JPS61253882A - Semiconductor laser device - Google Patents
Semiconductor laser deviceInfo
- Publication number
- JPS61253882A JPS61253882A JP9543585A JP9543585A JPS61253882A JP S61253882 A JPS61253882 A JP S61253882A JP 9543585 A JP9543585 A JP 9543585A JP 9543585 A JP9543585 A JP 9543585A JP S61253882 A JPS61253882 A JP S61253882A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- face
- type electrode
- stripe width
- semiconductor laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔発明の利用分野〕
本発明は、高出力かつ高信頼な横モード制御された半導
体レーザに関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a high-output and highly reliable transverse mode controlled semiconductor laser.
従来の活性層を薄くして光スポツトサイズを大きくして
高出力化を図った半導体レーザ(ジー・ピー・アグラヴ
アル、ジエー・アプライド・フィジックス第56巻、1
984年第3100〜3108頁(G、P。Conventional semiconductor lasers that achieve high output by thinning the active layer and increasing the optical spot size (GP Agraval, GA Applied Physics Vol. 56, 1)
984, pp. 3100-3108 (G, P.
Agraval、 J 、 Appl−Phys、 5
6 p 、 3100〜3108゜1984)参照)
は、光閉込め係数が小さいためしきい電流密度が高く、
寿命が短いという欠点があった。また、ストライプ幅を
大きくして光スポツトサイズを拡大する方法も横モード
が不安定となり易い欠点があった。Agrawal, J., Appl-Phys, 5
6 p., 3100-3108゜1984))
has a high threshold current density due to a small optical confinement coefficient;
The drawback was that it had a short lifespan. Furthermore, the method of enlarging the light spot size by increasing the stripe width also has the disadvantage that the transverse mode tends to become unstable.
本発明の目的は、高出力かつ高信頼である基本横モード
で発振する半導体レーザを提供することにある。An object of the present invention is to provide a semiconductor laser that oscillates in the fundamental transverse mode and has high output and high reliability.
半導体レーザを高出力化するためには、光スポツトサイ
ズを拡大する必要がある。しかし、活性層を薄層化して
光スポツトサイズを大きくするとしきい電流密度が大き
くなり短寿命となる。従って、ストライプ幅を大きくす
れば良いが、ストライプ幅を大きくすると横モードが不
安定化し易い。In order to increase the output of a semiconductor laser, it is necessary to enlarge the optical spot size. However, if the active layer is made thinner to increase the light spot size, the threshold current density increases and the lifetime becomes shorter. Therefore, it is possible to increase the stripe width, but increasing the stripe width tends to make the transverse mode unstable.
そこで、端面付近で端面に近いほどストライプ幅が小さ
くなるようにすれば、横モードが安定かつ光スポツトサ
イズが拡大できる。また、そのようなストライプ形状に
すると端面付近で光スポツトサイズが小さくなるため、
端面付近でキャリヤ分布が変形し易い。そこで、本発明
では、端面付近には電流を注入しない構造にしである。Therefore, by making the stripe width smaller near the end face, the transverse mode can be stabilized and the light spot size can be increased. In addition, when using such a striped shape, the light spot size becomes smaller near the end face, so
Carrier distribution tends to change near the end face. Therefore, in the present invention, a structure is adopted in which no current is injected near the end face.
また、電流を注入しない領域は通常のダブルへテロ型レ
ーザでは吸収領域となるが、本発明の構造では量子井戸
構造を内蔵した活性層を有するため光はほとんど吸収さ
れない。以上のことにより、高出力かつ高信頼である基
本横モードで発振する半導体レーザを得ることができる
。Furthermore, the region where current is not injected becomes an absorption region in a normal double hetero type laser, but in the structure of the present invention, almost no light is absorbed because it has an active layer containing a quantum well structure. As a result of the above, it is possible to obtain a semiconductor laser that oscillates in the fundamental transverse mode and has high output and high reliability.
−〔発明の実施例〕 以下1本発明の第1の実施例を第1図により説明する。- [Embodiments of the invention] A first embodiment of the present invention will be described below with reference to FIG.
まず、第1図に示した半導体レーザ装置の作製方法につ
いて述べることにする。n ”−GaAs基板1上にn
−GaAμAsクラッド層2、量子井戸構造を内蔵した
活性層3、P −GaA Q Asクラッド層4、n−
Gapg光吸収層5を順次有機金属熱分解気相成長法(
MOCVD法)により成長する。その後、りん酸系の化
学エツチング液を用いて、第2図に示すようなストライ
プ幅になるように、光吸収層をエツチングする。再びM
OCVD法を用いて、P−GaA Q As埋込み層6
、P−GaAsキャップ層7を成長し、Zn拡散を行い
Zn拡散層8を形成する。First, a method for manufacturing the semiconductor laser device shown in FIG. 1 will be described. n”-n on the GaAs substrate 1
-GaAμAs cladding layer 2, active layer 3 with built-in quantum well structure, P -GaA Q As cladding layer 4, n-
The Gap light absorption layer 5 is sequentially formed by metal organic pyrolysis vapor phase epitaxy (
Grown by MOCVD method). Thereafter, the light absorption layer is etched using a phosphoric acid-based chemical etching solution so as to have a stripe width as shown in FIG. M again
Using OCVD method, P-GaA QAs buried layer 6
, a P-GaAs cap layer 7 is grown, and Zn is diffused to form a Zn diffusion layer 8.
最後に、n型電極9.p型電極10をそれぞれ蒸着法に
より形成する。そして、端面付近50μmだけP型電極
をエツチングで除去することによって、図のような半導
体レーザ装置が製造される。Finally, the n-type electrode 9. Each p-type electrode 10 is formed by a vapor deposition method. Then, by etching away the P-type electrode by 50 μm near the end face, a semiconductor laser device as shown in the figure is manufactured.
本発明の第2の実施例を第3図に示す。作製方法は、ス
トライプ形成まで第1の実施例と同じである。埋込み成
長では、p −GaA Q As埋込み層6゜n G
aAsキャップ層7′を形成する。Zn拡散は、端面付
近50μm以外の領域においてp −GaA m As
クラッド層6に達するまで行い、Zn拡散層8を形成す
る。最後に、n型電極9、p型電極10をそれぞれ蒸着
法により形式することによって、図のような半導体レー
ザ装置が製造される。A second embodiment of the invention is shown in FIG. The manufacturing method is the same as the first example up to the formation of stripes. In buried growth, p -GaA Q As buried layer 6゜n G
An aAs cap layer 7' is formed. Zn diffusion is caused by p -GaA m As in a region other than 50 μm near the end face.
The process is continued until the cladding layer 6 is reached, and a Zn diffusion layer 8 is formed. Finally, by forming the n-type electrode 9 and the p-type electrode 10 by vapor deposition, the semiconductor laser device as shown in the figure is manufactured.
第1.第2の実施例とも、光出力100mWまで基本横
モードが維持され、70℃、100mWで2000時間
以上連続発振可能な、高出力高信頼レーザが実現できた
。1st. In both the second example, a high-output, highly reliable laser was realized in which the fundamental transverse mode was maintained up to an optical output of 100 mW, and which was capable of continuous oscillation at 70° C. and 100 mW for more than 2000 hours.
本発明では、GaA Q As系以外のレーザ材料、例
えばInGaAs系、InGaP系等の化合物半導体を
用いた半導体レーザ一般に対しても同様に適用できる。The present invention can be similarly applied to general semiconductor lasers using compound semiconductors other than GaA Q As-based laser materials, such as InGaAs-based and InGaP-based laser materials.
(発明の効果〕
本発明によれば、共振器中央部でストライプ幅が広いた
め光スポツトサイズが拡大され高出力できる。また、端
面付近でストライプ幅が端面に近いほど狭くなっている
ので横モードが安定化される。横モードの変形は、光密
度が高い所でキャリヤ分布が変形することに起因する。(Effects of the Invention) According to the present invention, since the stripe width is wide at the center of the resonator, the optical spot size is expanded and high output can be achieved.Furthermore, since the stripe width near the end faces becomes narrower as it approaches the end faces, the transverse mode is stabilized.The deformation of the transverse mode is caused by the deformation of the carrier distribution in areas where the optical density is high.
本発明の構造では、端面付近で光の閉じ込め作用が大き
いため、の変形に伴う横モード変形は生じない、従って
活性層を特に薄くせずに光スポツトサイズを大きくでき
るため、しきい電流密度を上昇させずに高出力化できる
。素子作製の結果、70℃、100mWで2000時間
以上の平均寿命の素子が歩留りよく得られた6以上によ
り、本発明が高出力化と高信頼性を両立させることに相
当効果があることがわかった。In the structure of the present invention, since the light confinement effect is large near the end face, no transverse mode deformation occurs due to the deformation of High output can be achieved without raising the power. As a result of device fabrication, devices with an average lifespan of 2000 hours or more at 70° C. and 100 mW were obtained with a good yield of 6 or more, indicating that the present invention is quite effective in achieving both high output and high reliability. Ta.
第1図は本発明の実施例の素子の模式図、第2図は、ス
トライプ幅Wと共振器方向の座′!szとの関係を示す
図、第3図は本発明の実施例の素子の模式図である。
1− n ”−GaAs基板、2− n −GaA Q
Asクラッド層、3・・・量子井戸構造を内蔵した活
性層、4・・・P −GaA 42 Asクラッド層、
5− n−GaAs光吸収層、6− P −GaA Q
As埋込み層、7− P−GaAsキャップ層、7′
・・・n−GaAsキャップ層、8・・・Zn拡散層、
冨 3 図
/jFIG. 1 is a schematic diagram of a device according to an embodiment of the present invention, and FIG. 2 shows the stripe width W and the seat ′ in the resonator direction! FIG. 3, which shows the relationship with sz, is a schematic diagram of an element according to an embodiment of the present invention. 1-n''-GaAs substrate, 2-n-GaAQ
As cladding layer, 3... active layer with built-in quantum well structure, 4... P-GaA 42 As cladding layer,
5- n-GaAs light absorption layer, 6- P-GaA Q
As buried layer, 7- P-GaAs cap layer, 7'
...n-GaAs cap layer, 8...Zn diffusion layer,
Tomi 3 Figure/j
Claims (1)
に狭くなつており、かつ電流を端面付近に流さないよう
な構造をもつた量子井戸自己整合型である半導体レーザ
装置。A quantum well self-aligned semiconductor laser device that has a structure in which the stripe width becomes gradually narrower near the end surface, and current does not flow near the end surface.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9543585A JPS61253882A (en) | 1985-05-07 | 1985-05-07 | Semiconductor laser device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9543585A JPS61253882A (en) | 1985-05-07 | 1985-05-07 | Semiconductor laser device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61253882A true JPS61253882A (en) | 1986-11-11 |
Family
ID=14137616
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9543585A Pending JPS61253882A (en) | 1985-05-07 | 1985-05-07 | Semiconductor laser device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61253882A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04245491A (en) * | 1991-01-31 | 1992-09-02 | Sharp Corp | Semiconductor laser element and manufacture thereof |
JP2003101139A (en) * | 2001-09-21 | 2003-04-04 | Nec Corp | End surface emitting semiconductor laser and semiconductor laser module |
JP2013516765A (en) * | 2009-12-30 | 2013-05-13 | アイピージー フォトニクス コーポレーション | Optical element |
JP2013191622A (en) * | 2012-03-12 | 2013-09-26 | Mitsubishi Electric Corp | Semiconductor light-emitting element and manufacturing method of the same |
-
1985
- 1985-05-07 JP JP9543585A patent/JPS61253882A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04245491A (en) * | 1991-01-31 | 1992-09-02 | Sharp Corp | Semiconductor laser element and manufacture thereof |
JP2003101139A (en) * | 2001-09-21 | 2003-04-04 | Nec Corp | End surface emitting semiconductor laser and semiconductor laser module |
JP2013516765A (en) * | 2009-12-30 | 2013-05-13 | アイピージー フォトニクス コーポレーション | Optical element |
JP2013191622A (en) * | 2012-03-12 | 2013-09-26 | Mitsubishi Electric Corp | Semiconductor light-emitting element and manufacturing method of the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4270096A (en) | Semiconductor laser device | |
US4675710A (en) | Light emitting semiconductor device | |
JPH05102595A (en) | Laser diode array and manufacture thereof | |
JPH07162086A (en) | Manufacture of semiconductor laser | |
US5776792A (en) | Method for forming semiconductor laser device | |
US4868838A (en) | Semiconductor laser device | |
JPS6218783A (en) | Semiconductor laser element | |
US4377865A (en) | Semiconductor laser | |
JPS61253882A (en) | Semiconductor laser device | |
US4754462A (en) | Semiconductor laser device with a V-channel and a mesa | |
US4841535A (en) | Semiconductor laser device | |
US4592062A (en) | (VSIS) semiconductor laser with reduced compressive stress | |
JP3254812B2 (en) | Semiconductor laser and manufacturing method thereof | |
JPH0936474A (en) | Semiconductor laser and fabrication thereof | |
JP3108183B2 (en) | Semiconductor laser device and method of manufacturing the same | |
JPS6362292A (en) | Semiconductor laser device and manufacture thereof | |
JP2001053381A (en) | Semiconductor laser and manufacture thereof | |
JPH01103897A (en) | Semiconductor laser element | |
JPH0256836B2 (en) | ||
JPH0147029B2 (en) | ||
JPS6234473Y2 (en) | ||
JPH02240988A (en) | Semiconductor laser | |
JPH0568873B2 (en) | ||
JPS60132381A (en) | Semiconductor laser device | |
KR100278629B1 (en) | Semiconductor laser diode and manufacturing method thereof |