JPS60258991A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPS60258991A JPS60258991A JP11447784A JP11447784A JPS60258991A JP S60258991 A JPS60258991 A JP S60258991A JP 11447784 A JP11447784 A JP 11447784A JP 11447784 A JP11447784 A JP 11447784A JP S60258991 A JPS60258991 A JP S60258991A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- substrate
- type
- semiconductor laser
- stepwise difference
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2054—Methods of obtaining the confinement
- H01S5/2059—Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2238—Buried stripe structure with a terraced structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/305—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
- H01S5/3077—Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure plane dependent doping
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/32308—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm
- H01S5/32316—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength less than 900 nm comprising only (Al)GaAs
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、近年、民生用及び産業上の各種電子機器・電
気機器用光源として、用途が急速に拡大している半導体
レーザ装置に関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor laser device whose use has been rapidly expanding in recent years as a light source for various consumer and industrial electronic and electrical devices. be.
(従来例の構成とその問題点)
電子機器、光学機器のコヒーレント光源として半導体レ
ーデに要求される重要な性能の1つに、単一スポットで
の発振、すなわち、単−横モード発振があげられる。こ
れを実現するためには、活性領域付近で、半導体レーザ
素子中を流れる電流の拡がシを抑制し、かつ、光を閉じ
込める必要がある。このような半導体レーデは、ストラ
イプ型半導体レーザと一般には呼ばれている。(Conventional configuration and its problems) One of the important performances required of a semiconductor radar as a coherent light source for electronic and optical equipment is oscillation in a single spot, that is, single-transverse mode oscillation. . To achieve this, it is necessary to suppress the spread of the current flowing through the semiconductor laser device near the active region and to confine light. Such a semiconductor laser is generally called a striped semiconductor laser.
比較的簡単なストライプ化の方法としては、電流狭さく
だけによる方法がある。A relatively simple method for forming stripes is to use only current narrowing.
具体的には、ゾレーナ型半導体レーザにプロトン照射を
施したもの、zn拡散を施したもの、酸化膜などの絶縁
膜を形成したものが挙げられる。とれらの方法にはそれ
ぞれ重大な欠点がある。すなわち、プロトン照射を施す
と、プロトン照射時に、半導体レーザの各層の一部の結
晶が損傷を受け、半導体レーザの特性を損うことがある
。Zn拡散型の場合、700〜850℃というような高
温で処理を行なうことが多く、Zn等のドーパントの結
晶中での移動が起とシ、ストライプ化は、可能であるが
、狭ストライプ化が難しい。酸化膜などの絶縁膜による
方法は、前記二つの方法と比べて作製された半導体レー
ザ中での電流狭さくの効果が弱いという欠点がある。Specifically, examples include those in which a solena type semiconductor laser is subjected to proton irradiation, one in which Zn diffusion is applied, and one in which an insulating film such as an oxide film is formed. Each of these methods has significant drawbacks. That is, when proton irradiation is applied, some crystals in each layer of the semiconductor laser may be damaged during the proton irradiation, which may impair the characteristics of the semiconductor laser. In the case of Zn diffusion type, processing is often carried out at high temperatures such as 700 to 850°C, which causes migration of dopants such as Zn in the crystal, and although it is possible to form stripes, it is difficult to form narrow stripes. difficult. The method using an insulating film such as an oxide film has a drawback that the effect of current narrowing in the manufactured semiconductor laser is weaker than the above two methods.
(発明の目的)
本発明は上記欠点に鑑み、強い電流狭さくと光の閉じ込
めの構造を有し、しかもその製造方法が比較的容易な半
導体レーザ装置を提供するものである。(Object of the Invention) In view of the above drawbacks, the present invention provides a semiconductor laser device which has a structure with strong current confinement and light confinement, and which is relatively easy to manufacture.
(発明の構成)
この目的を達成するために本発明の半導体レーザ装置は
、段差下部の面と段差傾斜部の面の力す角が90°を超
える段差、いわゆる順メサ形状の段差を有する基板上に
二重へテロ構造を含む多層薄膜が、基板底面に垂直な方
向の各層膜厚が均一になる様に形成され、しかも、表面
から一定の深さまで基板と反対導電型の不純物拡散領域
が形成されて構成される。この構成によシ、単−横モー
ド発振、低しきい値動作の半導体レーザ装置を実現する
ことができる。(Structure of the Invention) In order to achieve this object, a semiconductor laser device of the present invention is provided with a substrate having a step having a so-called forward mesa shape, in which the force angle between the surface of the lower part of the step and the surface of the inclined part of the step exceeds 90°. A multilayer thin film containing a double heterostructure is formed on the substrate so that the thickness of each layer in the direction perpendicular to the bottom surface of the substrate is uniform, and an impurity diffusion region of the opposite conductivity type to the substrate is formed from the surface to a certain depth. Formed and composed. With this configuration, a semiconductor laser device with single transverse mode oscillation and low threshold operation can be realized.
(実施例の説明)
以下本発明の一実施例について図面を参照しながら具体
的に説明する。(Description of Embodiment) An embodiment of the present invention will be specifically described below with reference to the drawings.
一例として、基板にn型GaAs基板を用いる。n型G
aAs基板10の(ioo)面上に、フォトリングラフ
ィとH2SO4系液によるwet etchingによ
シ(011)方向に平行に段差を設ける。この時、段差
の断面形状は図に示す様に、順メサ形状となる。次にM
OCVD法(有機金属気相成長法)によシ、n型Ga1
−zAtxAsクラッド層11 、Ga1−yAtyA
s活性層12(0≦y<X)、p型Ga 1−xA/−
x Asクラッド層13、n型GaAs電流阻止層14
を形成する。この時、各層の膜厚は、基板底面20に垂
直な方向で均一となるように結晶成長を行なった。成長
条件は、成長速度2μm/時、成長温度770℃、全G
as流量5 t/分、■族元素に対する■族元素のモル
比は40である。この後、図に示す様に、最上部の薄膜
層、すなわち、この場合n型GaAs 電流阻止層14
の表面21にマスクレスでZnを拡散する。MOCVD
法による段差上への結晶成長の特徴として、段差傾斜部
での各層の膜厚は、段差上部及び下部の膜厚よシ薄く成
長する。この特徴金利用し、段差傾斜部でのみp型Ga
1−XAIXA8クラッド層13に達する様にZn拡散
を深さhだけ行なう。As an example, an n-type GaAs substrate is used as the substrate. n-type G
Steps are provided on the (ioo) plane of the aAs substrate 10 in parallel to the (011) direction by photolithography and wet etching using an H2SO4-based liquid. At this time, the cross-sectional shape of the step becomes a mesa shape as shown in the figure. Next M
By OCVD method (organic metal vapor phase epitaxy), n-type Ga1
-zAtxAs cladding layer 11, Ga1-yAtyA
s active layer 12 (0≦y<X), p-type Ga 1-xA/-
x As cladding layer 13, n-type GaAs current blocking layer 14
form. At this time, crystal growth was performed so that the thickness of each layer was uniform in the direction perpendicular to the bottom surface 20 of the substrate. The growth conditions were a growth rate of 2 μm/hour, a growth temperature of 770°C, and a total G
The as flow rate was 5 t/min, and the molar ratio of the group II element to the group II element was 40. After this, the top thin film layer, in this case an n-type GaAs current blocking layer 14, is applied as shown in the figure.
Zn is diffused onto the surface 21 without a mask. MOCVD
A characteristic of crystal growth on a step by the method is that the film thickness of each layer at the sloped part of the step grows thinner than the film thickness at the top and bottom of the step. By using this characteristic gold, p-type Ga is formed only in the sloped part of the step.
1-XAIXA8 Zn diffusion is performed to a depth h so as to reach the cladding layer 13.
MOCVD法による薄膜成長時の膜厚の制御性及び均′
−性は良く、上記のZn拡散は容易に再現性よく実現
できる。n型GaA s電流阻止層14とn型GaAs
基板10の両面に電極を付け、電流を流したところ、図
でストライプ幅Wとなる様な狭ストライプ型半導体レー
ザ装置が得られた。段差傾斜部の長さを10μmとする
と、ストライプ幅Wは5μm程度となる。このストライ
プ幅で電流は狭さくされ、50mA程度のしきい値で単
−横モード発振を実現できた。Controllability and uniformity of film thickness during thin film growth by MOCVD method
- properties are good, and the above Zn diffusion can be easily realized with good reproducibility. n-type GaAs current blocking layer 14 and n-type GaAs
When electrodes were attached to both sides of the substrate 10 and a current was applied, a narrow stripe type semiconductor laser device having a stripe width W in the figure was obtained. If the length of the step slope portion is 10 μm, the stripe width W is about 5 μm. The current was narrowed by this stripe width, and single-transverse mode oscillation could be achieved with a threshold of about 50 mA.
なお、本実施例では、GaAs系m GaAtA s光
半導体レーザについて述べたが、InP系や他の多元混
晶系を含む化合物半導体を材料とする半導体レーザ装置
についても、本発明を適用することは可能である。Although this embodiment describes a GaAs-based mGaAtAs optical semiconductor laser, the present invention can also be applied to semiconductor laser devices made of compound semiconductors including InP-based and other multi-component mixed crystal systems. It is possible.
(発明の効果)
以上のように、本発明は、順メサ形状の段差を有する一
基板上に、二重へテロ構造を含む多層膜が、(5)
基板に垂直方向の各層厚が均一になるように形成され、
表面から基板と反対導電型の不純物が拡散された領域を
有しておシ、電流狭さくと光の閉じ込めが効率よく行わ
れ、その実用的効果は大なるものがある。(Effects of the Invention) As described above, the present invention provides a structure in which (5) a multilayer film including a double heterostructure is formed on a single substrate having a mesa-shaped step so that the thickness of each layer in the direction perpendicular to the substrate is uniform; formed to be,
It has a region in which impurities of a conductivity type opposite to that of the substrate are diffused from the surface, and when the current is narrowed, light is efficiently confined, which has a great practical effect.
図は、本発明の実施例の半導体レーザ装置の断面を示す
。
10− n型GaAs基板、11 ・n型GaAtAa
クラッド層、12− GaAtAs活性層、p型Ga
AtAs クラッド層、14・・・n型GaAs電流阻
止層、15・・・Zn拡散領域、W・・・実質的な電流
狭さくストライプ幅、h・・・拡散深さ、20・・・基
板底面、21・・・n型GaAs電流阻止層表面(Zn
拡散適用表面)。
(6)The figure shows a cross section of a semiconductor laser device according to an embodiment of the present invention. 10- n-type GaAs substrate, 11 ・n-type GaAtAa
Cladding layer, 12-GaAtAs active layer, p-type Ga
AtAs cladding layer, 14... n-type GaAs current blocking layer, 15... Zn diffusion region, W... substantial current narrowing stripe width, h... diffusion depth, 20... substrate bottom surface, 21...n-type GaAs current blocking layer surface (Zn
diffusion application surface). (6)
Claims (1)
る段差を有する基板上に二重へテロ構造を含む多層薄膜
が、基板底面に垂直な方向の各層膜厚が各層ごとに均一
になるように形成され、最上部の薄膜層表面から一定の
深さまで前記基板と反対導電型の不純物の拡散領域が形
成されていることを特徴とする半導体レーザ装置。A multilayer thin film containing a double heterostructure is formed on a substrate having a step where the angle between the bottom part of the step and the inclined part of the step exceeds 90°, and the thickness of each layer in the direction perpendicular to the bottom of the substrate is uniform for each layer. 1. A semiconductor laser device characterized in that a diffusion region of an impurity of a conductivity type opposite to that of the substrate is formed to a certain depth from the surface of the uppermost thin film layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11447784A JPS60258991A (en) | 1984-06-06 | 1984-06-06 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11447784A JPS60258991A (en) | 1984-06-06 | 1984-06-06 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS60258991A true JPS60258991A (en) | 1985-12-20 |
Family
ID=14638714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11447784A Pending JPS60258991A (en) | 1984-06-06 | 1984-06-06 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60258991A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2693047A1 (en) * | 1992-06-24 | 1993-12-31 | Fujitsu Ltd | Heterostructure semiconductor laser fabrication method with epitaxy on mesa patterned substrate - using epitaxial MOCVD growth of current stop gallium arsenide layer on sides of mesa stripe, with tri:methyl gallium as source gas |
-
1984
- 1984-06-06 JP JP11447784A patent/JPS60258991A/en active Pending
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2693047A1 (en) * | 1992-06-24 | 1993-12-31 | Fujitsu Ltd | Heterostructure semiconductor laser fabrication method with epitaxy on mesa patterned substrate - using epitaxial MOCVD growth of current stop gallium arsenide layer on sides of mesa stripe, with tri:methyl gallium as source gas |
US5336635A (en) * | 1992-06-24 | 1994-08-09 | Fujitsu Limited | Manufacturing method of semiconductor laser of patterned-substrate type |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69032451T2 (en) | Semiconductor laser and method of manufacturing the same | |
US4948753A (en) | Method of producing stripe-structure semiconductor laser | |
JPH02288288A (en) | Manufacture of buried hetero-structure laser diode | |
JPH0864907A (en) | Manufacture of planar buried laser diode | |
JP2525788B2 (en) | Method for manufacturing semiconductor laser device | |
JPS6174382A (en) | Semiconductor laser device and manufacture thereof | |
JPS6144485A (en) | Semiconductor laser device and manufacture thereof | |
JPS5810875B2 (en) | handout | |
JPS60258991A (en) | Semiconductor laser device | |
JPS60235485A (en) | Manufacture of semiconductor laser device | |
JPS60258992A (en) | Semiconductor laser device | |
JPS60251687A (en) | Manufacture of semiconductor laser device | |
JPS60258990A (en) | Manufacture of semiconductor laser device | |
JPS60258987A (en) | Semiconductor laser device and manufacture thereof | |
JPS62179790A (en) | Semiconductor laser | |
JPH11354880A (en) | Semiconductor laser element and its manufacturing method | |
JPS6167285A (en) | Semiconductor laser device | |
JPS60258986A (en) | Manufacture of semiconductor laser device | |
JPS6318875B2 (en) | ||
JPS61161787A (en) | Manufacture of semiconductor laser device | |
JPS6276691A (en) | Manufacture of semiconductor laser device | |
JPH02114583A (en) | Manufacture of semiconductor laser | |
JPS6118191A (en) | Semiconductor laser device and manufacture thereof | |
JPS62186581A (en) | Semiconductor laser device | |
JPS60201684A (en) | Semiconductor laser device and manufacture thereof |