JPS6358390B2 - - Google Patents

Info

Publication number
JPS6358390B2
JPS6358390B2 JP56179305A JP17930581A JPS6358390B2 JP S6358390 B2 JPS6358390 B2 JP S6358390B2 JP 56179305 A JP56179305 A JP 56179305A JP 17930581 A JP17930581 A JP 17930581A JP S6358390 B2 JPS6358390 B2 JP S6358390B2
Authority
JP
Japan
Prior art keywords
mesa stripe
conductivity type
layer
laminated
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56179305A
Other languages
Japanese (ja)
Other versions
JPS5880889A (en
Inventor
Ikuo Mito
Mitsuhiro Kitamura
Kenichi Kobayashi
Isao Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP17930581A priority Critical patent/JPS5880889A/en
Publication of JPS5880889A publication Critical patent/JPS5880889A/en
Publication of JPS6358390B2 publication Critical patent/JPS6358390B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2232Buried stripe structure with inner confining structure between the active layer and the lower electrode
    • H01S5/2234Buried stripe structure with inner confining structure between the active layer and the lower electrode having a structured substrate surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2237Buried stripe structure with a non-planar active layer

Landscapes

  • Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 本発明は、発振横モードが安定化された半導体
レーザ及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a semiconductor laser whose oscillation transverse mode is stabilized and a method for manufacturing the same.

発振横モードを安定化させる半導体レーザの構
造として、エピタキシヤル成長過程において、活
性層膜厚及び形状を変化させ、膜面内に等価的屈
折率が高い光導波領域を形成し、その部分を用い
て、半導体レーザの共振器を形成する構造がいく
つか報告されている。この種の構造では、光導波
路は、単一横モード発振に必要な2μm程度以下
の幅で形成することも可能だが、この光導波領域
に対応させて制限された幅の注入電流領域を設け
ることが難しい。一般には、結晶成長後に、光導
波領域の直上に、酸化膜を用いて注入電流領域幅
を制限する電極構造、もしくは選択拡散領域を形
成する構造が用いられているが、これらの場合で
は、注入電流領域幅、及び注入電流領域と光導波
領域との位置ずれが、発振閾値電流等の素子特性
をばらつかせる原因となる。
As a semiconductor laser structure that stabilizes the oscillation transverse mode, the thickness and shape of the active layer are changed during the epitaxial growth process, an optical waveguide region with a high equivalent refractive index is formed within the film plane, and this portion is used. Several structures for forming resonators of semiconductor lasers have been reported. In this type of structure, the optical waveguide can be formed with a width of about 2 μm or less, which is necessary for single transverse mode oscillation, but it is necessary to provide an injection current region with a limited width corresponding to this optical waveguide region. is difficult. Generally, after crystal growth, an electrode structure is used that uses an oxide film to limit the width of the injection current region or a structure that forms a selective diffusion region directly above the optical waveguide region. The width of the current region and the misalignment between the injected current region and the optical waveguide region cause variations in device characteristics such as oscillation threshold current.

本発明の目的は光導波領域に対応した位置関係
にある注入電流制限領域をエピタキシヤル成長工
程中に形成することにより、素子特性のばらつき
が少く、又活性層及び注入電流制限領域を一回の
結晶成長工程で形成することにより、素子作製が
容易である構造の半導体レーザを提供することに
ある。
The purpose of the present invention is to form an injection current limiting region in a positional relationship corresponding to the optical waveguide region during the epitaxial growth process, thereby reducing variations in device characteristics, and forming the active layer and the injection current limiting region in one step. An object of the present invention is to provide a semiconductor laser having a structure that is easy to manufacture by forming it through a crystal growth process.

本発明によれば、近接する平行な2本の溝に狭
まれるメサストライプが形成された第1導電形の
半導体基板上に、前記メサストライプ上部のみを
除いて積層される第2導電形の電流ブロツク層、
全面に亘つてほぼ均等な厚さで積層される第1導
電形のクラツド層、及び第1導電形、あるいは第
2導電形の活性層が順次形成され更にその上に積
層される第2導電形のクラツド層の少くとも4層
が形成されていることを特徴とする構造の半導体
レーザ等ぎ得られる。
According to the present invention, on a semiconductor substrate of a first conductivity type in which a mesa stripe narrowed by two adjacent parallel grooves is formed, a semiconductor substrate of a second conductivity type is laminated except for only the upper part of the mesa stripe. current blocking layer,
A cladding layer of a first conductivity type that is laminated with a substantially uniform thickness over the entire surface, and an active layer of the first conductivity type or a second conductivity type are sequentially formed and further laminated thereon. A semiconductor laser or the like having a structure characterized in that at least four cladding layers are formed is obtained.

次に図面を用いて本発明を詳細に説明する。第
1図は本発明の半導体レーザの実施例を示す断面
図である。共振器方向と平行な、<110>方位の幅
2μmのメサストライプ20の両側に深さ3μm、
幅5μmの溝31,32を備えたメサ基板1(n
形InP、<001>方位)に、メサストライプ上部を
除いて成長されるp形InP電流ブロツク層2(平
坦部での厚さ0.7μm)、全面に亘つて積層される
n形InPクラツド層3(平坦部での厚さ0.5μm)
全面に亘つて積層されるノンドープInGaAsP活
性層4(厚さ0.2μm、発光波長1.3μm)、メサス
トライプの直上で膜厚が減少して成長するp形
InPクラツド層5(平坦部での厚さ2.5μm)、及び
表面がほぼ平坦となる様に積層されるp形
InGaAsPキヤツプ層6(平坦部での厚さ1μm)
が順次形成されている。また電極としてはp側に
Au−Znを材料とするp側金属電極11、n側に
はAu−Ge−Niを材料とするn側金属電極12が
形成されている。この素子にp側金属電極11を
正、n側金属電極12を負とするバイアス電圧を
印加すると、p形InP電流ブロツク層2が途切れ
ているメサストライプ20の上部では、pn接合
がInGaAsP活性層4のダブルヘテロ接合領域に
形成されているためメサストライプ20の直上部
のInGaAsP活性層4に電流が注入され発光再結
合が生じる。しかしながら、p形InP電流ブロツ
ク層2が形成されている領域は、pnpn接合を形
成しているため、このpnpn接合のターンオン電
圧(約5V)以下では電流がほとんど流れない。
従つて、注入された電流はほとんどメサストライ
プ20の直上部のInGaAsP活性層4に集中され
る。またInGaAsP活性層4はメサストライプ2
0の直上部で湾曲しているため等価的屈折率が高
く、この部分で光導波路7を形成している。従つ
て注入電流が集中する領域と光導波路7とが一致
しているため、注入電流は効率良くレーザ発振に
寄与する。共振器長250μmの素子で室温での発
振閾値電流として20mAという低い値が得られ
た。メサ上部で光導波路7が形成された構造であ
るため発振横モードの安定性が良く、発振閾値の
約3倍まで単一基本横モード発振を示した。また
この素子では高濃度のp形不純物がドープされた
p形InGaAsPキヤツプ層6はメサ上部で湾曲し
ているため、光導波路7の部分がInGaAsP活性
層4とp形InGaAsPキヤツプ層6との最短距離
にある。従つて高濃度のp形InGaAsPキヤツプ
層6の下面に形成された等電位面からInGaAsP
活性層4までのp形InPクラツド層5における電
圧降下は光導波路7の部分で最も小さく、高出力
動作あるいは高温動作などで印加電圧を高くする
場合に、注入電流は電圧降下の最も小さい経路を
通じて流れる傾向が強まり、p側電極側からの電
流の光導波路領域7への集中度が高くなつてく
る。以上の要因から本素子の温度特性は、Ith∝
exp(T/T0)で表わされる、特性温度T0にして、 70〜80kと良好で、最高cw温度は100℃以上であ
つた。これらの特性は各素子間で同様であり、ば
らつきは小さい。
Next, the present invention will be explained in detail using the drawings. FIG. 1 is a sectional view showing an embodiment of the semiconductor laser of the present invention. Width in <110> direction parallel to the resonator direction
3 μm deep on both sides of 2 μm mesa stripe 20,
Mesa substrate 1 (n
A p-type InP current blocking layer 2 (thickness at the flat part of 0.7 μm) is grown on the mesa stripe (<001> orientation), and an n-type InP cladding layer 3 is laminated over the entire surface. (Thickness at flat part 0.5μm)
A non-doped InGaAsP active layer 4 (thickness 0.2 μm, emission wavelength 1.3 μm) is laminated over the entire surface, and a p-type layer grows with decreasing film thickness just above the mesa stripe.
InP cladding layer 5 (thickness 2.5μm at flat part) and p-type layer stacked so that the surface is almost flat.
InGaAsP cap layer 6 (thickness at flat part 1μm)
are formed sequentially. Also, as an electrode, it is on the p side.
A p-side metal electrode 11 made of Au-Zn, and an n-side metal electrode 12 made of Au-Ge-Ni are formed on the n-side. When a bias voltage is applied to this device, with the p-side metal electrode 11 being positive and the n-side metal electrode 12 being negative, the p-n junction is connected to the InGaAsP active layer in the upper part of the mesa stripe 20 where the p-type InP current blocking layer 2 is interrupted. 4, current is injected into the InGaAsP active layer 4 directly above the mesa stripe 20, causing radiative recombination. However, since the region where the p-type InP current blocking layer 2 is formed forms a pnpn junction, almost no current flows below the turn-on voltage (approximately 5 V) of this pnpn junction.
Therefore, most of the injected current is concentrated in the InGaAsP active layer 4 directly above the mesa stripe 20. In addition, the InGaAsP active layer 4 has a mesa stripe 2
Since it is curved just above zero, the equivalent refractive index is high, and the optical waveguide 7 is formed at this portion. Therefore, since the region where the injected current is concentrated coincides with the optical waveguide 7, the injected current efficiently contributes to laser oscillation. A low oscillation threshold current of 20 mA at room temperature was obtained for a device with a cavity length of 250 μm. Since the optical waveguide 7 is formed in the upper part of the mesa, the stability of the oscillation transverse mode is good, and single fundamental transverse mode oscillation was exhibited up to about three times the oscillation threshold. Furthermore, in this device, the p-type InGaAsP cap layer 6 doped with a high concentration of p-type impurity is curved at the top of the mesa, so that the optical waveguide 7 is the shortest distance between the InGaAsP active layer 4 and the p-type InGaAsP cap layer 6. in the distance. Therefore, from the equipotential surface formed on the lower surface of the highly doped p-type InGaAsP cap layer 6,
The voltage drop in the p-type InP cladding layer 5 up to the active layer 4 is the smallest at the optical waveguide 7, and when the applied voltage is increased for high-output operation or high-temperature operation, the injected current flows through the path with the smallest voltage drop. The tendency of the current to flow becomes stronger, and the degree of concentration of the current from the p-side electrode side to the optical waveguide region 7 becomes higher. Due to the above factors, the temperature characteristics of this device are Ith∝
The characteristic temperature T0 , expressed as exp(T/ T0 ), was 70 to 80k, which was good, and the maximum cw temperature was 100°C or higher. These characteristics are similar among each element, and variations are small.

以上、本発明による半導体レーザの素子特性の
特徴をまとめると、InGaAsP活性層4中の光導
波路7とメサストライプ20の上部に形成された
注入電流の制限領域とが重なるため発振閾値電流
が低いこと、またpInPクラツド層5での電圧降
下が、光導波路7の上部で最も小さくなるため素
子の温度特性が良く最高cw温度は100℃以上であ
ること、また素子間のばらつきが小さいこと等で
ある。
To summarize the device characteristics of the semiconductor laser according to the present invention, the oscillation threshold current is low because the optical waveguide 7 in the InGaAsP active layer 4 and the injection current limiting region formed on the upper part of the mesa stripe 20 overlap. In addition, the voltage drop in the pInP cladding layer 5 is the smallest at the top of the optical waveguide 7, so the temperature characteristics of the device are good, the maximum cw temperature is 100°C or more, and the variation between devices is small. .

次に本素子の製造方法を第2図を用いて説明す
る。第2図aはn形InP基板100(面方位<
001>上に、フオトレジスト膜40を形成した図
を示している。中央の幅2μmのフオトレジスト
のストライプ41、及び両側の幅5μm基板表面
が露出したストライプ41,43は、<110>方位
に平行である。次にBr−メタノール(濃度0.4%)
を用いて、41,43のストライプ部を深さ3μ
mまでエツチングしメサストライプ20と2つの
溝31と32を形成する。この状態が第2図bで
ある。第3図cはフオトレジストマスクを剥離し
てメサ基板1を形成した状態を示している。次
に、液相エピタキシヤル成長により各層を連続成
長する。結晶成長開始温度は630℃である。第1
層目のp形InP電流ブロツク層2は、InPのポリ
クリスタルがIn溶液上に浮んでいる状態の、2相
溶液から成長する。2相溶液からの成長では過飽
和度が低く、またメサ側面での成長が速いため中
央にあるメサストライプ20の上面にはp形InP
電流ブロツク層2が積層しない。第2層目のn形
InPブロツク層3は過飽和度が10℃の溶液から成
長する。この場合n形InPブロツク層3は全面に
亘つてほぼ均等な膜厚で積層する。次の
InGaAsP活性層4及びp形InPグラツド層5は過
飽和度が5℃の溶液から成長する。p形InPクラ
ツド層5を成長する場合に、最初はInGaAsP活
性層をなぞる形状で積層するが、最終膜厚(平坦
部で2.5μm)に至るまでに、過飽和度が減少し、
溝31,32の上部の凹部を速く埋めるため最終
的にはメサ20の上部でp形InPクラツド層5の
膜厚は最も薄くなる。次にp形InGaAsPキヤツ
プ層6を2相溶液から成長する。InGaAsP層の
成長においては、(001)面内での成長速度が速い
ため、平坦部の厚さにして1μm程度積層すると、
凹部は完全に埋められて表面は平坦になる。各層
を積層した状態を第2図dに示す。以上で成長過
程を終える。次に通常の方法により、成長結晶を
80μm程度まで研磨し、p側にAu−Znの金属電
極11、n側にAu−Ge−Niの金属電極12を形
成する。最後に、共振器長、約250μmの長さで
壁開し、半導体レーザチツプとする。
Next, a method of manufacturing this device will be explained using FIG. 2. FIG. 2a shows an n-type InP substrate 100 (plane orientation <
001> shows a diagram in which a photoresist film 40 is formed. A photoresist stripe 41 having a width of 2 μm at the center and stripes 41 and 43 having a width of 5 μm on both sides and exposing the substrate surface are parallel to the <110> direction. Next, Br-methanol (concentration 0.4%)
41 and 43 stripes to a depth of 3μ.
Etching is performed to a depth of m to form a mesa stripe 20 and two grooves 31 and 32. This state is shown in FIG. 2b. FIG. 3c shows the mesa substrate 1 formed by peeling off the photoresist mask. Next, each layer is successively grown by liquid phase epitaxial growth. The crystal growth starting temperature is 630°C. 1st
The p-type InP current blocking layer 2 is grown from a two-phase solution with InP polycrystals floating on the In solution. Growth from a two-phase solution has a low degree of supersaturation, and growth on the mesa sides is fast, so p-type InP is grown on the top surface of the mesa stripe 20 in the center.
Current blocking layer 2 is not laminated. 2nd layer n-type
The InP block layer 3 is grown from a solution with a supersaturation degree of 10°C. In this case, the n-type InP block layer 3 is laminated with a substantially uniform thickness over the entire surface. next
The InGaAsP active layer 4 and the p-type InP gradient layer 5 are grown from a solution with a supersaturation degree of 5°C. When growing the p-type InP cladding layer 5, it is initially laminated in a shape that traces the InGaAsP active layer, but by the time the final film thickness is reached (2.5 μm at the flat part), the degree of supersaturation decreases.
In order to quickly fill the recesses above the trenches 31 and 32, the thickness of the p-type InP cladding layer 5 ultimately becomes the thinnest at the top of the mesa 20. Next, a p-type InGaAsP cap layer 6 is grown from a two-phase solution. In the growth of InGaAsP layers, the growth rate in the (001) plane is fast, so if the thickness of the flat part is about 1 μm,
The recesses are completely filled and the surface is flat. The state in which each layer is laminated is shown in FIG. 2d. This completes the growth process. Next, grow the crystal using the usual method.
It is polished to about 80 μm, and a metal electrode 11 of Au-Zn is formed on the p-side and a metal electrode 12 of Au-Ge-Ni is formed on the n-side. Finally, the wall is cut to a cavity length of approximately 250 μm to form a semiconductor laser chip.

以上、本発明による半導体レーザ及びその製造
方法を述べたが、以上の実施例で、InGaAsP活
性層4は全体に亘つて連続であつたが、メサ上部
の導波路部7の両側で途切れても良い。また半導
体材料として、InGaAsP系を用いたが、AlGaAs
系であつても良い。
The semiconductor laser and its manufacturing method according to the present invention have been described above. In the above embodiments, the InGaAsP active layer 4 was continuous throughout, but even if it was interrupted on both sides of the waveguide section 7 above the mesa. good. In addition, although InGaAsP was used as the semiconductor material, AlGaAs
It may be a system.

最後に本発明の特徴を列挙すると、光導波路部
と注入電流制限領域とが重なるため発振閾値電流
が低いこと、光導波部へ流れる経路の電圧降下が
周囲に比べ低いため、温度特性が良いこと、各素
子間でのばらつきが小さいこと等である。
Finally, to enumerate the features of the present invention, the oscillation threshold current is low because the optical waveguide section and the injection current limiting region overlap, and the temperature characteristics are good because the voltage drop in the path flowing to the optical waveguide section is lower than that in the surrounding area. , small variations among each element, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例を示す半導体レーザの
断面図、第2図a,b,c,d,eは第1図に示
す実施例の製造方法を示す図である。 図中1……(001)方位n形InPメサ基板、2
……p形InP電流ブロツク層、3……n形InPク
ラツド層、4……ノンドープInGaAsP活性層、
5……p形InPクラツド層、6……p形InGaAsP
キヤツプ層、7……InGaAsP活性層の中の光導
波路、11……p側金属電極、12……n側金属
電極、20……メサストライプ、31,32……
溝部、40……フオトレジス膜、41……フオト
レジスト膜のストライプ、42,43……半導体
表面が露出したストライプ、100……(001)
方位のn形InP基板である。
FIG. 1 is a sectional view of a semiconductor laser showing an embodiment of the present invention, and FIGS. 2a, b, c, d, and e are diagrams showing a manufacturing method of the embodiment shown in FIG. In the figure 1... (001) orientation n-type InP mesa substrate, 2
...p-type InP current blocking layer, 3...n-type InP cladding layer, 4...non-doped InGaAsP active layer,
5...p-type InP cladding layer, 6...p-type InGaAsP
Cap layer, 7... Optical waveguide in InGaAsP active layer, 11... P-side metal electrode, 12... N-side metal electrode, 20... Mesa stripe, 31, 32...
Groove portion, 40... Photoresist film, 41... Stripe of photoresist film, 42, 43... Stripe with exposed semiconductor surface, 100... (001)
It is an oriented n-type InP substrate.

Claims (1)

【特許請求の範囲】[Claims] 1 近接する2本の平行な溝で狭まれたメサスト
ライプが形成された第1導電形の半導体基板上
に、前記メサストライプ上部に結晶成長が生じな
い程度に小さな過飽和度の2相溶液を用いて前記
半導体基板上に前記メサストライプ上面を除いて
積層し前記2本の平行な溝の内部で、前記メサス
トライプの高さよりも低く位置する第2導電形の
電流ブロツク層を形成する第1の工程と、前記電
流ブロツク層及び前記メサストライプ上面に亘り
ほぼ均等な厚さで積層される第1導電形の第1の
クラツド層を形成する第2の工程と、前記第1の
クラツド層の全面に第1導電形あるいは第2導電
形の活性層を前記メサストライプ直上部で湾曲し
て形成する第3の工程と、前記活性層の全面に積
層された第2導電形の第2のクラツド層を形成す
る第4の工程とを含み、これら第1乃至第4の工
程が一つの成長炉内で連続して行われることを特
徴とする半導体レーザの製造方法。
1. On a semiconductor substrate of the first conductivity type in which a mesa stripe narrowed by two adjacent parallel grooves is formed, a two-phase solution with a supersaturation degree small enough to prevent crystal growth above the mesa stripe is used. a first current blocking layer of a second conductivity type, which is laminated on the semiconductor substrate except for the top surface of the mesa stripe, and is located inside the two parallel grooves and is lower than the height of the mesa stripe. a second step of forming a first cladding layer of a first conductivity type that is laminated to a substantially uniform thickness over the current blocking layer and the upper surface of the mesa stripe; a third step of forming an active layer of a first conductivity type or a second conductivity type in a curved manner directly above the mesa stripe; and a second cladding layer of a second conductivity type laminated on the entire surface of the active layer. A method for manufacturing a semiconductor laser, characterized in that the first to fourth steps are successively performed in one growth furnace.
JP17930581A 1981-11-09 1981-11-09 Semiconductor laser Granted JPS5880889A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17930581A JPS5880889A (en) 1981-11-09 1981-11-09 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17930581A JPS5880889A (en) 1981-11-09 1981-11-09 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS5880889A JPS5880889A (en) 1983-05-16
JPS6358390B2 true JPS6358390B2 (en) 1988-11-15

Family

ID=16063499

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17930581A Granted JPS5880889A (en) 1981-11-09 1981-11-09 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS5880889A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58121693A (en) * 1982-01-12 1983-07-20 Sanyo Electric Co Ltd Semiconductor laser
US4937836A (en) * 1983-11-30 1990-06-26 Sharp Kabushiki Kaisha Semiconductor laser device and production method therefor
JPS6184087A (en) * 1984-10-02 1986-04-28 Agency Of Ind Science & Technol Multi-quantum well semiconductor laser and manufacture thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100885A (en) * 1976-02-19 1977-08-24 Sony Corp Production of semiconductor device by liquid epitaxial growth
JPS5521199A (en) * 1978-07-31 1980-02-15 Rca Corp Semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52100885A (en) * 1976-02-19 1977-08-24 Sony Corp Production of semiconductor device by liquid epitaxial growth
JPS5521199A (en) * 1978-07-31 1980-02-15 Rca Corp Semiconductor laser

Also Published As

Publication number Publication date
JPS5880889A (en) 1983-05-16

Similar Documents

Publication Publication Date Title
JPS61190993A (en) Manufacture of semiconductor laser element
US4870468A (en) Semiconductor light-emitting device and method of manufacturing the same
JPS5940592A (en) Semiconductor laser element
JPH0461514B2 (en)
JPH0474877B2 (en)
JPS6358390B2 (en)
US4841535A (en) Semiconductor laser device
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JP3098582B2 (en) Semiconductor light emitting device
JPS61242091A (en) Semiconductor light-emitting element
JPS6148277B2 (en)
JPH0682886B2 (en) Method of manufacturing semiconductor laser device
JPH07312462A (en) Surface laser beam emitting diode and manufacturing method thereof
JPS5834988A (en) Manufacture of semiconductor laser
JPH0325037B2 (en)
JPS59200484A (en) Semiconductor laser
JPS6318874B2 (en)
JPH0449791B2 (en)
JPH0377675B2 (en)
JPS6318876B2 (en)
JPS6234473Y2 (en)
JPS5864084A (en) Semiconductor laser
JPH02103989A (en) Semiconductor laser array and manufacture thereof
EP0292276A2 (en) A semiconductor laser device
JPH0810780B2 (en) Method for manufacturing semiconductor laser