JPS6144485A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS6144485A
JPS6144485A JP16617284A JP16617284A JPS6144485A JP S6144485 A JPS6144485 A JP S6144485A JP 16617284 A JP16617284 A JP 16617284A JP 16617284 A JP16617284 A JP 16617284A JP S6144485 A JPS6144485 A JP S6144485A
Authority
JP
Japan
Prior art keywords
convex portion
layer
width
projection
thin film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16617284A
Other languages
Japanese (ja)
Other versions
JPH0632331B2 (en
Inventor
Akio Yoshikawa
昭男 吉川
Takashi Sugino
隆 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP59166172A priority Critical patent/JPH0632331B2/en
Priority to EP85301989A priority patent/EP0157555B1/en
Priority to DE8585301989T priority patent/DE3579929D1/en
Priority to US06/715,392 priority patent/US4719633A/en
Publication of JPS6144485A publication Critical patent/JPS6144485A/en
Priority to US07/114,065 priority patent/US4948753A/en
Publication of JPH0632331B2 publication Critical patent/JPH0632331B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To obtain the titled device which oscillates on single lateral modes at low threshold value by a method wherein a stripe active layer with a small width is buried with good reproducibility at a time of crystal growth by providing the surface of a conductive substrate with a stripe projection having a required shape. CONSTITUTION:A photo resisto 10 of (d) width is provided on the (100) plane of an N type GaAs substrate 10 and then etching into the stripe projection 10a in the <011> direction: the top surface makes an internal obtuse angle, and the internal angle made by the continuous side surface between the top surface should be less than 90 deg.C. Next, an N-Ga1-xAlxAs 11, a Ga1-yAlyAs active layer 12, a P-Ga1-xAlxAs 13, and an N-GaAs 14 are laminated by the vapor phase epitaxial method. A photo resist 17 is applied by spinning. The resist 17 and the projection located on the plane 19 are removed by etching from the surface. A P-GaAs layer 15 is formed on the projection 13 of the clad layer 13 by Zn diffusion with a width (d). When current is injected by attaching ohmic electrodes on both surfaces 20 and 21, the current is effectively subjected stricture above and below because the width (w) of the P-layer 15 is smaller than the tip width WR of the projection 10a, leading to single lateral mode oscillation at low threshold current value.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、各国電子機器、光学機器の光源として近年急
速に用途が拡大し、需要が高まっている半導体レーザ装
置およびその製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor laser device and a method for manufacturing the same, whose use as a light source for electronic devices and optical devices in various countries has rapidly expanded in recent years, and whose demand has been increasing.

従来例の構成とその問題点 蹴子11光学機器のコヒーレント光源として半導体レー
ザ1ζ要求される重要な性能の1っに、単一スポットで
の発振、すなわち単−槓モード発振があげられる。これ
を実現するため1ζは、レーザ光が伝眉する活性領域付
近lζレーザ素子中を流れる電流が集中するように、そ
の拡がりを抑制し、かつ光を閉じこめる必要がある。仁
のような半導体レーザは、通常、ストライブ型半導体レ
ーザと呼ばれている。
Conventional Structure and Its Problems Kiko 11 One of the important performances required of the semiconductor laser 1ζ as a coherent light source for optical equipment is oscillation in a single spot, that is, single-spot mode oscillation. To achieve this, it is necessary to suppress the spread of 1ζ and confine the light so that the current flowing through the 1ζ laser element is concentrated near the active region where the laser light propagates. Semiconductor lasers like the stripe type are usually called stripe-type semiconductor lasers.

比較的簡゛単なストライブ化の方法に、電流狭さくだけ
を用いるものがある。Cれらのレーザは単−横モード発
振を実現するが、しきい値1j高い。
A relatively simple striping method uses only current constriction. Although these lasers achieve single-transverse mode oscillation, the threshold value 1j is high.

最もしきい値を低くするストライブ構造として、埋め込
みストライブ型半導体V−ザ(通常、BHレーザと呼ば
れる)がある。しかしながら、このレーザを作成するに
は、通常、他のレーザでは1回ですむ結晶成長工程が2
回必要であり、他1ζ技術的にやや作製が困難である。
A buried stripe type semiconductor V-laser (usually called a BH laser) is a stripe structure that provides the lowest threshold voltage. However, creating this laser typically requires two crystal growth steps, compared to one for other lasers.
It requires several times, and it is technically difficult to manufacture.

発明の目的 本発明は、上記欠点に鑑み、単−槓モード発振をし、か
つ低しきい値動作するの1ζ必要な埋め込みストライブ
構造を1回の結晶成長で作製できる半導体レーザ装置を
提供することを目的とするものである。
OBJECTS OF THE INVENTION In view of the above-mentioned drawbacks, the present invention provides a semiconductor laser device capable of single-mode oscillation and low-threshold operation, in which a buried stripe structure necessary for 1ζ can be fabricated by one crystal growth. The purpose is to

発明の構成 この目的を達成するために、本発明の半導体レーザ装置
は導電性基板の表面に、先端平担面とその隣接側面のな
す内角が鈍角で、かつ前記隣接側面に続く基端の少なく
とも一側面と前記先端平担面のなす内角が90@以下で
あるように形成されたストライブ状の凸部と、前記凸部
を含む導電性基板jlζ、活I!1″暦を含む二重ヘテ
ロ構造を持ち、かつ前記凸部の隣接側面に沿う両側面に
おいても少なくとも曲記活性属直上の薄膜層までは積層
方向1ζ同一の順序で独立に形成された多mvsysと
を有し、前記凸部上に対応する前記多層薄膜のythm
を前記基板上同じ導電性を示す薄膜に構成したものでイ
シ、この構成により、ストライブ状の凸部との活性層中
に電流を狭さくし、単−横モード発振で、低しきい電流
値動作の半導体レーザ装置が実現できる。また、h記半
導体レーザ装置の製造方法として、有機金属気相エピタ
キシャル成長法を用いると1回の結晶成長で埋め込みス
トライプ構造が容易lζ形成できる。
SUMMARY OF THE INVENTION In order to achieve this object, the semiconductor laser device of the present invention has a conductive substrate having an internal angle formed by an obtuse flat end surface and an adjacent side surface, and at least a base end that continues to the adjacent side surface. A striped convex portion formed such that the internal angle between one side surface and the flattened surface of the tip is 90@ or less, a conductive substrate jlζ including the convex portion, and an active I! A multi-mvsys having a double heterostructure including a 1″ calendar, and independently formed in the same order in the stacking direction 1ζ at least up to the thin film layer directly above the active layer on both side surfaces along the adjacent side surfaces of the convex portion. ythm of the multilayer thin film corresponding to the convex portion
This structure narrows the current in the active layer with the striped protrusions, resulting in single-transverse mode oscillation and a low threshold current value. An operational semiconductor laser device can be realized. In addition, as a method for manufacturing the semiconductor laser device described in h above, if a metal organic vapor phase epitaxial growth method is used, a buried stripe structure can be easily formed by one crystal growth.

実施例の説明 以下本発明の一実施例を図直に基づいて説明する。−例
として導電性基板にn型GaAs基板を用いる。n型C
aAs基板Q(Iの<100>面klこ、第2図に示す
ようにメサマスク幅dのメサエッチ用フォトレジスト−
をマスクとして、化学エツチングにより<01 D方向
に平行1ζ凹凸を設ける。これによシ、第8図に示すよ
うな幅6μm%高さ1.6μmのストライブ状の凸ll
5(loa)が、その先端平担面と隣接側面のなす内角
が鈍角で、前記輿接側面に続く基端の少なくとも一側面
と前記平担面のなす内角が90@以下であるように形成
される。
DESCRIPTION OF EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. - As an example, an n-type GaAs substrate is used as the conductive substrate. n-type C
aAs substrate Q (<100> plane kl of I, photoresist for mesa etch with mesa mask width d as shown in FIG.
Using as a mask, parallel 1ζ unevenness is provided in the <01D direction by chemical etching. As a result, a striped protrusion with a width of 6 μm and a height of 1.6 μm is formed as shown in FIG.
5 (loa) is formed such that the internal angle formed between the flat tip surface and the adjacent side surface is an obtuse angle, and the internal angle formed between at least one side surface of the proximal end that follows the above-mentioned calf-contacting side surface and the flat surface is 90@ or less be done.

次に、有機金属気相エピタキシャル成長法(通常MOC
VD法)により、第4図に示すように、n型Ga I−
1AIX As  クラッド層@を”l”’ s 7 
ンドーブGa1−yAZyAs (0≦y<x )活性
Htaを0.08μfn°、p型Ga1−xAtzAs
クラッド71 Qi ’k 1.2 μm 形成シタの
ち、n型GaAsキャップItA04を2μm結晶成長
させる。−例として、結晶成長条件は、成長速度2μm
/時、成長温度770″C1全ガス流以sty分、■族
元素に対するY族元素のモル比は4oである。
Next, metal organic vapor phase epitaxial growth method (usually MOC
As shown in FIG. 4, n-type Ga I-
1AIX As cladding layer @"l"'s 7
Ga1-yAZyAs (0≦y<x) Active Hta is 0.08μfn°, p-type Ga1-xAtzAs
After forming the cladding 71 Qi 'k 1.2 μm, a crystal of an n-type GaAs cap ItA04 is grown to 2 μm. - As an example, the crystal growth conditions are a growth rate of 2 μm
/hour, growth temperature 770'' C1 total gas flow, molar ratio of Y group elements to group II elements is 4o.

第4図からもわかるよう■ζ、p型G a I−、cA
 I X A SクラッドN鵠までは、凸部(10a)
 f:と他の部分とは独立にエピタキシャル成長してお
り、成長材料の成長基板面に平行な方向での拡散等の効
果の加わった結晶成長は見られない。
As can be seen from Figure 4 ■ζ, p-type Ga I-, cA
I
f: and other parts are epitaxially grown independently of each other, and crystal growth with effects such as diffusion of the growth material in a direction parallel to the growth substrate surface is not observed.

結晶成長後、表面を洗浄処理したのち、n型GaAsキ
ャップl1164とにフォトレジスト邸を塗布し、50
00 rpm  で回転すると、第4図に示すようfこ
、n型GaAsキャップ層Uの凸部(14a)でフォト
レジストS(ロ)は薄くなり、他の部分で厚くなる。
After the crystal growth, the surface was cleaned, and then a photoresist film was applied to the n-type GaAs cap l1164.
When the photoresist S is rotated at 00 rpm, as shown in FIG. 4, it becomes thinner at the convex portion (14a) of the n-type GaAs cap layer U, and becomes thicker at other portions.

露光条件を最適化することにより、凸部(14a)とフ
ォトレジスト膜朝を取り去り、n型GaAsキャップ層
鱒を回を第4図に示す面(至)四となるように平担にす
る。さらに、ストライブ幅WでZn拡散を行ない、凸部
(10a) 、hに対応するクラッド1き(2)の凸部
(Nla) J:lこストライブ状のpl!1iGaA
s領域四を形成する。@果として、第1図に示す半導体
レーザ構造が形成され、オーミンク電極を面gJ@に付
けるaX極を通して!fi注入を行なうと、電流はn型
Ga As基板0Qの凸部(lOa)と拡散により形成
されたp型GaAs領域四によりt下で狭さくされる。
By optimizing the exposure conditions, the convex portion (14a) and the photoresist film are removed, and the n-type GaAs cap layer is flattened so as to form the surface shown in FIG. Further, Zn is diffused with a stripe width W, and the convex portion (10a) and the convex portion (Nla) of the cladding 1 (2) corresponding to h are formed in the striped pl! 1iGaA
Form s region 4. As a result, the semiconductor laser structure shown in Figure 1 is formed, and the Ohmink electrode is attached to the plane gJ through the aX pole! When fi implantation is performed, the current is narrowed below t by the convex portion (lOa) of the n-type GaAs substrate 0Q and the p-type GaAs region 4 formed by diffusion.

しかも第1図に示すように基板0(lの凸′部(10a
)先端の幅WRに比べてpWGaAs領域aaのストラ
イブ幅Wの方が小さくなり、電流狭さく効果が大きい、
これは、凸部形状の先端を順メサ形状lζして結晶成長
を行なったこと■こよるもので、凸部側面で結晶成長面
にファセットが出るものによると考えられる。その結果
、26mAのし占い電流値で、単−横モード発振する半
導体レーザ装置が漫られた。
Moreover, as shown in FIG.
) The stripe width W of the pWGaAs region aa is smaller than the width WR of the tip, and the current narrowing effect is large.
This is thought to be due to the fact that crystal growth was performed with the tip of the convex portion shaped like a forward mesa lζ, and that facets appear on the crystal growth surface at the side surfaces of the convex portion. As a result, a semiconductor laser device that oscillates in a single transverse mode with a fortune-telling current value of 26 mA was developed.

また、本発明の半導体レーザ構造は埋め込み型となって
おシ、他の埋め込み型レーザは2回の結晶成長が必要で
あるのに対し、本発明の埋め込み型レーザはIIglの
結晶成長で作製が可能である。
Furthermore, the semiconductor laser structure of the present invention is a buried type, and while other buried lasers require two crystal growths, the buried laser of the present invention can be fabricated by IIgl crystal growth. It is possible.

なお、第1図で、n型GよAs基板(ト)とn型 “G
 z 1−xA l x A sクラッド履(ロ)の間
にn型Ga Asバッファ肩を入れた構造1ζしても同
様の結果が得られた。
In addition, in Figure 1, the n-type "G" and the As substrate (g) and the n-type "G"
Similar results were obtained with the structure 1ζ in which an n-type GaAs buffer shoulder was inserted between the z 1-xA l x As clad shoes (b).

第6図は他の実施例を示し、n型GaAs基板(至)の
凸部(80a)の形状は基端側面0カの裾部が外波がり
の斜面(2)に形成されたもので、Cれに結晶成長を行
なっても同じ結果が得られた。
FIG. 6 shows another embodiment, in which the shape of the convex portion (80a) of the n-type GaAs substrate (toward) is such that the bottom of the proximal side surface is formed into a slope (2) with an outward wave. The same results were obtained even when crystal growth was performed on C.

なお、本実施例では、Ga As系、GaAlAs系半
導体レーザについて述べたが、 lnP系や他の多元混
晶系を含む化合物半導体を材料とする半導体レーザにつ
いても同様に本発明を適用可能である。
In this embodiment, GaAs-based and GaAlAs-based semiconductor lasers have been described, but the present invention is also applicable to semiconductor lasers made of compound semiconductors including lnP-based and other multi-component mixed crystal systems. .

さらに、導電性基板については、p型基板を用いても、
結晶成長に他の物質供給律速の結晶成長方法、たとえば
、分子線エピタキシャル成長法(MBE法)を用いても
よい。
Furthermore, regarding the conductive substrate, even if a p-type substrate is used,
Other substance supply rate-limiting crystal growth methods, such as molecular beam epitaxial growth (MBE), may be used for crystal growth.

発明の効果 以上本発明によれば、1回の結晶成長で、再現性良く狭
ストライプ活性層が容易に形成でき、低しきい電流値で
、単−横モード発振する埋め込み型レーザを実現でき、
その実用的効果は著しい。
Effects of the Invention According to the present invention, a narrow stripe active layer can be easily formed with good reproducibility by one crystal growth, and a buried laser that oscillates in a single transverse mode with a low threshold current value can be realized.
Its practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の半導体レーザ装置の一実施例を示す構
成図、第2図〜第4図はその製造過程を示す図、第6図
は他の実施例に用いた基板の断市形状を示す図である。 00− n型GaAs基板、Qト−n a Ga1−x
AtxAsクラッド層、(La−Ga 1−yAj、A
s活性層、u−p型G a 1−XA t xA sク
ラフト層、04− n型GaAs領域、0ト・・p型G
aAs領域、韓・・・メサエッチ用フォトレジスト膜、
亜・・・フォトレジスト膜、(wR)・・・凸部先端の
幅、(ロ)・−電流狭さくストライブ幅、(d)・−メ
サマスク幅。
FIG. 1 is a configuration diagram showing one embodiment of a semiconductor laser device of the present invention, FIGS. 2 to 4 are diagrams showing the manufacturing process, and FIG. 6 is a broken shape of a substrate used in another embodiment. FIG. 00- n-type GaAs substrate, Qto-n a Ga1-x
AtxAs cladding layer, (La-Ga 1-yAj, A
s active layer, up type Ga 1-XA t xA s craft layer, 04- n type GaAs region, 0...
aAs area, Korea...photoresist film for mesa etch,
Sub: Photoresist film, (wR): Width of the tip of the convex portion, (B): Current narrowing stripe width, (d): Mesa mask width.

Claims (1)

【特許請求の範囲】 1、導電性基板の表面に、先端平担面とその隣接側面の
なす内角が鈍角で、かつ前記隣接側面に続く基端の少な
くとも一側面と前記先端平担面のなす内角が90°以下
であるように形成されたストライプ状の凸部と、前記凸
部を含む導電性基板上に、活性層を含む二重ヘテロ構造
を持ち、かつ前記凸部の隣接側面に沿う両側面において
も少なくとも前記活性層直上の薄膜層までは積層方向に
同一の順序で独立に形成された多層薄膜とを有し、前記
凸部上に対応する前記多層薄膜の最上層を前記基板と同
じ導電性を示す薄膜に構成した半導体レーザ装置。 2、導電性基板の表面にストライプ状の凸部を、この凸
部の先端平担面とその隣接側面のなす内角が鈍角で、か
つ前記隣接側面に続く基端の少なくとも一側面と前記先
端平担面のなす内角が90°以下であるように形成し、
前記凸部を含む導電性基板上に、有機金属気相エピタキ
シャル成長法により活性層を含む二重ヘテロ構造を持つ
多層薄膜を成長し、Zn拡散により前記凸部上に対応す
る多層薄膜の最上層を前記導電性基板と同じ導電性を示
す薄膜層にする半導体レーザ装置の製造方法。
[Scope of Claims] 1. On the surface of the conductive substrate, an internal angle formed between the flat tip surface and its adjacent side surface is an obtuse angle, and an angle formed between at least one side surface of the proximal end continuing from the adjacent side surface and the flat tip surface. A striped convex portion formed with an internal angle of 90° or less, and a double heterostructure including an active layer on a conductive substrate including the convex portion, and along an adjacent side surface of the convex portion. Both sides also have multilayer thin films formed independently in the same order in the stacking direction up to at least the thin film layer immediately above the active layer, and the uppermost layer of the multilayer thin film corresponding to the convex portion is connected to the substrate. A semiconductor laser device configured with a thin film that exhibits the same conductivity. 2. A striped convex portion is formed on the surface of the conductive substrate, and the internal angle formed between the flat tip surface of the convex portion and the adjacent side surface is an obtuse angle, and at least one side surface of the proximal end continuing from the adjacent side surface and the flat tip surface are formed. Formed so that the internal angle formed by the bearing surface is 90° or less,
A multilayer thin film having a double heterostructure including an active layer is grown on the conductive substrate including the convex portion by metal organic vapor phase epitaxial growth, and the top layer of the multilayer thin film corresponding to the convex portion is grown by Zn diffusion. A method for manufacturing a semiconductor laser device in which a thin film layer exhibits the same conductivity as the conductive substrate.
JP59166172A 1984-03-27 1984-08-08 Semiconductor laser device and method of manufacturing the same Expired - Lifetime JPH0632331B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP59166172A JPH0632331B2 (en) 1984-08-08 1984-08-08 Semiconductor laser device and method of manufacturing the same
EP85301989A EP0157555B1 (en) 1984-03-27 1985-03-22 A semiconductor laser and a method of producing the same
DE8585301989T DE3579929D1 (en) 1984-03-27 1985-03-22 SEMICONDUCTOR LASER AND METHOD FOR ITS FABRICATION.
US06/715,392 US4719633A (en) 1984-03-27 1985-03-25 Buried stripe-structure semiconductor laser
US07/114,065 US4948753A (en) 1984-03-27 1987-10-29 Method of producing stripe-structure semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59166172A JPH0632331B2 (en) 1984-08-08 1984-08-08 Semiconductor laser device and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPS6144485A true JPS6144485A (en) 1986-03-04
JPH0632331B2 JPH0632331B2 (en) 1994-04-27

Family

ID=15826405

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59166172A Expired - Lifetime JPH0632331B2 (en) 1984-03-27 1984-08-08 Semiconductor laser device and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JPH0632331B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373690A (en) * 1986-09-17 1988-04-04 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6373693A (en) * 1986-09-17 1988-04-04 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6373689A (en) * 1986-09-17 1988-04-04 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6376392A (en) * 1986-09-17 1988-04-06 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6394696A (en) * 1986-10-09 1988-04-25 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS63197395A (en) * 1987-02-12 1988-08-16 Matsushita Electric Ind Co Ltd Semiconductor laser device and its manufacture
JPH04111382A (en) * 1990-08-30 1992-04-13 Sharp Corp Manufacture of semiconductor laser device
EP0637086A2 (en) * 1993-07-30 1995-02-01 Sharp Kabushiki Kaisha Light emitting semiconductor device and light enhanced deposition method for fabricating the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666084A (en) * 1979-11-02 1981-06-04 Nec Corp Semiconductor light-emitting element
JPS5911621A (en) * 1982-07-12 1984-01-21 Toshiba Corp Manufacture of optical semiconductor element by liquid phase crystal growth

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5666084A (en) * 1979-11-02 1981-06-04 Nec Corp Semiconductor light-emitting element
JPS5911621A (en) * 1982-07-12 1984-01-21 Toshiba Corp Manufacture of optical semiconductor element by liquid phase crystal growth

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6373690A (en) * 1986-09-17 1988-04-04 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6373693A (en) * 1986-09-17 1988-04-04 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6373689A (en) * 1986-09-17 1988-04-04 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6376392A (en) * 1986-09-17 1988-04-06 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS6394696A (en) * 1986-10-09 1988-04-25 Matsushita Electric Ind Co Ltd Semiconductor laser device
JPS63197395A (en) * 1987-02-12 1988-08-16 Matsushita Electric Ind Co Ltd Semiconductor laser device and its manufacture
JPH04111382A (en) * 1990-08-30 1992-04-13 Sharp Corp Manufacture of semiconductor laser device
EP0637086A2 (en) * 1993-07-30 1995-02-01 Sharp Kabushiki Kaisha Light emitting semiconductor device and light enhanced deposition method for fabricating the same
EP0637086A3 (en) * 1993-07-30 1996-03-06 Sharp Kk Light emitting semiconductor device and light enhanced deposition method for fabricating the same.

Also Published As

Publication number Publication date
JPH0632331B2 (en) 1994-04-27

Similar Documents

Publication Publication Date Title
US4948753A (en) Method of producing stripe-structure semiconductor laser
JPS6144485A (en) Semiconductor laser device and manufacture thereof
JPH10229246A (en) Ridge semiconductor laser diode and its manufacturing method
JPH04162689A (en) Manufacture of semiconductor light emitting device
EP0076761A1 (en) Semiconductor lasers and method for producing the same
JP2940158B2 (en) Semiconductor laser device
JPH084180B2 (en) Semiconductor laser device and method of manufacturing the same
JP2840833B2 (en) Semiconductor laser manufacturing method
JP2547459B2 (en) Semiconductor laser device and manufacturing method thereof
JPS62179790A (en) Semiconductor laser
JPH067621B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6118191A (en) Semiconductor laser device and manufacture thereof
JPS6358390B2 (en)
JP4024319B2 (en) Semiconductor light emitting device
KR970009672B1 (en) Method of manufacture for semiconductor laserdiode
JP2910120B2 (en) Semiconductor laser
JPS60235485A (en) Manufacture of semiconductor laser device
JPH04296081A (en) Visible beam semiconductor laser
JPH03225983A (en) Semiconductor laser
JPS6336591A (en) Semiconductor laser
JPS60251687A (en) Manufacture of semiconductor laser device
JPS60258991A (en) Semiconductor laser device
JPH03244178A (en) Semiconductor laser
JPH088391B2 (en) Semiconductor laser
JPH05152681A (en) Manufacture of semiconductor laser