments) An embodiment of the semiconductor laser device of the present invention will be specifically described below with reference to the drawings.

一例として、基板にP型GaAs基板を用いる。As an example, a P-type GaAs substrate is used as the substrate.

p型GaAs基板10の(100)面上に、フォトマス
クとH2So4系液によるウェット・エツチングにより
<OIT>方向に平行に段差を設□ける。この時、段差
の断面形状は図に示す様に、順メサ形状となる。
Steps are provided on the (100) plane of the p-type GaAs substrate 10 in parallel to the <OIT> direction by wet etching using a photomask and an H2So4 solution. At this time, the cross-sectional shape of the step becomes a mesa shape as shown in the figure.

次にMOCVD法(有機金属気相成長法)により。Next, by MOCVD method (metal organic chemical vapor deposition method).

n型GaAs電流阻止層11を膜厚1μm、キャリア濃
度I X 10” am−3を成長する。成長後、前記
n型GaAs層表面21よりZn拡散を深さhで行ない
、段差傾斜部にみ全域に拡散し、拡散フロントがp型G
aAs基板10に達する様にする。この時、段差上部及
び下部の領域のn型GaAs電流阻止層11中には拡散
フロントが存在し、p型GaAs基板には達しない。
An n-type GaAs current blocking layer 11 is grown to a thickness of 1 μm and a carrier concentration of I×10” am−3. After the growth, Zn is diffused to a depth h from the n-type GaAs layer surface 21, and a layer is formed in the sloped part of the step. Diffused throughout the area, the diffusion front is p-type G
Make sure that it reaches the aAs substrate 10. At this time, a diffusion front exists in the n-type GaAs current blocking layer 11 in the regions above and below the step, and does not reach the p-type GaAs substrate.

MOCVD法では、順メサ形状へ結晶成長を行なう時、
基板底面22に垂直な方向での膜厚がほぼ一定となるよ
うに成長できる特徴があり、この特徴4− を利用している。さらに、前記GaAs電流阻止層11
の上に、MOCVD法により、P型Ga 1− x A
 (l x A sクララド層12、Ga、−、AN、
As活性層13(0≦y < x ) tn型Ga1−
xANxAsクラッド層14、n型GaAs1ll15
を成長した。結晶成長条件は、成長速度2μmi/時、
成長温度770℃、全Gas流量5e/分、■族元素に
対する■族元素のモル比は40である。この後1図のp
型GaAs基板10とn型GaAs層15の両面に電極
を付け、電流を流したところ、図でストライプ幅Wとな
る様な狭ストライプ型半導体レーザ装置が得られた。ス
トライプ幅Wは段差傾斜部の長さと傾斜角で決まる。ス
トライプ幅Wが5μ■の時、50−A程度のしきい値で
単−横モード発振する半導体レーザ装置が得られた。
In the MOCVD method, when growing crystals into a forward mesa shape,
There is a characteristic that the film can be grown so that the film thickness in the direction perpendicular to the bottom surface 22 of the substrate is almost constant, and this characteristic 4- is utilized. Furthermore, the GaAs current blocking layer 11
P-type Ga 1- x A
(l x As clarad layer 12, Ga, -, AN,
As active layer 13 (0≦y<x) tn type Ga1-
xANxAs cladding layer 14, n-type GaAs1ll15
grew up. The crystal growth conditions were a growth rate of 2 μmi/hour,
The growth temperature was 770° C., the total gas flow rate was 5 e/min, and the molar ratio of group Ⅰ elements to group Ⅰ elements was 40. After this, p of Figure 1
When electrodes were attached to both sides of the GaAs substrate 10 and the GaAs layer 15 and a current was applied, a narrow stripe semiconductor laser device having a stripe width W in the figure was obtained. The stripe width W is determined by the length and inclination angle of the step slope. When the stripe width W was 5 .mu.m, a semiconductor laser device that oscillated in a single transverse mode with a threshold of about 50-A was obtained.

なお1本実施例では、GaAs系、GaA&As系半導
体レーザについて述べたが、InP系や他の多元混晶系
を含む化合物半導体を材料とする半導体レーザ装置につ
いても、本発明を適用することは可能である。
In this embodiment, GaAs-based and GaA&As-based semiconductor lasers have been described, but the present invention can also be applied to semiconductor laser devices made of compound semiconductors including InP-based and other multi-component mixed crystal systems. It is.

(発明の効果) 5− 以上のように、本発明は、段差を有する基板の段着部以
外の平坦部の上に前記基板と反対導電型の層と基板と同
一導電型の層からなる二層薄膜が、また段差部では基板
と同一導電型の薄膜が形成されており、電流狭さくと光
の閉じ込めが効率よく行われ、その実用的効果は大なる
ものがある。
(Effects of the Invention) 5- As described above, the present invention provides two layers consisting of a layer of a conductivity type opposite to that of the substrate and a layer of the same conductivity type as the substrate, on a flat part other than the stepped part of a substrate having a step. A thin film of the same conductivity type as the substrate is formed at the stepped portion, and when the current is narrowed, light is efficiently confined, which has a great practical effect.

【図面の簡単な説明】[Brief explanation of the drawing]

図は、本発明の一実施例で述べた半導体レーザ装置の断
面を示す。 10 =・p型GaAs基板、11−・・n型GaAs
電流阻止層、12・・・ p型GaA11Asクラッド
層、13・・・Ga1As活性層、14− n型GaA
lAsクラッド層、15− n型GaAs層、 20−
 Znn拡散量型GaAs領域21・・・GaAs層成
長表面、22・・・基板底面、W・・・実質的な電流狭
さくストライプ幅。 h・・・拡散深さ。 特許出願人 松下電器産業株式会社 6−
The figure shows a cross section of the semiconductor laser device described in one embodiment of the present invention. 10 = p-type GaAs substrate, 11-... n-type GaAs
Current blocking layer, 12- p-type GaA11As cladding layer, 13- Ga1As active layer, 14- n-type GaA
lAs cladding layer, 15- n-type GaAs layer, 20-
Znn diffusion type GaAs region 21... GaAs layer growth surface, 22... substrate bottom surface, W... substantial current narrowing stripe width. h...Diffusion depth. Patent applicant Matsushita Electric Industrial Co., Ltd.6-

Claims (1)

【特許請求の範囲】[Claims] 段差下部の面と段差傾斜部の面のなす角が90゜を越え
る様な段差を有する導電性基板上に、薄膜が基板底面に
垂直な方向で膜厚が一定となる様に形成され、前記薄膜
は段差傾斜部属上では前記基板と同じ導電型を有し、他
では表面部のみが前記基板と同じ導電型を有するように
構成され、前記薄膜上に二重へテロ構造を含む多層膜が
形成されていることを特徴とする半導体レーザ装置。
A thin film is formed on a conductive substrate having a step such that the angle between the surface of the lower part of the step and the surface of the inclined part of the step exceeds 90°, so that the film thickness is constant in the direction perpendicular to the bottom surface of the substrate, and The thin film has the same conductivity type as the substrate on the stepped slope part, and is configured so that only the surface part has the same conductivity type as the substrate on other parts, and a multilayer film including a double heterostructure is formed on the thin film. A semiconductor laser device characterized in that:
JP11447884A 1984-06-06 1984-06-06 Semiconductor laser device Pending JPS60258992A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11447884A JPS60258992A (en) 1984-06-06 1984-06-06 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11447884A JPS60258992A (en) 1984-06-06 1984-06-06 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS60258992A true JPS60258992A (en) 1985-12-20

Family

ID=14638741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11447884A Pending JPS60258992A (en) 1984-06-06 1984-06-06 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS60258992A (en)

Similar Documents

Publication Publication Date Title
Nakamura et al. CW operation of distributed‐feedback GaAs‐GaAlAs diode lasers at temperatures up to 300 K
US4948753A (en) Method of producing stripe-structure semiconductor laser
US4675710A (en) Light emitting semiconductor device
EP0264225B1 (en) A semiconductor laser device and a method for the production of the same
US4977568A (en) Semiconductor laser device
JP3078004B2 (en) Manufacturing method of semiconductor laser
JPS6174382A (en) Semiconductor laser device and manufacture thereof
US5887011A (en) Semiconductor laser
JPS60258992A (en) Semiconductor laser device
US6686217B2 (en) Compound semiconductor device manufacturing method
JPS60258991A (en) Semiconductor laser device
JPS60235485A (en) Manufacture of semiconductor laser device
JPH07283482A (en) Semiconductor laser and manufacture thereof
JPS6167285A (en) Semiconductor laser device
JPS60258990A (en) Manufacture of semiconductor laser device
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
JPH09321388A (en) Manufacture of structural substrate
JPH0414277A (en) Semiconductor laser and its manufacture
JP2908480B2 (en) Semiconductor laser device
JPS62186582A (en) Semiconductor laser device
JPH0443690A (en) Semiconductor laser element
JPS60251687A (en) Manufacture of semiconductor laser device
JPS6318875B2 (en)
JPH0559594B2 (en)
JPS60258987A (en) Semiconductor laser device and manufacture thereof