JPS60258986A - Manufacture of semiconductor laser device - Google Patents

Manufacture of semiconductor laser device

Info

Publication number
JPS60258986A
JPS60258986A JP11447184A JP11447184A JPS60258986A JP S60258986 A JPS60258986 A JP S60258986A JP 11447184 A JP11447184 A JP 11447184A JP 11447184 A JP11447184 A JP 11447184A JP S60258986 A JPS60258986 A JP S60258986A
Authority
JP
Japan
Prior art keywords
layer
substrate
type
type gaas
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11447184A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Masaru Kazumura
数村 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11447184A priority Critical patent/JPS60258986A/en
Publication of JPS60258986A publication Critical patent/JPS60258986A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the titled device of single lateral mode oscillation at low threshold values by a method wherein a multilayer thin film including a double hetero structure is formed by the liquid phase epitaxial method after a thin film layer showing reverse conductivity type to that of a substrate is formed on the surface of the conductive substrate having a stepwise difference by ion implantation and then partly removed. CONSTITUTION:A photo resist film 22 is left on the surface in the upper part of the stepwise difference by coating the surface 20 with photo resist. The surface 21 is exposed by etching with an H2SO4 series etchant. This can form the part without an N-type GaAs layer 11 at the slope of the stepwise difference. Thereafter, the substrate surface is cleanned by removing the photo resist film 22; then, crystal growth is carried out by LPE. After etching treatment, a P-type Ga1-xAlxAs clad layer 12, a Ga1-yAlyAs active layer 13, an N-type Ga1-xAlxAs clad layer 14, and an N-type GaAs layer 15 are formed on the surface 21, so that the growing surface may become flat. When current is passed after preparation of electrodes on both the P-type GaAs substrate 10 and the N-type GaAs 15, the current is injected from the substrate 10 to the P-type Ga1-xAlxAs layer 12 with a width W, resulting in the realiztion of current stricture.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、近年、民生用及び産業用の各種電子機器・電
気機器用光源として、用途が急速に拡大している半導体
レーザ装置の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor laser device, whose use has been rapidly expanding in recent years as a light source for various electronic and electrical devices for consumer and industrial use. It is related to.

(従来例の構成とその問題点) 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要な性能の1つに、単一スポットで
の発振、すなわち、単−横モード発振があげられる。こ
れを実現するためには、活性領域付近で、半導体レーザ
素子中を流れる電流の拡がりを抑制し、かつ、光を閉じ
込める必要がある。このような半導体レーザは、ストラ
イプ型半導体レーザと一般には呼ばれている。
(Conventional configuration and its problems) One of the important performances required of a semiconductor laser as a coherent light source for electronic and optical equipment is oscillation in a single spot, that is, single-transverse mode oscillation. . To achieve this, it is necessary to suppress the spread of the current flowing through the semiconductor laser device and to confine light near the active region. Such a semiconductor laser is generally called a striped semiconductor laser.

比較的簡単なストライプ化の方法としては、電流狭さく
だけによる方法がある。
A relatively simple method for forming stripes is to use only current narrowing.

具体的には、プレーナ型半導体レーザにプロトン照射を
施したもの、Zn拡散を施したもの、酸化膜などの絶縁
膜を形成したものが挙げられる。これらの方法にはそれ
ぞれ重大な欠点がある。す々わち、プロトン照射を施す
と、プロトン照射時に、半導体レーザの各層の一部の結
晶が損傷を受け、半導体レーザの特性を損う事がある。
Specifically, examples include those in which a planar semiconductor laser is subjected to proton irradiation, one in which Zn is diffused, and one in which an insulating film such as an oxide film is formed. Each of these methods has significant drawbacks. That is, when proton irradiation is applied, some crystals in each layer of the semiconductor laser may be damaged during the proton irradiation, which may impair the characteristics of the semiconductor laser.

また、Zn拡散型の場合、700〜850℃というよう
な高温で処理を行なう事が多く、Zn等のドーパントの
結晶中での移動が起こり、ストライプ化は、可能である
が、狭ストライプ化が難しい。酸化膜などの絶縁膜によ
る方法は、前記二つの方法と比べて作製された半導体レ
ーザ中での電流狭さくの効果が弱いという欠点がある。
In addition, in the case of Zn diffusion type, processing is often performed at high temperatures such as 700 to 850°C, which causes migration of dopants such as Zn in the crystal, making it possible to form stripes, but it is difficult to form narrow stripes. difficult. The method using an insulating film such as an oxide film has a disadvantage in that the effect of narrowing the current in the manufactured semiconductor laser is weaker than the above two methods.

(発明の目的) 本発明は上記欠点に鑑み、基板上に電流制限層を設け、
前記電流制限層上に二重へテロ構造を含む多層薄膜を構
成して、前記電流制限層により、内部に狭ストライプ構
造を形成し、低しきい値で基本横モードで発振する半導
体レーザ装置を実現する半導体レーザ装置の製造方法を
提供するものである。
(Object of the invention) In view of the above drawbacks, the present invention provides a current limiting layer on a substrate,
A multilayer thin film including a double heterostructure is formed on the current limiting layer, the current limiting layer forms a narrow stripe structure inside, and the semiconductor laser device oscillates in a fundamental transverse mode at a low threshold. The present invention provides a method for manufacturing a semiconductor laser device.

(発明の構成) この目的を達成するために本発明の半導体レーザ装置の
製造方法は、段差を有する導電性基板表面に、前記基板
とは逆の導電型を示す薄膜層をイオン注入法で形成し、
前記薄膜層の一部を除去したのち、 LPE法(液相エ
ピタキシャル法)により二重へテロ構造を含む多層薄膜
を形成することにより構成される。この構成により、内
部に電流狭さく用のストライプ構造を有し、基本横モー
ド発振、低しきい値動作の半導体レーザ装置を容易に作
製することができる。
(Structure of the Invention) In order to achieve this object, the method for manufacturing a semiconductor laser device of the present invention includes forming a thin film layer having a conductivity type opposite to that of the substrate on the surface of a conductive substrate having a step by ion implantation. death,
After removing a portion of the thin film layer, a multilayer thin film including a double heterostructure is formed by an LPE method (liquid phase epitaxial method). With this configuration, it is possible to easily manufacture a semiconductor laser device that has a stripe structure for current confinement inside, and has fundamental transverse mode oscillation and low threshold operation.

(3) (実施例の説明) 本発明の一実施例について、図面を参照しながら具体的
に説明する。
(3) (Description of Embodiment) An embodiment of the present invention will be specifically described with reference to the drawings.

一例として、導電性基板にp型GaAs基板を用いる。As an example, a p-type GaAs substrate is used as the conductive substrate.

p型GaAs基板10の(100)面上に、フォトリソ
グラフィによシ段差を設ける。この時、段差の断面形状
は第1図又は第2図のように々る。
A step is provided on the (100) plane of the p-type GaAs substrate 10 by photolithography. At this time, the cross-sectional shape of the step is as shown in FIG. 1 or 2.

次にイオン注入法により、p型GaA s基板10(キ
ャリア濃度〜1018cIrL−3)の表面20より、
nの 静株純物(例えばs i20 + )を600 keV
の加速電圧により注入し、1μmの厚さのn型GaAs
層11(キャリア濃度〜5×10cIrL)を形成する
。イオン注入後には、As馬雰囲気で800℃、20分
のキャップレスアニールを行なった。この場合、第1図
では、段差傾斜部には、n型GaAs層]1のない部分
がある。第2図の場合は第1図と異なり、表面n型Ga
As層11のない部分はない。第2図の場合、フォトレ
ジストを表面20に塗布し、段差上部の面上にフォトレ
ジスト膜22を第2図のように残す。H2SO4系のエ
ツチング液によシエッチングし、(4) 第2図の破線で示す面21が出るようにする。このこと
によシ、第1図と同様に、段差傾斜部に、n型GaAs
層11のない部分を形成できる。この後、フォトレジス
ト膜22を除去し、基板表面を清浄化した後、LPE法
により結晶成長を行なう。第1図の場合は、イオン注入
し、アニール処理した基板をそのまま用い、LPE法に
より結晶成長を行なう。成長温度850℃、過飽和度7
℃、0,5℃/分のCooling Rateにより結
晶成長を行なった。第1図の表面20又は第2図のエツ
チング処理後表面21上に、p型Ga1.−xAtXA
Sクラッド層12 、 Ga、 −yALyAs活性層
13(0≦y<x )、n型Ga1、AtX八8へラッ
ド層14、n型GaAs層15を形成し、成長表面が平
坦となるようにする。p型GaAs基板10とn型Ga
As層15の両方に電極を作製し、電流を流すと、p型
GaAs基板10からp型Ga H−、AtxAs層1
2へは、第3図に示す幅Wで電流が注入され、電流狭さ
くが実現する。これは、n型GaAs層11が、p型G
a 、−XAtxAsクラッド層12とp / n接合
を形成し、電性注入時には、p/n接合が逆方(5) 向バイアスとなるためである。この結果、W=2μmで
しきい値電流が20 mAである低しきい値の半導体レ
ーザ装置が得られた。この時、同時に単−横モード発振
も実現できた。
Next, by ion implantation, from the surface 20 of the p-type GaAs substrate 10 (carrier concentration ~1018cIrL-3),
n static strain pure (e.g. s i20 + ) at 600 keV
1 μm thick n-type GaAs was implanted with an accelerating voltage of
A layer 11 (carrier concentration ~5×10 cIrL) is formed. After the ion implantation, capless annealing was performed at 800° C. for 20 minutes in an As atmosphere. In this case, in FIG. 1, there is a portion in the step slope where the n-type GaAs layer 1 is not present. In the case of Fig. 2, unlike Fig. 1, the surface n-type Ga
There is no part without the As layer 11. In the case of FIG. 2, a photoresist is applied to the surface 20, and a photoresist film 22 is left on the surface above the step as shown in FIG. Etching is performed using an H2SO4-based etching solution, and (4) the surface 21 shown by the broken line in FIG. 2 is exposed. As a result, as in FIG. 1, n-type GaAs is
A portion without layer 11 can be formed. Thereafter, the photoresist film 22 is removed and the substrate surface is cleaned, followed by crystal growth using the LPE method. In the case of FIG. 1, the ion-implanted and annealed substrate is used as it is, and crystal growth is performed by the LPE method. Growth temperature 850℃, supersaturation degree 7
Crystal growth was performed at a cooling rate of 0.5°C/min. On the surface 20 of FIG. 1 or the etched surface 21 of FIG. -xAtXA
A cladding layer 14 and an n-type GaAs layer 15 are formed on the S cladding layer 12, Ga, -yALyAs active layer 13 (0≦y<x), n-type Ga1, AtX88, and the growth surface is made flat. . p-type GaAs substrate 10 and n-type Ga
When electrodes are made on both sides of the As layer 15 and a current is applied, the p-type GaH-, AtxAs layer 1 is removed from the p-type GaAs substrate 10.
2, a current is injected with a width W shown in FIG. 3, and current narrowing is realized. This means that the n-type GaAs layer 11 is
This is because a p/n junction is formed with the -XAtxAs cladding layer 12, and the p/n junction becomes biased in the reverse (5) direction during electrical injection. As a result, a low threshold semiconductor laser device with W=2 μm and a threshold current of 20 mA was obtained. At this time, single-transverse mode oscillation was also achieved.

kお、本実施例では、GaAs系、 GaAtAs系半
導体レーザについて述べたが、InP系や他の多元混晶
系を含む化合物半導体を材料とする半導体レーザ装置に
ついても同様に本発明を適用できる。
In this embodiment, GaAs-based and GaAtAs-based semiconductor lasers have been described, but the present invention can be similarly applied to semiconductor laser devices made of compound semiconductors including InP-based and other multi-component mixed crystal systems.

(発明の効果) 本発明は、低しきい値で単−横モード発振する半導体レ
ーザ装置の製造方法を与えるものであって、その実用的
効果は著しい。
(Effects of the Invention) The present invention provides a method for manufacturing a semiconductor laser device that oscillates in a single transverse mode at a low threshold value, and its practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、逆メサ基板上への本実施例で示したイオン注
入法による薄膜形成後の断面を示す図、第2図は、順メ
サ基板を用いた場合の、イオン注入法による薄膜形成後
の断面と、内部ストライプの形成方法を示す図、第3図
は、本発明を適用して作製した半導体レーザ装置の一例
を示す図である。 (6) 10 ・p型GaAs基板、11− n型GaAs層、
12”’p型GaAtAsクラッド層、] 3− Ga
AAAs活性層、14− n型GaA7Asクラッド層
、15− n型GaAs層、20・・・段差を有する基
板の表面、21・・・LPE法を行なう前の基板面、W
・・・注入電流ストライプ幅。 也 (7) 第1図 第2図 2
Figure 1 is a cross-sectional view of a thin film formed by the ion implantation method shown in this example on a reverse mesa substrate, and Figure 2 is a diagram showing the thin film formed by the ion implantation method when a forward mesa substrate is used. FIG. 3, which is a diagram showing a later cross section and a method of forming internal stripes, is a diagram showing an example of a semiconductor laser device manufactured by applying the present invention. (6) 10 - p-type GaAs substrate, 11- n-type GaAs layer,
12''' p-type GaAtAs cladding layer,] 3-Ga
AAAs active layer, 14- n-type GaA7As cladding layer, 15- n-type GaAs layer, 20... surface of substrate having a step, 21... substrate surface before performing LPE method, W
...Injection current stripe width. Ya (7) Figure 1 Figure 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 段差を有する半導体基板表面に、前記基板とは逆の導電
型を示す薄膜層をイオン注入法により形成し、LPE法
(液相エピタキシャル法)により、二重へテロ構造を含
む多層薄膜を形成することを特徴とする半導体レーザ装
置の製造方法。
A thin film layer having a conductivity type opposite to that of the substrate is formed on the surface of a semiconductor substrate having a step by an ion implantation method, and a multilayer thin film including a double heterostructure is formed by an LPE method (liquid phase epitaxial method). A method of manufacturing a semiconductor laser device, characterized in that:
JP11447184A 1984-06-06 1984-06-06 Manufacture of semiconductor laser device Pending JPS60258986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11447184A JPS60258986A (en) 1984-06-06 1984-06-06 Manufacture of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11447184A JPS60258986A (en) 1984-06-06 1984-06-06 Manufacture of semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS60258986A true JPS60258986A (en) 1985-12-20

Family

ID=14638562

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11447184A Pending JPS60258986A (en) 1984-06-06 1984-06-06 Manufacture of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS60258986A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693047A1 (en) * 1992-06-24 1993-12-31 Fujitsu Ltd Heterostructure semiconductor laser fabrication method with epitaxy on mesa patterned substrate - using epitaxial MOCVD growth of current stop gallium arsenide layer on sides of mesa stripe, with tri:methyl gallium as source gas

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2693047A1 (en) * 1992-06-24 1993-12-31 Fujitsu Ltd Heterostructure semiconductor laser fabrication method with epitaxy on mesa patterned substrate - using epitaxial MOCVD growth of current stop gallium arsenide layer on sides of mesa stripe, with tri:methyl gallium as source gas
US5336635A (en) * 1992-06-24 1994-08-09 Fujitsu Limited Manufacturing method of semiconductor laser of patterned-substrate type

Similar Documents

Publication Publication Date Title
JPH02129986A (en) Semiconductor laser device and manufacture thereof
JPH0474877B2 (en)
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
JPH04162689A (en) Manufacture of semiconductor light emitting device
JP2525788B2 (en) Method for manufacturing semiconductor laser device
JPS6174382A (en) Semiconductor laser device and manufacture thereof
JP3421140B2 (en) Method of manufacturing semiconductor laser device and semiconductor laser device
JPS60258986A (en) Manufacture of semiconductor laser device
JPS6144485A (en) Semiconductor laser device and manufacture thereof
Tsang et al. Lateral current confinement by reverse‐biased junctions in GaAs‐AlxGa1− xAs DH lasers
JPS63222489A (en) Manufacture of semiconductor laser
JPS60251687A (en) Manufacture of semiconductor laser device
JPS60258987A (en) Semiconductor laser device and manufacture thereof
JPS60258988A (en) Manufacture of semiconductor laser device
JPS60258991A (en) Semiconductor laser device
JPS60235485A (en) Manufacture of semiconductor laser device
JPS5956783A (en) Semiconductor laser
JPH0559594B2 (en)
JPS6178185A (en) Semiconductor laser device
JPS6167285A (en) Semiconductor laser device
JP2538613B2 (en) Semiconductor laser and manufacturing method thereof
JPS61161787A (en) Manufacture of semiconductor laser device
JPS60258992A (en) Semiconductor laser device
JPS63287079A (en) Manufacture of semiconductor laser
JPH02114583A (en) Manufacture of semiconductor laser