JPH0325037B2 - - Google Patents

Info

Publication number
JPH0325037B2
JPH0325037B2 JP59160897A JP16089784A JPH0325037B2 JP H0325037 B2 JPH0325037 B2 JP H0325037B2 JP 59160897 A JP59160897 A JP 59160897A JP 16089784 A JP16089784 A JP 16089784A JP H0325037 B2 JPH0325037 B2 JP H0325037B2
Authority
JP
Japan
Prior art keywords
layer
split
type
gaalas
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59160897A
Other languages
Japanese (ja)
Other versions
JPS6140077A (en
Inventor
Kenichi Iga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINGIJUTSU JIGYODAN
Original Assignee
SHINGIJUTSU JIGYODAN
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINGIJUTSU JIGYODAN filed Critical SHINGIJUTSU JIGYODAN
Priority to JP16089784A priority Critical patent/JPS6140077A/en
Publication of JPS6140077A publication Critical patent/JPS6140077A/en
Publication of JPH0325037B2 publication Critical patent/JPH0325037B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、GaAs/GaAlAs埋め込み型面発光
レーザ発振装置の製造方法に関し、特にクラツド
層の面積に対し活性層の面積を小さくした構造を
とることと、pn接合の逆バイアスを利用する電
流狭窄層を再現性よく確実に形成することによ
り、発振しきい値電流の低減を可能にした
GaAs/GaAlAs埋め込み型面発光レーザ発振装
置の製造方法に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a GaAs/GaAlAs buried surface emitting laser oscillation device, and particularly a structure in which the area of the active layer is smaller than the area of the cladding layer. In addition, we have made it possible to reduce the oscillation threshold current by reliably forming a current confinement layer that utilizes the reverse bias of the pn junction with good reproducibility.
The present invention relates to a method for manufacturing a GaAs/GaAlAs embedded surface emitting laser oscillation device.

〔従来の技術〕 第2図は、従来の面発光レーザの1例を示した
ものである。図中、1はn形GaAs基板、2はn
形GaAlAsクラツド層、3はGaAs活性層、4は
p形GaAlAsクラツド層、5は反射表面、6は電
極、7は鏡面電極、8は電流、9は活性領域、1
0は光共振経路、11はレーザ光を表わす。
[Prior Art] FIG. 2 shows an example of a conventional surface emitting laser. In the figure, 1 is an n-type GaAs substrate, 2 is an n-type GaAs substrate, and 2 is an n-type GaAs substrate.
3 is a GaAs active layer, 4 is a p-type GaAlAs cladding layer, 5 is a reflective surface, 6 is an electrode, 7 is a mirror electrode, 8 is a current, 9 is an active region, 1
0 represents an optical resonance path, and 11 represents a laser beam.

図示の装置は、電極6および鏡面電極7の間に
所定のレベル以上の電流8を流すことにより、
GaAs活性層3に活性領域9を生成させ、反射表
面5と鏡面電極7との間にフアブリペロー共振器
を形成させている。その結果、光共振経路10に
したがつて光共振が生じ、レーザ光11が放射さ
れるものである。
The illustrated device allows current 8 of a predetermined level or higher to flow between electrode 6 and mirror electrode 7.
An active region 9 is generated in the GaAs active layer 3 to form a Fabry-Perot resonator between the reflective surface 5 and the mirror electrode 7. As a result, optical resonance occurs along the optical resonance path 10, and laser light 11 is emitted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記例示した従来の面発光レーザでは、利得領
域が活性層の厚みの長さしかないため、発振しき
い値電流密度が高くなり、またp形クラツド層で
の電流広がりおよび活性層での小数キヤリアの拡
散による発振に寄与しない漏れ電流が多いため
に、しきい値電流が高くなり、熱の発生などによ
つて室温連続動作が困難であるという問題点があ
つた。
In the conventional surface emitting laser exemplified above, the gain region is only as long as the thickness of the active layer, so the oscillation threshold current density is high, and the current spread in the p-type cladding layer and the fractional carrier in the active layer increase. Since there is a large amount of leakage current that does not contribute to oscillation due to diffusion, the threshold current becomes high, and continuous operation at room temperature is difficult due to heat generation.

発振しきい値電流を低減するには、しきい値電
流密度を下げるか、活性領域の面積を小さくしな
くてはならない。しきい値電流密度を下げる方法
には、高反射率の反射鏡を形成する方法、もしく
は活性層を厚くして利得領域を増やす方法がある
が、前者はレーザ光出力が著しく小さくなるとい
う問題があり、後者の方法でも、活性層の厚みは
キヤリアの拡散長以下に制限される。
In order to reduce the oscillation threshold current, the threshold current density must be lowered or the area of the active region must be reduced. There are two ways to lower the threshold current density: forming a reflector with a high reflectance, or increasing the gain region by thickening the active layer, but the former has the problem of significantly decreasing laser light output. However, even in the latter method, the thickness of the active layer is limited to less than the carrier diffusion length.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は、上述した問題点を解決し、面発光
レーザを従来方式のものより低い発振しきい値電
流で動作させることを可能にするため、クラツド
層の面積に対して活性層の面積を小さくできて、
かつ電流狭窄構造を再現性よく確実に形成できる
埋め込み構造を導入するものである。
This invention solves the above-mentioned problems and allows surface-emitting lasers to operate with a lower oscillation threshold current than conventional systems by reducing the area of the active layer relative to the area of the cladding layer. I was able to do it.
In addition, a buried structure is introduced that allows a current confinement structure to be reliably formed with good reproducibility.

〔実施例〕〔Example〕

第1図は、本発明に基づく面発光レーザの1実
施例の断面図であり、図中、12はn形GaAs基
板、13はn形GaAlAs(XAL=0.4)クラツド層、
14はp形GaAlAs(XAL=0.4)電流ブロツク層、
15はn形GaAlAs(XAL=0.4)層、16はp形
GaAs活性層、17はp形GaAlAs(XAL=0.3)ス
プリツト層、18はp形GaAlAs(XAL=0.45)ク
ラツド層、19はP+−GaAlAsキヤツプ層、20
はAu/Zn/Auなどのp側電極、21はAu/Ge
などのn側電極、22はAu反射膜、23は光共
振経路、24は電流、25はレーザ光を表わす。
FIG. 1 is a cross-sectional view of one embodiment of a surface emitting laser based on the present invention, in which 12 is an n-type GaAs substrate, 13 is an n-type GaAlAs (X AL =0.4) cladding layer,
14 is a p-type GaAlAs (X AL = 0.4) current blocking layer;
15 is n-type GaAlAs (X AL = 0.4) layer, 16 is p-type
GaAs active layer, 17 p-type GaAlAs (X AL = 0.3) split layer, 18 p-type GaAlAs (X AL = 0.45) cladding layer, 19 P + -GaAlAs cap layer, 20
is a p-side electrode such as Au/Zn/Au, 21 is Au/Ge
22 is an Au reflective film, 23 is an optical resonance path, 24 is a current, and 25 is a laser beam.

第1図に示す構造の製作工程は、次の()乃
至()のようになる。なおこの工程は、第3図
の乃至に対応的に図示されている。
The manufacturing process of the structure shown in FIG. 1 is as follows () to (). Note that this step is illustrated correspondingly to FIG.

() 1回めの結晶成長で、DH構造を成す13,
16,17,18,19の各層をエピタキシヤ
ル成長させた後に、化学エツチング等により1
7,18,19の層を円柱状にエツチングす
る。(第3図)そして、2回目の液相成長を
行う。(第3図〜) () まず、Al組成比XALが小さいものほどメル
トバツク速度が速くなることを利用する選択メ
ルトバツク法を用いて、斜線で示すp形GaAs
活性層16を選択的にメルトバツクする。(第
3図) () そして、p形GaAlAs(XAL=0.4)電流ブロ
ツク層14で活性層16の回りを埋め込む。
(第3図) () さらに、選択メルトバツクを行いp形
GaAlAs(XAL=0.3)スプリツト層17をメル
トバツクする。(第3図) () その後にn形GaAlAs(XAL=0.4)15で回
りを埋め込む。(第3図) () 最後に、GaAs基板12エツチングして、
反射鏡となるエピ面を露出させ、電極20,2
1等を形成して加工工程は終了する。(第3図
) このレーザは、第3図に示すように選択メル
トバツク法によりくびれ形のメサ構造を形成し、
電流狭窄機能を強化した埋め込みレーザである。
このため熱放散が優れている。また、新たにp形
GaAlAs(XAL=0.3)スプリツト層17をp形ク
ラツド層18と活性層16との間に設けているこ
とにより、電流狭窄構造が拡散電位のみならず
pn接合の逆方向特性によつて形成されるので、
一層強化されている。
() In the first crystal growth, 13, which forms a DH structure,
After epitaxially growing layers 16, 17, 18, and 19, 1 is etched by chemical etching or the like.
Layers 7, 18, and 19 are etched into a cylindrical shape. (Fig. 3) Then, a second liquid phase growth is performed. (Figure 3~) () First, using the selective meltback method that takes advantage of the fact that the smaller the Al composition ratio
Active layer 16 is selectively meltbacked. (FIG. 3) () Then, the area around the active layer 16 is filled with a p-type GaAlAs (X AL =0.4) current blocking layer 14.
(Figure 3) () Furthermore, select meltback is performed and the p-type
Melt back the GaAlAs (X AL =0.3) split layer 17. (Figure 3) () After that, the surrounding area is filled with n-type GaAlAs (X AL =0.4) 15. (Figure 3) () Finally, the GaAs substrate 12 is etched,
The epitaxial surface serving as a reflecting mirror is exposed, and the electrodes 20, 2 are
The processing process ends after forming the first grade. (Fig. 3) As shown in Fig. 3, this laser forms a constriction-shaped mesa structure by the selective meltback method.
This is a buried laser with enhanced current confinement function.
Therefore, heat dissipation is excellent. In addition, a new p-type
By providing the GaAlAs (X AL = 0.3) split layer 17 between the p-type cladding layer 18 and the active layer 16, the current confinement structure
It is formed by the reverse characteristic of p-n junction, so
It has been further strengthened.

さらに、従来は電流狭窄構造をpnpn構造によ
つて形成する場合、2回目の結晶成長時に微細な
膜厚のコントロールを必要としたが、このレーザ
では各メサのまわりのp形GaAlAs(XAL=0.4)
電流のブロツク層14の層厚が多少異なつていて
も、スプリツト層17を選択メルトバツクするこ
とにより、電流狭窄構造が確実に形成される。
Furthermore, conventionally, when forming a current confinement structure with a pnpn structure, it was necessary to finely control the film thickness during the second crystal growth, but in this laser, p-type GaAlAs (X AL = 0.4)
Even if the layer thickness of the current blocking layer 14 is slightly different, by selectively melting back the split layer 17, a current confinement structure can be reliably formed.

〔従来方法との比較〕[Comparison with conventional method]

第4図に、日本電気(株)より報告されたメサくび
れ形埋め込み構造(BCM)GaAlAsレーザの構
造図を示す。このレーザの特徴は、次の通りであ
る。
Figure 4 shows a structural diagram of a buried mesa-constriction-type (BCM) GaAlAs laser reported by NEC Corporation. The features of this laser are as follows.

() 化学エツチングにより、選択的にGaAlAs
活性層をエツチングしてクラツド層の幅より活
性層の幅を狭くしたメサストライプレーザであ
る。
() Selective GaAlAs by chemical etching
This is a mesa stripe laser in which the active layer is etched to make the width of the active layer narrower than the width of the cladding layer.

() 電流狭窄構造は、窪み部でp形GaAlAs電
流ブロツク層の成長が完全に止まる液相成長に
特有な性質を利用してpnpn構造を形成する。
ところで、膜厚方向に光を共振させる面発光レ
ーザでは、活性層の厚みを通常のストライプレ
ーザのそれと比較して数十倍ほど厚くする必要
がある。このため、活性層の両側で結晶成長が
起り、上記したBCMレーザのように窪み部で
p形GaAlAs電流ブロツク層の成長を止めるこ
とはできず、pnpn構造の電流狭窄構造を形成
することは不可能となる。
() The current confinement structure forms a pnpn structure by utilizing a characteristic peculiar to liquid phase growth in which the growth of the p-type GaAlAs current blocking layer is completely stopped in the depression.
Incidentally, in a surface emitting laser that resonates light in the film thickness direction, the thickness of the active layer needs to be several tens of times thicker than that of a normal striped laser. For this reason, crystal growth occurs on both sides of the active layer, and it is impossible to stop the growth of the p-type GaAlAs current blocking layer in the recess like in the BCM laser described above, and it is impossible to form a pnpn current confinement structure. It becomes possible.

このような場合、本発明における様にスプリ
ツト層を設けて、この層を選択的にメルトバツ
クすることによりpnpn構造を形成する方法が
有効となる。
In such a case, it is effective to form a pnpn structure by providing a split layer and selectively melting back this layer as in the present invention.

〔発明の効果〕〔Effect of the invention〕

以上詳細に説明したように、この発明によれ
ば、従来の面発光レーザに比べ、著しく発振しき
い値電流を低くすることができ、高い信頼性をも
つ面発光レーザを実現できる。この発明による面
発光レーザは、従来の面発光レーザの持つ、共振
器のモノリシツク製作、短共振器構造による単一
縦モード動作、狭出射角、二次元アレイ化等の優
れた特徴に加えて、低しきい値動作による高信頼
性を合わせ持つており、これからの光集積回路を
構成する上で、幅広い利用が期待されるもので、
きわめて重要な意義を有するものである。
As described in detail above, according to the present invention, the oscillation threshold current can be significantly lowered compared to conventional surface emitting lasers, and a highly reliable surface emitting laser can be realized. In addition to the excellent features of conventional surface emitting lasers such as monolithic resonator fabrication, single longitudinal mode operation due to short resonator structure, narrow emission angle, and two-dimensional array formation, the surface emitting laser according to the present invention has the following advantages: It has high reliability due to low threshold operation, and is expected to be widely used in constructing future optical integrated circuits.
It has extremely important significance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に基づく面発光レーザの1実施
例の断面図、第2図は面発光レーザの従来例の断
面図、第3図は第1図に示す実施例の製作工程を
示す説明図、第4図は本発明の効果を説明するた
めの従来例の断面図である。 図中、12はn形GaAs基板、13はn形
GaAlAs(XAL=0.4)クラツド層、14はp形
GaAlAs(XAL=0.4)電流ブロツク層、15はn
形GaAlAs(XAL=0.4)層、16はp形GaAs活性
層、17はp形GaAlAs(XAL=0.3)層、18は
p形GaAlAs(XAL=0.45)クラツド層、19はP+
−GaAlAsキヤツプ層、20はAu/Zn/Auなど
のp側電極、21はAu/Geなどのn側電極、2
2はAu反射膜、23は光共振経路、24は電流、
25はレーザ光を表わす。
FIG. 1 is a sectional view of an embodiment of a surface emitting laser according to the present invention, FIG. 2 is a sectional view of a conventional surface emitting laser, and FIG. 3 is an explanation showing the manufacturing process of the embodiment shown in FIG. 1. 4 are sectional views of a conventional example for explaining the effects of the present invention. In the figure, 12 is an n-type GaAs substrate, 13 is an n-type
GaAlAs (X AL = 0.4) clad layer, 14 is p-type
GaAlAs (X AL = 0.4) current blocking layer, 15 is n
16 is a p-type GaAlAs active layer, 17 is a p-type GaAlAs (X AL = 0.3) layer , 18 is a p-type GaAlAs (X AL = 0.45) cladding layer, 19 is P +
-GaAlAs cap layer, 20 is a p-side electrode such as Au/Zn/Au, 21 is an n-side electrode such as Au/Ge, 2
2 is an Au reflective film, 23 is an optical resonance path, 24 is a current,
25 represents a laser beam.

Claims (1)

【特許請求の範囲】[Claims] 1 活性層16上にスプリツト層17、クラツド
層18、キヤツプ層19をエピタキシヤル成長さ
せた後、スプリツト層17、クラツド層18、キ
ヤツプ層19を柱状にエツチングし、さらに活性
層16を選択的にメルトバツクし、その後、電流
ブロツク層14で活性層の周りを埋め込み、さら
にスプリツト層17を選択的にメルトバツクして
スプリツト層17の周りをスプリツト層17の
p/n形とは逆形の物質で埋め込み、活性層16
とクラツド層18との間に、クラツド層18の面
積よりも小さいスプリツト層17のpn接合の逆
バイアス特性を利用した電流狭窄構造を形成する
ことを特徴とするGaAs/GaAlAs埋め込み型面
発光レーザ発振装置の製造方法。
1. After epitaxially growing the split layer 17, cladding layer 18, and cap layer 19 on the active layer 16, the split layer 17, cladding layer 18, and cap layer 19 are etched into columnar shapes, and then the active layer 16 is selectively etched. After that, the active layer is filled with a current blocking layer 14, and then the split layer 17 is selectively melted back and the area around the split layer 17 is filled with a material having a type opposite to the p/n type of the split layer 17. , active layer 16
GaAs/GaAlAs buried surface emitting laser oscillation characterized by forming a current confinement structure between the split layer 17 and the cladding layer 18 using the reverse bias characteristics of the pn junction of the split layer 17, which is smaller in area than the cladding layer 18. Method of manufacturing the device.
JP16089784A 1984-07-31 1984-07-31 Buried type surface plane laser oscillator Granted JPS6140077A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16089784A JPS6140077A (en) 1984-07-31 1984-07-31 Buried type surface plane laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16089784A JPS6140077A (en) 1984-07-31 1984-07-31 Buried type surface plane laser oscillator

Publications (2)

Publication Number Publication Date
JPS6140077A JPS6140077A (en) 1986-02-26
JPH0325037B2 true JPH0325037B2 (en) 1991-04-04

Family

ID=15724720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16089784A Granted JPS6140077A (en) 1984-07-31 1984-07-31 Buried type surface plane laser oscillator

Country Status (1)

Country Link
JP (1) JPS6140077A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2716774B2 (en) * 1989-01-27 1998-02-18 沖電気工業株式会社 Surface-emitting type semiconductor laser device
JPH03190181A (en) * 1989-12-19 1991-08-20 Nec Corp Planar emission laser and manufacture thereof
JPH07118570B2 (en) * 1993-02-01 1995-12-18 日本電気株式会社 Surface emitting device and manufacturing method thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511338A (en) * 1978-07-10 1980-01-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS5698888A (en) * 1980-01-09 1981-08-08 Tokyo Inst Of Technol Light emitting semiconductor laser

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511338A (en) * 1978-07-10 1980-01-26 Nippon Telegr & Teleph Corp <Ntt> Semiconductor laser device
JPS5698888A (en) * 1980-01-09 1981-08-08 Tokyo Inst Of Technol Light emitting semiconductor laser

Also Published As

Publication number Publication date
JPS6140077A (en) 1986-02-26

Similar Documents

Publication Publication Date Title
US4948753A (en) Method of producing stripe-structure semiconductor laser
JP2815769B2 (en) Manufacturing method of semiconductor laser
JPS5940592A (en) Semiconductor laser element
US4636821A (en) Surface-emitting semiconductor elements
US4868838A (en) Semiconductor laser device
JPH0461514B2 (en)
US4759025A (en) Window structure semiconductor laser
JPH0518473B2 (en)
US4377865A (en) Semiconductor laser
JPH0325037B2 (en)
JPS6083389A (en) Surface luminescent laser oscillator
US4581743A (en) Semiconductor laser having an inverted layer in a stepped offset portion
JPH0671121B2 (en) Semiconductor laser device
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPH0156547B2 (en)
JP2685499B2 (en) Semiconductor laser device
JPS6148277B2 (en)
JPS61253882A (en) Semiconductor laser device
JPH0251269B2 (en)
US4860299A (en) Semiconductor laser device
JPS609187A (en) Semiconductor light-emitting device
JPS6358390B2 (en)
JPS6342867B2 (en)
JPS6234473Y2 (en)
JPH05226774A (en) Semiconductor laser element and its production

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term