JPS60251687A - Manufacture of semiconductor laser device - Google Patents

Manufacture of semiconductor laser device

Info

Publication number
JPS60251687A
JPS60251687A JP10747684A JP10747684A JPS60251687A JP S60251687 A JPS60251687 A JP S60251687A JP 10747684 A JP10747684 A JP 10747684A JP 10747684 A JP10747684 A JP 10747684A JP S60251687 A JPS60251687 A JP S60251687A
Authority
JP
Japan
Prior art keywords
layer
onto
substrate
type
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10747684A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Masaru Kazumura
数村 勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP10747684A priority Critical patent/JPS60251687A/en
Publication of JPS60251687A publication Critical patent/JPS60251687A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2238Buried stripe structure with a terraced structure

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain a semiconductor laser device, which oscillates at a single transverse mode and operates at a low threshold, by removing one part of a thin-film layer, which is formed onto one conduction type semiconductor substrate with a stepped section and displays a conduction type reverse to the substrate, and shaping a multilayer thin-film containing double hetero-structure onto the thin-film layer through a liquid-phase epitaxial method. CONSTITUTION:A stepped section is formed in parallel in the <011> direction through photolithography onto the 100 face of a P type GaAs substrate 10. An N type GaAs current stopping layer 11 (carrier concentration: approximately 1X10<19>cm<-3>) is grown onto the stepped section in approximately 1mum through a MOCVD method. A photo-resist is applied, a photo-resist film 12 is left onto a surface in the upper section of the stepped section, and a surface shown in a broken line 20 is exposed through etching. The photo-resist film 12 is removed, the surface of the substrate is purified, a crystal is grown through a LPE method, a P type Ga1-xAlxAs clad layer 13, a Ga1-yAlyAs active layer 14, an N type Ga1-xAlxAs clad layer 15 and an N type GaAs layer 16 are shaped onto the surface shown in the broken line 20, and a grown surface is flattened.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、近年、民生用及び産業用の各種電子機器・電
気機器用光源として、用途が急速に拡大している半導体
レーザ装置の製造方法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for manufacturing a semiconductor laser device, whose use has been rapidly expanding in recent years as a light source for various electronic and electrical devices for consumer and industrial use. It is related to.

(従来例の構成とその問題点) 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要な性能の1つに、単一スポットで
の発振、すなわち単−横モード発振があげられる。これ
を実現するためには、活性領域付近で、半導体レーザ素
子中を流れる電流の拡がりを抑制し、かつ、光を閉じ込
める必要がある。このような半導体レーザは、一般にス
トライプ型半導体レーザと呼ばれている。
(Constitution of Conventional Example and Problems thereof) One of the important performances required of a semiconductor laser as a coherent light source for electronic equipment and optical equipment is oscillation in a single spot, that is, single-transverse mode oscillation. To achieve this, it is necessary to suppress the spread of the current flowing through the semiconductor laser device and to confine light near the active region. Such a semiconductor laser is generally called a striped semiconductor laser.

比較的簡単なストライプ化の方法としては、電流狭さく
だけによる方法がある。
A relatively simple method for forming stripes is to use only current narrowing.

具体的には、プレーナ型半導体レーザにプロトン照射を
施したもの、Zn拡散を施したもの、酸化膜などの絶縁
膜を形成したものが挙げられる。これらの方法にはそれ
ぞれ重大な欠点がある。プロトン照射を施すと、プロト
ン照射時に、半導体レーザの各層の一部の結晶が損傷を
受け、半導体レーザの特性を損うことがある。Zn拡散
型の場合、700〜850℃というような高温で処理を
行なうことが多く、Zn等のドーパントの結晶中での移
動が起こり、ストライプ化は可能であるが、狭ストライ
プ化が難しい。酸化膜などの絶縁膜による方法は、前記
二つの方法と比べて作製された半導体レーザ中での電流
狭さくの効果が弱いという欠点がある。
Specifically, examples include those in which a planar semiconductor laser is subjected to proton irradiation, one in which Zn is diffused, and one in which an insulating film such as an oxide film is formed. Each of these methods has significant drawbacks. When proton irradiation is applied, some crystals in each layer of the semiconductor laser are damaged during the proton irradiation, which may impair the characteristics of the semiconductor laser. In the case of the Zn diffusion type, processing is often performed at a high temperature of 700 to 850° C., and dopants such as Zn move in the crystal, making it possible to form stripes, but making narrow stripes difficult. The method using an insulating film such as an oxide film has a disadvantage in that the effect of narrowing the current in the manufactured semiconductor laser is weaker than the above two methods.

(発明の目的) 本発明は、上記欠点に鑑み、半導体基板上に電流制限層
を設け、その上に二重へテロ構造を含む多層薄膜を構成
して、前記電流制限層により、内部に狭ストライプ構造
を形成する半導体レーザ装置の製造方法を提供するもの
である。
(Object of the Invention) In view of the above-mentioned drawbacks, the present invention provides a current limiting layer on a semiconductor substrate, configures a multilayer thin film including a double heterostructure on the current limiting layer, and creates a narrow space inside by the current limiting layer. A method of manufacturing a semiconductor laser device forming a striped structure is provided.

(発明の構成) この目的を達成するために、本発明の半導体レーザ装置
の製造方法は、段差を有する一導電型半導体基板上に、
この基板とは逆の導電型を示す薄膜層をMOC,VD法
(有機金属気相成長法)で形成し、その薄膜層の一部を
除去したのち、その上に、LPE法(液相エピタキシャ
ル法)により二重へテロ構造を含む多層薄膜を形成する
ことにより構成される。この構成により、内部に電流狭
さく用ストライプを有し、単−横モード発振、低しきい
値動作の半導体レーザ装置を容易に実現することができ
る。
(Structure of the Invention) In order to achieve this object, the method for manufacturing a semiconductor laser device of the present invention provides a method for manufacturing a semiconductor laser device of the present invention.
A thin film layer having a conductivity type opposite to that of the substrate is formed using the MOC or VD method (metal-organic vapor phase epitaxy), and after removing a part of the thin film layer, a LPE method (liquid phase epitaxial growth method) is applied on top of it. It is constructed by forming a multilayer thin film containing a double heterostructure using a method (method). With this configuration, it is possible to easily realize a semiconductor laser device which has a current confining stripe inside and has single-transverse mode oscillation and low threshold operation.

(実施例の説明) 以下、本発明の一実施例を図面を用いて具体的に説明す
る。
(Description of Embodiment) Hereinafter, one embodiment of the present invention will be specifically described using the drawings.

一例として基板にp型GaAs基板を用いる。第1図に
示したように、p型GaAs基板10の(ioo)面上
に、フォトリソグラフィにより<OTT>方向に平行に
段差を設ける。この時、段差の断面形状は逆メサ形状と
なる。次にこの上に、MOCVD法によりn型GaAs
電流阻止層11(キャリア濃度:1×101gan−”
程度)を1μm程度成長させる。この時の成長条件は、
成長速度3μm/時、基板温度650℃、V/m比10
としている。段差の突起部の側面には、図に示すように
、はとんど成長しない。次にフォトレジストを塗布し、
段差上部の面上にフォトレジスト膜12を残す。)I2
So4系エツチング液によりエツチングし、破線2oで
示すような面が出るようにする。結果として、平坦な基
板に深さhの逆メサ形状の段差を形成したこととなる。
As an example, a p-type GaAs substrate is used as the substrate. As shown in FIG. 1, steps are provided on the (ioo) plane of the p-type GaAs substrate 10 by photolithography in parallel to the <OTT> direction. At this time, the cross-sectional shape of the step becomes an inverted mesa shape. Next, on top of this, n-type GaAs was deposited using the MOCVD method.
Current blocking layer 11 (carrier concentration: 1×101gan-”
) is grown to a thickness of about 1 μm. The growth conditions at this time are
Growth rate 3 μm/hour, substrate temperature 650°C, V/m ratio 10
It is said that As shown in the figure, little growth occurs on the side surfaces of the protrusions of the step. Next, apply photoresist,
A photoresist film 12 is left on the surface above the step. )I2
Etching is performed using a So4-based etching solution to expose a surface as shown by the broken line 2o. As a result, an inverted mesa-shaped step with a depth h is formed on the flat substrate.

最初から逆メサ形状の基板を使用したのは、後の段差形
成の際のマスク合わせの容易さを考慮したからである。
The reason why an inverted mesa-shaped substrate was used from the beginning was to facilitate mask alignment when forming steps later.

この後フォトレジスト膜12を除去し、基板表面を清浄
化した後、LPE法により結晶成長ケ行なう。成長温度
850℃、過飽和度7℃、0.5℃/分のクーリングレ
ートにより結晶成長を行なった。第1図の破線20の面
上に、第2図に示したように、p型Ga1−XiXAs
クラッド層13、Ga□−、AN、As活性層14(0
≦y<x)、n型Ga1−x1xAsクラッド層15、
n型GaAs層16を形成し、成長表面が平坦になるよ
うにする。
Thereafter, the photoresist film 12 is removed and the substrate surface is cleaned, followed by crystal growth using the LPE method. Crystal growth was performed at a growth temperature of 850°C, a supersaturation level of 7°C, and a cooling rate of 0.5°C/min. On the plane of the broken line 20 in FIG. 1, as shown in FIG. 2, p-type Ga1-XiXAs
Cladding layer 13, Ga□-, AN, As active layer 14 (0
≦y<x), n-type Ga1-x1xAs cladding layer 15,
An n-type GaAs layer 16 is formed so that the growth surface is flat.

p型GaAs基板10とn型GaAs層16の各面にそ
れぞれ電極を作製し、電流を流すと、p型GaAs基板
10からp型Ga1−xAN、As層13へは、第2図
に示すWの幅で電流が注入され、電流狭さくが実現する
。これは、n型GaAs層11が、P型Ga、−XAI
XAsクラッド層13とp/n接合を形成し、電流注入
時には、p/n接合が逆方向バイアスとなるためである
。この結果、W=2μmでしきい値電流が20mAであ
る低しきい値の半導体レーザ装置が得られた。この時、
同時に単−横モード発振も実現できた。
When electrodes are formed on each surface of the p-type GaAs substrate 10 and the n-type GaAs layer 16 and a current is applied, the W as shown in FIG. Current is injected with a width of , achieving current narrowing. This is because the n-type GaAs layer 11 is made of p-type Ga, -XAI
This is because a p/n junction is formed with the XAs cladding layer 13, and the p/n junction becomes a reverse bias during current injection. As a result, a low threshold semiconductor laser device with W=2 μm and a threshold current of 20 mA was obtained. At this time,
At the same time, single-transverse mode oscillation was also achieved.

なお、本実施例では、GaAs系、GaAlAs系半導
体レーザについて述べたが、InP系や他の多元混晶系
を含む化合物半導体を材料とする半導体レーザ装置につ
いても同様に本発明を適用することができる。また、基
板の段差についても、順メサ形状を用いても同様に適用
可能である。
In this embodiment, GaAs-based and GaAlAs-based semiconductor lasers have been described, but the present invention can be similarly applied to semiconductor laser devices made of compound semiconductors including InP-based and other multi-component mixed crystal systems. can. Furthermore, the present invention can be similarly applied to the steps of the substrate by using a forward mesa shape.

(発明の効果) 以上説明したように、本発明によれば、低しきい値で、
単−横モード発振する半導体レーザ装置を容易に製造す
ることができ、その実用的効果は著しいものである。
(Effects of the Invention) As explained above, according to the present invention, at a low threshold,
A semiconductor laser device that oscillates in a single transverse mode can be easily manufactured, and its practical effects are remarkable.

【図面の簡単な説明】 第1図は、本発明の一実施例のMOCVD法により段差
基板上へ薄膜層を結晶成長させたものの断面図、第2図
は、同半導体レーザ装置の断面図である。 10−p型GaAs基板、11− n型GaAg電流阻
止層、12・・ フォトレジスト膜、13・・・ p型
GaAllAsクラッド層、 14− Ga1As活性
層、 15”’ n型GaANAsクラッド層、 16
− n型GaAs層。
[Brief Description of the Drawings] Fig. 1 is a cross-sectional view of a thin film layer crystal-grown on a stepped substrate by the MOCVD method according to an embodiment of the present invention, and Fig. 2 is a cross-sectional view of the same semiconductor laser device. be. 10- p-type GaAs substrate, 11- n-type GaAg current blocking layer, 12... photoresist film, 13... p-type GaAllAs cladding layer, 14- Ga1As active layer, 15''' n-type GaANAs cladding layer, 16
- n-type GaAs layer.

Claims (1)

【特許請求の範囲】[Claims] 段差を有する一導電型半導体基板上に、該基板とは逆の
導電型を示す薄膜層をMOCVD法(有機金属気相成長
法)で形成し、前記薄膜層の一部を除去したのちその上
に、LPE法(液相エピタキシャル法)により、二重へ
テロ構造を含む多層薄膜を形成することを特徴とする半
導体レーザ装置の製造方法。
A thin film layer having a conductivity type opposite to that of the substrate is formed on a semiconductor substrate of one conductivity type having a step by MOCVD (metal organic chemical vapor deposition), and after removing a part of the thin film layer, A method for manufacturing a semiconductor laser device, characterized in that a multilayer thin film including a double heterostructure is formed by an LPE method (liquid phase epitaxial method).
JP10747684A 1984-05-29 1984-05-29 Manufacture of semiconductor laser device Pending JPS60251687A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10747684A JPS60251687A (en) 1984-05-29 1984-05-29 Manufacture of semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10747684A JPS60251687A (en) 1984-05-29 1984-05-29 Manufacture of semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS60251687A true JPS60251687A (en) 1985-12-12

Family

ID=14460172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10747684A Pending JPS60251687A (en) 1984-05-29 1984-05-29 Manufacture of semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS60251687A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111754A (en) * 1985-11-09 1987-05-22 Minolta Camera Co Ltd Electric field curtain printer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62111754A (en) * 1985-11-09 1987-05-22 Minolta Camera Co Ltd Electric field curtain printer
JPH078573B2 (en) * 1985-11-09 1995-02-01 ミノルタ株式会社 Electric field printer

Similar Documents

Publication Publication Date Title
CA1152624A (en) Semiconductor laser device
US4948753A (en) Method of producing stripe-structure semiconductor laser
JPH02288288A (en) Manufacture of buried hetero-structure laser diode
US5149670A (en) Method for producing semiconductor light emitting device
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
JP2525788B2 (en) Method for manufacturing semiconductor laser device
JPS6174382A (en) Semiconductor laser device and manufacture thereof
JPS6144485A (en) Semiconductor laser device and manufacture thereof
JPS5810875B2 (en) handout
JPS60251687A (en) Manufacture of semiconductor laser device
JPS60235485A (en) Manufacture of semiconductor laser device
JPS60258991A (en) Semiconductor laser device
JPS60258986A (en) Manufacture of semiconductor laser device
JPS60251688A (en) Semiconductor laser device
JPS6167285A (en) Semiconductor laser device
JPS60258987A (en) Semiconductor laser device and manufacture thereof
JPS6118191A (en) Semiconductor laser device and manufacture thereof
JPS60258990A (en) Manufacture of semiconductor laser device
JPH04120788A (en) Semiconductor laser
JPS60258988A (en) Manufacture of semiconductor laser device
JPS60201684A (en) Semiconductor laser device and manufacture thereof
JPS6178185A (en) Semiconductor laser device
JPS61161787A (en) Manufacture of semiconductor laser device
JPS60196991A (en) Semiconductor laser device
JPS6267891A (en) Semiconductor laser device