JPH02240988A - Semiconductor laser - Google Patents
Semiconductor laserInfo
- Publication number
- JPH02240988A JPH02240988A JP6096989A JP6096989A JPH02240988A JP H02240988 A JPH02240988 A JP H02240988A JP 6096989 A JP6096989 A JP 6096989A JP 6096989 A JP6096989 A JP 6096989A JP H02240988 A JPH02240988 A JP H02240988A
- Authority
- JP
- Japan
- Prior art keywords
- type
- layer
- semiconductor laser
- substrate
- laser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 15
- 239000012535 impurity Substances 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims abstract description 11
- 239000013078 crystal Substances 0.000 claims abstract description 8
- 238000005253 cladding Methods 0.000 claims description 18
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 8
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 abstract description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000969 carrier Substances 0.000 abstract description 3
- 238000000206 photolithography Methods 0.000 abstract description 3
- 229910052681 coesite Inorganic materials 0.000 abstract 1
- 229910052906 cristobalite Inorganic materials 0.000 abstract 1
- 230000002349 favourable effect Effects 0.000 abstract 1
- 239000000377 silicon dioxide Substances 0.000 abstract 1
- 235000012239 silicon dioxide Nutrition 0.000 abstract 1
- 229910052682 stishovite Inorganic materials 0.000 abstract 1
- 229910052905 tridymite Inorganic materials 0.000 abstract 1
- 230000003287 optical effect Effects 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 101100240461 Dictyostelium discoideum ngap gene Proteins 0.000 description 1
- 240000002329 Inga feuillei Species 0.000 description 1
- 206010051602 Laziness Diseases 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- HQWPLXHWEZZGKY-UHFFFAOYSA-N diethylzinc Chemical compound CC[Zn]CC HQWPLXHWEZZGKY-UHFFFAOYSA-N 0.000 description 1
- AXAZMDOAUQTMOW-UHFFFAOYSA-N dimethylzinc Chemical compound C[Zn]C AXAZMDOAUQTMOW-UHFFFAOYSA-N 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 238000000197 pyrolysis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Landscapes
- Semiconductor Lasers (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は半導体レーザ、とくに発振波長が0.6μm帯
にあるAflInGaP系半導体レーザの構造および製
造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser, and particularly to a structure and manufacturing method of an AflInGaP semiconductor laser having an oscillation wavelength in the 0.6 μm band.
従来、0.6μm帯の波長域で動作するAΩInGaP
系半導体レーザについては、昭和63年レーザ学会学術
請演会第8回年次大会予稿集p49−52,18PI4
において論じられている。Conventionally, AΩInGaP operates in the 0.6 μm wavelength range.
Regarding semiconductor lasers, please refer to the proceedings of the 8th Annual Conference of the Laser Society of Japan in 1988, p49-52, 18PI4.
It is discussed in
上記従来技術はp形A n I n G a Pクラッ
ド層中のp形不純物の高濃度ドーピングについては十分
な配慮がされておらず、素子の高温動作化や30mW以
上の高光出力動作に問題があった。The above conventional technology does not give sufficient consideration to the high concentration doping of p-type impurities in the p-type A n I n Ga P cladding layer, and there are problems with high-temperature operation of the device and high optical output operation of 30 mW or more. there were.
また、従来技術でのA嚢InGaPクラッド層へのドー
ピングは有機金属熱分解(MOCVD)法による結晶成
長時にZnもしくはMgを不純物としてドープすること
により行なわれていた。しかし1例えばZnの場合、Z
nのソースとなるジメチル亜鉛(又はジエチル亜鉛)の
量を増加すると結晶中のZn量は増加するが、正孔量は
3〜5×1〇五7a11″″8以上とはならなかった。Further, in the prior art, the A-bag InGaP cladding layer was doped by doping Zn or Mg as an impurity during crystal growth by metal organic pyrolysis (MOCVD). However, 1 For example, in the case of Zn, Z
Although the amount of Zn in the crystal increased when the amount of dimethylzinc (or diethylzinc) serving as a source of n increased, the amount of holes did not exceed 3 to 5×1057a11″″8.
この為、素子の直列抵抗が高く、また温度特性も悪く、
高温・高出力動作が困難であった。一方、Mgの場合、
正孔量は10”Ql−’以上に増大するが正孔濃度の制
御性が悪く、素子特性の再現性に欠けていた。For this reason, the series resistance of the element is high, and the temperature characteristics are also poor.
It was difficult to operate at high temperatures and high output. On the other hand, in the case of Mg,
Although the amount of holes increased to 10"Ql-' or more, the controllability of the hole concentration was poor and the reproducibility of device characteristics was lacking.
本発明の目的は直列抵抗が低く、かつ温度特性が良好で
、高温高出力動作が可能な波長0.6μ−帯のAjlI
nGaP系半導体レーザを実現することにある。The purpose of the present invention is to provide an AjlI with a wavelength of 0.6μ-band that has low series resistance, good temperature characteristics, and is capable of high-temperature, high-output operation.
The objective is to realize an nGaP semiconductor laser.
上記目的を達成するために1本発明は、基板結晶の一部
もしくは全面に高濃度のp形不純物を有する層で設けた
p形基板を用いたものである。In order to achieve the above object, the present invention uses a p-type substrate in which a part or the entire surface of the substrate crystal is provided with a layer having a high concentration of p-type impurity.
p形GOΔS基板の場合を例にとり説明する。 The case of a p-type GOΔS substrate will be explained as an example.
I)形GaAs基板のp形AflInGal’クラッド
層に接する側に設けた高濃度P形不純物層は、p形Δf
lInOaPを含むダブルヘテロ構造の形成(結晶成長
)時に、pyt3AQInGaPクラッド層へのp形不
純物の固体内拡数ソースとして働く。The high concentration P type impurity layer provided on the side of the I) type GaAs substrate in contact with the p type AflInGal' cladding layer is
During the formation (crystal growth) of double heterostructures containing lInOaP, pyt3AQ acts as an in-solid expansion source of p-type impurities into the InGaP cladding layer.
このため、p形へ〇InGar’クラッド層中のp形不
純物濃度が高くなり、レーザの直列抵抗が低減すると共
に、注入キャリアのp形クラッド層へのオーバーフロー
が減少し高温・高出力動作が可能なAJInGaP系0
.6μmμm−ザが再現性良くできるようになる。Therefore, the concentration of p-type impurities in the cladding layer increases, reducing the series resistance of the laser and reducing the overflow of injected carriers to the p-type cladding layer, enabling high-temperature and high-output operation. AJInGaP system 0
.. 6 μm μm-zero can be produced with good reproducibility.
実施例1
以下、本発明の実施例1を第1図により説明する。p形
GaAs基板(p〜4 X 10”01−”) 1の表
面にZn拡散し、p形不純物高濃度層(厚さ3pm、p
2−10”am″″a)を形成した。その後。Example 1 Example 1 of the present invention will be described below with reference to FIG. Zn is diffused on the surface of p-type GaAs substrate (p ~ 4 x 10"01-") 1, and a p-type impurity high concentration layer (3 pm thick, p
2-10"am""a) was formed. Then.
MOCVD法によりp形A no、aaGao、sa
I no*aPクラッド層3、I no、+sG ao
、aP活性層4、n形A 彦o、zaG a o、ss
1 n o、sPクラッド層5、n形GaAsキャッ
プ層6を形成した。ホトリソグラフィ、CVD工程を経
て1幅5〜8μmのストライブ溝を有する5ins膜7
を形成した。その後。p-type A no, aaGao, sa by MOCVD method
I no * aP cladding layer 3, I no, +sG ao
, aP active layer 4, n-type A hiko, zaG ao, ss
1no, an sP cladding layer 5, and an n-type GaAs cap layer 6 were formed. 5ins film 7 with striped grooves each having a width of 5 to 8 μm through photolithography and CVD processes
was formed. after that.
n形電極8を形成した後、p形電極9を設け、へき関し
て共ha長300μmのレーザチップとした0本レーザ
は室温においてしきい値憧流60mAで連続発振した。After forming the n-type electrode 8, a p-type electrode 9 was provided, and a laser chip having a common ha length of 300 μm was used, and the zero laser was continuously oscillated at a threshold current of 60 mA at room temperature.
またJjJI#を温度100℃まで連続発振した。Further, JjJI# was continuously oscillated up to a temperature of 100°C.
実施例2
本発明の実施例2を第2図に示す、p形G a A s
基板1上にZnの選択拡散により1幅10〜20μmの
ストライブ状の高濃度p形不純物層(p2IQ”m−’
)を形成した。その後、実施例1と同様にして、ダブル
ヘテロ構造を形成し、レーザ索子とした。!子はしきい
値56mAで室温連続動作し、また、105℃まで連続
動作した。Example 2 Example 2 of the present invention is shown in FIG.
A highly concentrated p-type impurity layer (p2IQ"m-'
) was formed. Thereafter, in the same manner as in Example 1, a double heterostructure was formed to form a laser cord. ! The device operated continuously at room temperature with a threshold value of 56 mA, and also operated continuously up to 105°C.
実施例3
本発明の実施例3を第3図に示す、p形G a A s
基板1上に幅5〜10μm、深さ1〜2μmのストライ
ブ溝を形成した後、Zn拡散を行ない、基板表面近傍に
p形不純物高濃度M(厚さ3μm。Example 3 Example 3 of the present invention is shown in FIG.
After forming a stripe groove with a width of 5 to 10 μm and a depth of 1 to 2 μm on the substrate 1, Zn is diffused to form a high concentration of p-type impurity M (thickness: 3 μm) near the substrate surface.
p ) 10”Ql−”) 2を形成シタ、ソ(1)t
&、実施例1と同様にMOCVD法等により、ダブルヘ
テロ構造を形成し、レーザチップとじた1作製したレー
ザは室温において、40mAのしきい11電流で連続発
振した。また1本素子の前方および後方端面に誘電体膜
を形成し1反射率を、それぞれ、7%および90%とし
た素子では光出力50mWまで安定な横基本モード動作
することが確かめられた0本素子の連続発振温度は12
0℃であった。p) 10"Ql-") Forming 2 Sita, So(1) t
&, As in Example 1, a double heterostructure was formed by the MOCVD method, etc., and the laser chip was assembled.The fabricated laser oscillated continuously at a threshold current of 40 mA at room temperature. In addition, it was confirmed that a dielectric film was formed on the front and rear end faces of a single element to give a reflectance of 7% and 90%, respectively, and that the element operated in a stable transverse fundamental mode up to an optical output of 50 mW. The continuous oscillation temperature of the element is 12
It was 0°C.
実施例4
本発明の実施例4を第4図に示す、p形G a A a
基板l上に幅5〜10μm、深さ3〜4μmのストライ
ブ溝を形成した後、Zn拡散を行ない、高濃度p形不純
物(深さ2JJm、p>10”cs″″S)を形成した
。その後、凹部を除く基板結晶平坦部を2.5μmエツ
チングした。その後、実施例3と同じプロセスを経て、
レーザダイオードとした。Example 4 Example 4 of the present invention is shown in FIG. 4, p-type G a A a
After forming a stripe groove with a width of 5 to 10 μm and a depth of 3 to 4 μm on the substrate l, Zn was diffused to form a high concentration p-type impurity (depth 2JJm, p>10"cs""S). After that, the flat part of the substrate crystal excluding the recessed part was etched by 2.5 μm.Then, the same process as in Example 3 was carried out.
It was made into a laser diode.
素子は35mAのしきい値電流で連続発振した。The device oscillated continuously with a threshold current of 35 mA.
実施例3と同様に非対称コーティングした結果。Results of asymmetric coating in the same manner as in Example 3.
光出力40mWまで安定な横基本モード動作した。Stable transverse fundamental mode operation was achieved up to an optical output of 40 mW.
実施例5
本発明の実施例5を第5図に示す、p形GaAs基板1
上にZnを拡散し、高濃度p形不純物濃度層2(深さ3
4m、p、≧j O”cse−’)を形成した。Example 5 Example 5 of the present invention is shown in FIG. 5, a p-type GaAs substrate 1
Zn is diffused on top to form a high concentration p-type impurity concentration layer 2 (depth 3
4m, p, ≧j O"cse-') was formed.
その後、MOCVD法により、 P−A Q InGa
pnGaルブララドンドープInGaP活性層、n−A
jl I n G a Pクラッド層5.n形GaA
sキャップ層6を形成した。その後、エピタキシャル層
表面とストライプ状の絶縁膜を形成し、これをマスクと
してn形G a A tthキャップ層6およびn−A
嚢InGaPクラッド層5をエツチングし、幅3〜7μ
mのリッジを形成した。更にリッジ部上の絶縁膜をマス
クとして、p形G a A s層10を選択成長させた
。絶縁膜除去後、CVDホトリソグラフィ工程を経て、
SiOx膜7を形成した後、n側電極8.p[it電極
を形成し、共振器長300μmのチップとした。!1子
はしきい値電流35mAで室温連続発振した。また1本
レーザの後方および前方端面と反射率90%および7%
の絶縁膜を形成した所、光出カフ0mWまで安定な横基
本モード動作することが確認された。After that, by MOCVD method, P-A Q InGa
pnGa rubularadone doped InGaP active layer, n-A
jl I n G a P cladding layer 5. n-type GaA
s cap layer 6 was formed. After that, a striped insulating film is formed on the surface of the epitaxial layer, and using this as a mask, the n-type Ga Atth cap layer 6 and the n-A
Etch the capsule InGaP cladding layer 5 to a width of 3 to 7 μm.
A ridge of m was formed. Furthermore, using the insulating film on the ridge portion as a mask, a p-type GaAs layer 10 was selectively grown. After removing the insulating film, through the CVD photolithography process,
After forming the SiOx film 7, the n-side electrode 8. A p[it electrode was formed, and a chip with a resonator length of 300 μm was obtained. ! One child had continuous oscillation at room temperature with a threshold current of 35 mA. Also, the rear and front end faces of one laser have a reflectance of 90% and 7%.
When an insulating film was formed, it was confirmed that the light output cuff operated in a stable transverse fundamental mode up to 0 mW.
実施例6
本発明の実施例6を第6図に示す、p形GaAs+基板
1にZnを選択・拡散し1幅10fimの高濃度p 形
不1に物ft1klk 2 (深す3 tt m 、
p >、10”(!l−”)を形成した。その後、実施
例5と同様にして、n形G a A tim層までをM
OCVD法により形成した。更に、エツチングによりn
形G a A s 46をストライプ状に除去した6次
にn形AMInGaP層7をMOCVD法により形成し
た。電極8,9を形成後、チップ化した。素子はしきい
値電流は40mAで、室温連続発振した0本素子に反射
率7%および90%の非対称コーティングした所。Embodiment 6 Embodiment 6 of the present invention is shown in FIG. 6. Zn is selected and diffused in a p-type GaAs+ substrate 1, and a highly concentrated p-type substrate ft1klk2 (depth 3ttm,
p>, 10"(!l-") was formed. Thereafter, in the same manner as in Example 5, M
It was formed by OCVD method. Furthermore, by etching
A sixth-order n-type AMInGaP layer 7 in which the GaAs type 46 was removed in a striped manner was formed by MOCVD. After forming the electrodes 8 and 9, they were made into chips. The device has a threshold current of 40 mA, and is continuously oscillated at room temperature.The device has an asymmetric coating with a reflectance of 7% and 90%.
光出カフ0mWまで安定な横基本モード動作することを
確認した。It was confirmed that the light output cuff operates in a stable horizontal fundamental mode down to 0mW.
以上の実施例では不純物としてZnの場合について記載
したが、Mg等のp形不純物でも同様な効果が得られる
ことは言うまでもない、また、材料系としては本記載の
AjlInGaP系の他、A11GaAs系等でも同様
な結果が得られた。In the above embodiments, Zn was used as the impurity, but it goes without saying that similar effects can be obtained with p-type impurities such as Mg.In addition to the AjlInGaP system described herein, the material system may also include A11GaAs system, etc. But similar results were obtained.
本発明によれば、ARInGaP系0.6pm帯レーザ
のp形クラッド層のp形不純物濃度が容易に、かつ制御
性良く高濃度化できるので、シリーズ抵抗の低減や注入
キャリアのp形クラッド層へのオーバフローの低減が図
れ、上記レーザの高温、高出力動作が達成できる。According to the present invention, the p-type impurity concentration in the p-type cladding layer of an ARInGaP-based 0.6 pm band laser can be increased easily and with good controllability, thereby reducing series resistance and injecting carriers into the p-type cladding layer. The overflow of the laser can be reduced, and the above-mentioned laser can operate at high temperature and high output.
第1図〜第6図は各々本発明の実施例1〜**例6のレ
ーザ出射方向からみた断面構造図である。
1・・・p形GaAs基板、2・・・高濃度p形不純物
層、3−p@A Qo、zaI no、zaGao、a
Pクラッド層暢4・・・アンドープIno、aGao、
sP活性層、5−n形A Q o、xs l n o、
zaG a o、aPクラッド層、6°゛。
n形G a A m層、?・・・SiOx膜、8−p形
電極、9・・・n形電極、10・・・p形G a A
m層、11・・・n形A 41 o、稟s I n o
、怠sG a o、aP層。
?
fl形を侍1 to 6 are cross-sectional structural diagrams of Examples 1 to **Example 6 of the present invention, respectively, viewed from the laser emission direction. 1...p-type GaAs substrate, 2...high concentration p-type impurity layer, 3-p@A Qo, zaI no, zaGao, a
P cladding layer 4... undoped Ino, aGao,
sP active layer, 5-n type A Q o, xs l no,
zaG ao, aP cladding layer, 6°゛. n-type G a A m layer,? ...SiOx film, 8-p type electrode, 9... n type electrode, 10... p type Ga A
m layer, 11...n type A 41 o, rins I no
, laziness sG a o, aP layer. ? samurai fl shape
Claims (1)
形クラッド層、活性層およびn形クラッド層から成るダ
ブルヘテロ構造体を有する半導体レーザにおいて、上記
p形クラッド層と接する上記基板の全面、もしくは一部
分の表面近傍に高濃度のp形不純物を有する層を設ける
ことを特徴とする半導体レーザ。 2、特許請求範囲第1項記載半導体レーザにおいて、上
記高濃度p形不純物層のp形不純物量は少なくとも10
^2^0cm^3以上である半導体レーザ。 3、特許請求の範囲第1項又は第2項記載の半導体レー
ザにおいて、上記基板はGaAsから成る半導体レーザ
。 4、特許請求の範囲第3項記載の半導体レーザにおいて
、上記p形およびn形クラッド層は AlInGaPから成り、上記活性層はInGaPから
成る半導体レーザ。 5、特許請求範囲第4項記載の半導体レーザにおいて、
上記p形不純物はZnもしくはMgである半導体レーザ
。 6、特許請求範囲第5項記載の半導体レーザにおいて、
上記高濃度p形不純物層の形成は拡散により行なう半導
体レーザ。[Claims] 1. A p-type conductive crystal substrate, and a p-type conductive crystal substrate sequentially formed on the substrate.
In a semiconductor laser having a double heterostructure consisting of a type cladding layer, an active layer and an n-type cladding layer, a layer having a high concentration of p-type impurity near the entire surface or a part of the surface of the substrate in contact with the p-type cladding layer. A semiconductor laser characterized by providing: 2. In the semiconductor laser described in claim 1, the amount of p-type impurities in the high concentration p-type impurity layer is at least 10
A semiconductor laser with a diameter of ^2^0 cm^3 or more. 3. A semiconductor laser according to claim 1 or 2, wherein the substrate is made of GaAs. 4. A semiconductor laser according to claim 3, wherein the p-type and n-type cladding layers are made of AlInGaP, and the active layer is made of InGaP. 5. In the semiconductor laser according to claim 4,
A semiconductor laser in which the p-type impurity is Zn or Mg. 6. In the semiconductor laser according to claim 5,
A semiconductor laser in which the high concentration p-type impurity layer is formed by diffusion.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6096989A JPH02240988A (en) | 1989-03-15 | 1989-03-15 | Semiconductor laser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6096989A JPH02240988A (en) | 1989-03-15 | 1989-03-15 | Semiconductor laser |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02240988A true JPH02240988A (en) | 1990-09-25 |
Family
ID=13157754
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6096989A Pending JPH02240988A (en) | 1989-03-15 | 1989-03-15 | Semiconductor laser |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02240988A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005517296A (en) * | 2002-02-08 | 2005-06-09 | クリー インコーポレイテッド | Method of processing a silicon carbide substrate for improved epitaxial deposition and structure and device obtained by the method |
US7675068B2 (en) | 2002-02-08 | 2010-03-09 | Cree, Inc. | Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices |
-
1989
- 1989-03-15 JP JP6096989A patent/JPH02240988A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005517296A (en) * | 2002-02-08 | 2005-06-09 | クリー インコーポレイテッド | Method of processing a silicon carbide substrate for improved epitaxial deposition and structure and device obtained by the method |
US7675068B2 (en) | 2002-02-08 | 2010-03-09 | Cree, Inc. | Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices |
JP2010118672A (en) * | 2002-02-08 | 2010-05-27 | Cree Inc | Method of treating silicon carbide substrate for improved epitaxial deposition, and structure and device provided by the same |
US8822315B2 (en) | 2002-02-08 | 2014-09-02 | Cree, Inc. | Methods of treating a silicon carbide substrate for improved epitaxial deposition and resulting structures and devices |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0856045A (en) | Semiconductor laser device | |
JPH11284280A (en) | Semiconductor laser device, its manufacture and manufacture of iii-v compound semiconductor element | |
JPH02240988A (en) | Semiconductor laser | |
JPH05211372A (en) | Manufacture of semiconductor laser | |
JPH06338657A (en) | Semiconductor laser and its manufacture | |
JPS61253882A (en) | Semiconductor laser device | |
JP2758597B2 (en) | Semiconductor laser device | |
JPH01186688A (en) | Semiconductor laser device | |
JP2973215B2 (en) | Semiconductor laser device | |
JP3143105B2 (en) | Method for manufacturing semiconductor laser device | |
JPS5834988A (en) | Manufacture of semiconductor laser | |
JPH02109387A (en) | Semiconductor laser element and manufacture thereof | |
JPS6190489A (en) | Semiconductor laser device and manufacture thereof | |
JP2855887B2 (en) | Semiconductor laser and method of manufacturing the same | |
JPS59188187A (en) | Semiconductor laser diode and manufacture thereof | |
JPS60132381A (en) | Semiconductor laser device | |
JP2002204030A (en) | Waveguide optical element | |
JPH02119285A (en) | Manufacture of semiconductor laser | |
JPH0231481A (en) | Manufacture of buried type semiconductor laser | |
JP2001077466A (en) | Semiconductor laser | |
JPS60224288A (en) | Manufacture of semiconductor light emitting device | |
JPS63122190A (en) | Manufacture of semiconductor light-emitting device | |
JPH01161885A (en) | Semiconductor laser | |
JPH04206585A (en) | Semiconductor laser and manufacture thereof | |
JPS62296582A (en) | Semiconductor laser device |