JPH01161885A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPH01161885A
JPH01161885A JP31881487A JP31881487A JPH01161885A JP H01161885 A JPH01161885 A JP H01161885A JP 31881487 A JP31881487 A JP 31881487A JP 31881487 A JP31881487 A JP 31881487A JP H01161885 A JPH01161885 A JP H01161885A
Authority
JP
Japan
Prior art keywords
active layer
semiconductor laser
region
end surface
diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31881487A
Other languages
Japanese (ja)
Inventor
Takashi Kajimura
梶村 俊
Yuichi Ono
小野 佑一
Shinichi Nakatsuka
慎一 中塚
Shigeo Yamashita
茂雄 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP31881487A priority Critical patent/JPH01161885A/en
Publication of JPH01161885A publication Critical patent/JPH01161885A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a high output laser wherein crystal growth process is simple, and return light noise hard to generate, by introducing impurity atom into an active layer and a clad layer in the vicinity region of one end surface of a laser resonator. CONSTITUTION:On an N-type GaAs substrate 1, layers 2-5 are continuously grown by MOCVD method. After a stripe trench is formed on an N<+> type GaAs layer 5 by photoresist and etching process, layers 6, 7 are formed by MOCVD method. A Zn diffusion mask is formed by photoresist and oxide film forming process, and Zn is selectively diffused in a part to be turned into the end surface region of a semiconductor laser chip, thereby forming a region 8. After forming electrodes, cleavage is performed at the center of a part which is subjected to selective diffusion and turned into an end surface region, and a laser chip is obtained. On the end surface of the laser chip, an insulating film is formed, and bonding is performed via solder by putting the substrate side upward. Since the end surface can be made transparent by simple crystal growth process, the low-cost mass production of high-output power semiconductor laser is enabled.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体レーザに係り、特に情報端末機器応用に
好適な高出力半導体レーザに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a semiconductor laser, and particularly to a high-power semiconductor laser suitable for application to information terminal equipment.

〔従来の技術〕[Conventional technology]

多重量子井戸レーザへの不純物導入による混晶化を用い
た端面透明化については1例えば信学技報、0QE84
−73.1 (1984)において論じられている。こ
の例ではZnの拡散によって。
Regarding end face transparency using mixed crystal formation by introducing impurities into multiple quantum well lasers, see 1, for example, IEICE Technical Report, 0QE84.
-73.1 (1984). In this example by Zn diffusion.

半導体レーザの端面近傍のAflGaAs多重量子井戸
構造を混晶化して、発光波長よりも禁制帯幅の広いAQ
GaAs混晶と成すことにより、端面近傍での光吸収を
小さくして、光吸収による光学損傷発生光出力を向上さ
せ、高出力化を図っている。
The AflGaAs multi-quantum well structure near the end facet of a semiconductor laser is made into a mixed crystal to create an AQ with a forbidden band width wider than the emission wavelength.
By forming the GaAs mixed crystal, light absorption in the vicinity of the end face is reduced, and the light output that causes optical damage due to light absorption is improved, thereby achieving high output.

このように、拡散あるいはイオン打込み等により、多重
量子井戸構造へ不純物を導入し、端面透明化を図り、高
出力レーザを実現しようとする試みは既にいくつかなさ
れ、効果が確認されている。
As described above, several attempts have already been made to realize high-output lasers by introducing impurities into the multi-quantum well structure by diffusion or ion implantation to make the end faces transparent, and their effectiveness has been confirmed.

一方、通常のダブルへテロ構造半導体レーザへの不純物
導入による端面透明化については、例えばアイ・イー・
イー・イー、ジャーナル オブクオンタム エレクトロ
ニクス、キューイー15゜(1979年)第775頁か
ら781頁(I EEE、 J 、 Quant、um
  Electron、、 QE −15、(1979
)pp、775〜781)において論じられている。こ
の場合、半導体レーザの端面近傍を除く中央領域に、活
性層にまで達する深いZn拡散を行ない、不純物による
パントチイルを生ぜしめている。端面近傍にはZn拡散
を行なっていない。この半導体レーザの中央部に電流を
注入すると、パントチイルにより活性層の結晶組成によ
って定まる禁制帯幅よりも小さなエネルギの波長でレー
ザ発振する。一方、端面近傍にはZn拡散を行なってい
ないため、端面近傍の禁制帯幅に変化は生じず、この結
果レーザ光の吸収が小さく、光吸収による光学損傷発生
光出力が向上することが示されている。この例の場合、
活性層が厚い為、後述する不純物導入による界面ダレの
効果は生じていない。
On the other hand, regarding making the end face transparent by introducing impurities into a normal double heterostructure semiconductor laser, for example, IE.
E. E., Journal of Quantum Electronics, Q. 15° (1979), pp. 775-781 (I EEE, J., Quant, um
Electron, QE-15, (1979
), pp. 775-781). In this case, deep Zn diffusion reaching the active layer is performed in the central region of the semiconductor laser except for the vicinity of the end facet, causing pantotiles due to impurities. Zn was not diffused near the end face. When a current is injected into the center of this semiconductor laser, the laser oscillates at a wavelength with an energy smaller than the forbidden band width determined by the crystal composition of the active layer due to the pantotile. On the other hand, since Zn is not diffused near the end face, there is no change in the forbidden band width near the end face, and as a result, the absorption of laser light is small, and it has been shown that the light output that causes optical damage due to light absorption is improved. ing. For this example,
Since the active layer is thick, the effect of interfacial sag due to the introduction of impurities, which will be described later, does not occur.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術のうち前者は多重量子井戸構造の混晶°化
を用いて端面透明化を行なっているため、活性層が量子
井戸構造であることが不可欠である。
Since the former of the above-mentioned conventional techniques uses mixed crystallization of a multiple quantum well structure to make the end face transparent, it is essential that the active layer has a quantum well structure.

このため通常広く用いられている液相成長法を結晶成長
法として用いることは困難で1M0CVD法やMBE法
による成長が必要であり、かつ、これらの方法を用いて
も結晶成長工程が複雑化するという欠点があった。さら
に、量子井戸構造を活性層に用いると、量子サイズ効果
が生じ、半導体レーザの発振スペクトル(縦モード)が
単一化しやすく、戻り光雑音が発生しやすいという欠点
があった。
For this reason, it is difficult to use the commonly widely used liquid phase growth method as a crystal growth method, and growth using the 1M0CVD method or MBE method is required, and even if these methods are used, the crystal growth process becomes complicated. There was a drawback. Furthermore, when a quantum well structure is used in the active layer, a quantum size effect occurs, which tends to unify the oscillation spectrum (longitudinal mode) of the semiconductor laser, and has the disadvantage that return optical noise is likely to occur.

また、従来技術の後者は比較的厚い活性層を持つ為、半
導体レーザの横モード制御が困難であった。
Furthermore, since the latter conventional technique has a relatively thick active layer, it is difficult to control the transverse mode of the semiconductor laser.

供することにある。It is about providing.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、比較的薄い活性層を単一の組成の層で形成
したダブルへテロ半導体レーザの共振器の少なくとも一
方の端面近傍領域に活性層および両クラッド層にわたっ
て不純物原子を導入し該領域の活性層の禁制帯幅を広げ
ることによって、達成できる。
The above purpose is to introduce impurity atoms across the active layer and both cladding layers into a region near at least one end face of a double hetero semiconductor laser cavity in which a relatively thin active layer is formed of a single composition layer. This can be achieved by widening the forbidden band width of the active layer.

〔作用〕[Effect]

比較的厚さの薄い単一組成の活性層を有するダブルヘテ
ロ構造半導体レーザの端面近傍に拡散、イオン打込み等
により不純物を導入すると、活性層とクラッド層界面に
組成ダレが生じ、活性層の禁制帯幅が広がり、半導体レ
ーザの発振波長に対して、端面近傍の活性層が透明とな
るため、光学損傷レベルが上昇し、高出力動作が可能と
なる。
When impurities are introduced by diffusion, ion implantation, etc. into the vicinity of the end face of a double heterostructure semiconductor laser that has a relatively thin active layer of a single composition, composition sag occurs at the interface between the active layer and the cladding layer, resulting in inhibition of the active layer. Since the band width is widened and the active layer near the end facet becomes transparent to the oscillation wavelength of the semiconductor laser, the optical damage level increases and high output operation becomes possible.

また、活性層の厚さを30nm以上とした場合には、量
子サイズ効果による発振スペクトルのm−化が抑制され
、縦従モード動作しやすくなり、戻り光雑音が低減され
る。
Further, when the thickness of the active layer is set to 30 nm or more, m-ization of the oscillation spectrum due to the quantum size effect is suppressed, facilitating longitudinal mode operation, and reducing optical feedback noise.

(実施例〕 実施例1゜ 以下、本発明の実施例1を第1図により説明する。第1
図において、1はn−GaAs基板、2はn  、A 
Q o、 37 Ga(1,B 3 Asクラッド層、
3はAQo、o tGaoog 3As活性層、4はp
  A、Q 0.37 Gao、(12As層、7はp
−QaAsキャップ層、8はZn拡散領域である。本構
造は以下のプロセスにより作製した。n−QaAs基板
1上に1M0CVD法により、上記符号2より5の層を
連続成長させた。活性層厚は50nmとした0次に、ホ
トレジスト、手ツチング工程を経て、n”−GaΔsA
り5に巾5μmのストライプ溝を形成し、その後、MO
CVD法により、符号6及び7の層を形成した。次に、
ホトレジスト、酸化膜形成工程を経て、Zn拡散マスク
を形成し、半導体レーザチップとした場合に端面領域と
なる部分にZnを選択拡散し、領域8を形成した。選択
拡散の巾は300μm、共振器方向の長さは40μmと
した。拡散温度は675℃、拡散時間は約50分である
。その後、電極形成2選択拡散した端面領域となる部分
の中央でのへき開tを行ない共振器長300μmのレー
ザチップとした。
(Example) Example 1 Hereinafter, Example 1 of the present invention will be explained with reference to FIG. 1.
In the figure, 1 is an n-GaAs substrate, 2 is an n, A
Q o, 37 Ga (1, B 3 As cladding layer,
3 is AQo, o tGaoog 3As active layer, 4 is p
A, Q 0.37 Gao, (12As layer, 7 is p
-QaAs cap layer, 8 is a Zn diffusion region; This structure was fabricated by the following process. The above layers 2 to 5 were successively grown on the n-QaAs substrate 1 by the 1M0 CVD method. The active layer thickness was 50 nm, and after a photoresist and touching process, n''-GaΔsA was formed.
Stripe grooves with a width of 5 μm are formed in the groove 5, and then MO
Layers 6 and 7 were formed by the CVD method. next,
After a photoresist and oxide film formation step, a Zn diffusion mask was formed, and Zn was selectively diffused into a portion that would become an end face region when a semiconductor laser chip was formed, to form region 8. The width of the selective diffusion was 300 μm, and the length in the cavity direction was 40 μm. The diffusion temperature was 675°C and the diffusion time was about 50 minutes. Thereafter, a cleavage t was performed at the center of the end face region where electrode formation 2 was selectively diffused to obtain a laser chip with a resonator length of 300 μm.

作製したレーザチップの端面に、絶縁膜を形成ンディン
グした。
An insulating film was formed on the end face of the manufactured laser chip.

上記素子の特性を室温連続動作下において評価した。そ
の結果、素子は発振波長約830nmにおいて、しきい
値組流40mAで発振した。横モ−ドも安定で、光出力
100mW以上まで安定に横基本モード動作した。動作
電流を増し、光学損傷レベルを調べた所、光出力200
mWにおいて光学損傷が生じた。この値は、同じウェハ
から作製した。端面透明化領域の無い素子の光学損傷光
出力に比べて2〜3倍上昇していることが判明した。素
子は光出力10mW程度まで安定し、縦多モード動作し
、戻り光雑音も低いことが判明した。
The characteristics of the above device were evaluated under continuous operation at room temperature. As a result, the device oscillated at a threshold current of 40 mA at an oscillation wavelength of approximately 830 nm. The transverse mode was also stable, and the transverse fundamental mode operated stably up to an optical output of 100 mW or more. When the operating current was increased and the optical damage level was investigated, the optical output was 200.
Optical damage occurred at mW. This value was made from the same wafer. It was found that the optical damage light output was increased by 2 to 3 times compared to the element without the end face transparent region. It was found that the device was stable up to an optical output of about 10 mW, operated in vertical multimode, and had low optical feedback noise.

また、上記ウェハからチップを作製するに際し、へき開
を片端面は選択拡散領域のほぼ中央で行ない、他端面ば
選択拡散領域を含まないように行ない、片端面のみ透明
化した共振器長260μmのレーザチップを作製したに のレーザチップの選択拡散側端面に反射率6%、他端面
に反射率90%のコーテイング膜を形成し、光出力−電
流特性を評価した。その結果上記素子とほぼ同じ特性が
得られた。
In addition, when manufacturing chips from the above wafer, cleavage was performed on one end surface at approximately the center of the selective diffusion region, and on the other end surface, the cleavage was performed so as not to include the selective diffusion region. A coating film having a reflectance of 6% on the selective diffusion side end face and a reflectance of 90% on the other end face of the manufactured laser chip was formed, and the optical output-current characteristics were evaluated. As a result, almost the same characteristics as the above element were obtained.

上記素子の一部をへき関し、へき開TEMの手法により
、Zn拡散による界面ダレ及びAQAsモル比の変化を
、拡散の無い領域と比較した。その結果を第2図に示す
。不純物領域の無い領域では実線のように急峻なヘテロ
界面が得られたが、拡散領域では破線で示すような組成
の界面ダレが生じ、活性層のA Q Asモル比が、拡
散の無い場合の0.07から約0.12まで上昇してい
ることが判明し、この現象によって端面透明化が生じて
いることが明らかとなった。
A part of the above device was separated, and changes in interface sag and AQAs molar ratio due to Zn diffusion were compared with a region without diffusion using a cleavage TEM method. The results are shown in FIG. In the region without impurity regions, a steep hetero interface was obtained as shown by the solid line, but in the diffusion region, the composition sagged as shown in the broken line, and the A Q As molar ratio of the active layer was lower than that in the case without diffusion. It was found that the value increased from 0.07 to approximately 0.12, and it became clear that the end face became transparent due to this phenomenon.

実施例2゜ 本発明の実施例2を第3図、第4図を用いて説明する。Example 2゜ Embodiment 2 of the present invention will be explained using FIGS. 3 and 4.

巾5μmのチャンネル溝を有するn  GaAs基板1
1上に液相成長法により、n  A Ro、37 Ga
o、 n 7 Asクラッド層12、A Qo、 07
 Gao、 s 3 As活性層13、p  AQo、
3フGao、e3A!クラッド514、n  GaAs
キャップ層15を連続成長させた。活性層厚は45nm
とした。結晶成長後、ホトレジスト、絶縁膜形成工程を
経て、Znの選択拡散を成した。さらに、半導体レーザ
チップとした場合に端面近傍となる領域にのみ、Znの
追加拡散を行ない、この領域のZn拡散深さが n  A Q G a A sクララド層12に達する
ようにした(第3図参照)。追加拡散の巾は10μm、
ストライプ方向の長さは40μmとした。半導体レーザ
チップ中央部(A−A’部)ではZn拡散深さは第4図
に示すとおり端面近傍部より浅い。その後、電極を形成
し、へき関してレーザチップとした。本素子においても
、実施例1に示したと同様、光学損傷レベルの向上及び
低光出力レベルでの縦多モード発振が確認された。
n GaAs substrate 1 having a channel groove with a width of 5 μm
1 by liquid phase growth method, n A Ro, 37 Ga
o, n 7 As cladding layer 12, A Qo, 07
Gao, s 3 As active layer 13, p AQo,
3F Gao, e3A! Clad 514, n GaAs
A cap layer 15 was continuously grown. Active layer thickness is 45nm
And so. After crystal growth, selective diffusion of Zn was performed through a photoresist and insulating film formation process. Furthermore, Zn was additionally diffused only in the region that would be near the end face when used as a semiconductor laser chip, so that the Zn diffusion depth in this region reached the n A Q Ga As Clarado layer 12 (third (see figure). The width of additional diffusion is 10 μm,
The length in the stripe direction was 40 μm. As shown in FIG. 4, the Zn diffusion depth in the central portion (AA' portion) of the semiconductor laser chip is shallower than that in the vicinity of the end face. After that, electrodes were formed and separated to form a laser chip. In this device as well, as shown in Example 1, an improvement in the optical damage level and longitudinal multimode oscillation at a low optical output level were confirmed.

実施例3゜ 本実施例の実施例3を第5図、第6図を用いて説明する
。n  GaAs基板21上にMOCVD法により、n
 −A Q 0.46 Gao、 56 Asクラッド
層22、A Q O,1a Gao、 a t As活
性層23、P  A Qo、 46 Gao、 s s
 Asクラッド層24、n  GaAsキャップX!J
25を連続成長させた。活性層厚は50nmとした。結
晶成長後、ホトレジスト、絶縁膜形成工程を経て、Zn
の選択拡散を行ない、n形G a A sキャップ層2
5をつきぬける巾80μmの電流注入領域26を形成し
た。さらに半導体レーザチップとした場合に端面近傍と
なる領域にのみ、拡散深さが ”−AQo、 4sGao、s 5Asクラッド層に達
すようにした。追加拡散は巾80μmで共振器方向の長
さは40μmとした。半導体レーザチップ中央部(B−
B’部)ではZn拡散深さは第6図に示すとおり、端面
近傍部より浅い。その後、電極を形成し、へき関して共
振器長300μmのレーザチップとした。この時、へき
開は端面近傍となるべく追加拡散した領域の中央で行な
った。本チップのp−n接合を下にして、サブマウント
にボンディングし、室温連続動作時の光出力−電流特性
を評価した。その結果、光損傷レベルは1.5Wと、端
面近傍に深い拡散を行なわないものに較べて約2倍に向
上することが判明した。
Embodiment 3 A third embodiment of this embodiment will be explained with reference to FIGS. 5 and 6. n on the n GaAs substrate 21 by the MOCVD method.
-A Q 0.46 Gao, 56 As cladding layer 22, A Q O, 1a Gao, at As active layer 23, P A Qo, 46 Gao, s s
As cladding layer 24, n GaAs cap X! J
25 grew continuously. The active layer thickness was 50 nm. After crystal growth, through photoresist and insulating film formation process, Zn
selective diffusion of n-type GaAs cap layer 2
A current injection region 26 having a width of 80 μm was formed, penetrating through the current injection region 5 . Furthermore, in the case of a semiconductor laser chip, the diffusion depth was made to reach the ``-AQo, 4sGao, s5As cladding layer only in the region near the end face.The additional diffusion was 80 μm in width and 40 μm in length in the cavity direction. The central part of the semiconductor laser chip (B-
In part B'), the Zn diffusion depth is shallower than in the vicinity of the end face, as shown in FIG. Thereafter, electrodes were formed, and a laser chip with a cavity length of 300 μm was obtained. At this time, cleavage was performed near the end face, preferably at the center of the additionally diffused region. This chip was bonded to a submount with the p-n junction facing down, and the optical output-current characteristics during continuous operation at room temperature were evaluated. As a result, it was found that the optical damage level was 1.5 W, which is about twice as high as that of the case where deep diffusion is not performed near the end face.

実施例4゜ 以上述べた不純物導入によるクラッド層のダレを利用し
た端面透明化の効果を定量化すべく、活性層厚のみが3
0nmから60nmまでの範囲で異なる半導体レーザを
複数個用意した。活性層厚以外の条件は実施例1で述べ
た半導体レーザと同一にした。
Example 4 In order to quantify the effect of making the end face transparent by utilizing the sagging of the cladding layer due to the introduction of impurities as described above, only the active layer thickness was 3.
A plurality of semiconductor lasers with different wavelengths in the range from 0 nm to 60 nm were prepared. The conditions other than the active layer thickness were the same as those of the semiconductor laser described in Example 1.

定量化に当っては、各々の半導体レーザについて、Zn
拡散した領域としない領域での活性層のエネルギギャッ
プを求め、さらに両者の差を求めてZn拡散によるエネ
ルギギャップの拡大量を求めた。エネルギギャップは、
へき開TEMの手法により求めたAQAsモル比より算
出した。エネルギギャップの拡大量が大きい程、端面透
明化の効果が大きいことになる。
For quantification, Zn
The energy gap of the active layer in the diffused region and the non-diffused region was determined, and the difference between the two was determined to determine the amount of expansion of the energy gap due to Zn diffusion. The energy gap is
It was calculated from the AQAs molar ratio determined by the cleavage TEM method. The larger the amount of expansion of the energy gap, the greater the effect of making the end face transparent.

この結果を第7図に示す。横軸は活性層厚、縦軸はエネ
ルギギャップの拡大量である。・印は各々の半導体レー
ザにおけるエネルギギャップの拡大量である。図中実線
で示すように、活性層が薄くなるにつれてエネルギギャ
ップの拡大量は大きくなり、端面透明化の効果が大きく
なることがわかる。
The results are shown in FIG. The horizontal axis represents the active layer thickness, and the vertical axis represents the amount of energy gap expansion.・The mark is the amount of expansion of the energy gap in each semiconductor laser. As shown by the solid line in the figure, it can be seen that as the active layer becomes thinner, the amount of expansion of the energy gap increases, and the effect of making the end face transparent increases.

また、図中破線は10 Llcm−3のZnを拡散した
ことによって生じるパントチイルの効果を考慮したとき
のエネルギギャップの拡大量である(図中X印は各々の
半導体レーザにおけるエネルギギャップの拡大量)、実
際の半導体レーザではこの値が重要となる。端面透明化
の効果が現われる。<はエネルギギャップの拡大量とし
て15〜20m e V以上の値が必要である。したが
って、本実施例の675℃、50分のZn拡散の場合、
活性層厚は55nm以下にする必要がある。
In addition, the broken line in the figure is the amount of expansion of the energy gap when taking into account the effect of pantotile caused by diffusing 10 Llcm-3 of Zn (the X mark in the figure is the amount of expansion of the energy gap in each semiconductor laser). , this value is important in actual semiconductor lasers. The effect of end face transparency appears. <> requires a value of 15 to 20 m e V or more as the amount of energy gap expansion. Therefore, in the case of Zn diffusion at 675°C for 50 minutes in this example,
The active layer thickness needs to be 55 nm or less.

第9図において活性層厚が60nmになると界面ダレに
よるエネルギギャップの拡大量は約15meVとなるが
、パントチイルを考慮すると、エネルギギャップの拡大
効果はほとんど無くなる。
In FIG. 9, when the active layer thickness becomes 60 nm, the amount of expansion of the energy gap due to interface sag is about 15 meV, but when pantofiltration is taken into consideration, the effect of widening the energy gap is almost eliminated.

更に活性層厚を厚くすると、界面ダレによるエネルギギ
ャップの拡大は無くなり、逆にパントチイルによる光吸
収のみが存在することになり、レーザ端面での光吸収が
増大し、端面破壊光出力は低下する。この効果を用いた
例が従来技術として示した例の後者に相当するもので、
その場合には本発明とは逆にレーザ中央部にZnを拡散
し、パントチイルを生ぜしぬ、拡散の無い端面近傍を窓
領域として用いている。
If the thickness of the active layer is further increased, the energy gap expansion due to interface sagging disappears, and on the contrary, only light absorption by the pantotile exists, which increases light absorption at the laser end face and reduces the end face destruction optical output. An example using this effect corresponds to the latter example of the prior art,
In that case, contrary to the present invention, Zn is diffused in the center of the laser, and the vicinity of the end face where no pantotile occurs and where there is no diffusion is used as a window region.

不純物導入による界面ダレは導入不純物量や不純物導入
温度、クラッド層組成等にも依存するが。
The interface sag due to impurity introduction depends on the amount of introduced impurities, impurity introduction temperature, cladding layer composition, etc.

第イ図を参考にすれば不純物導入による界面ダレを利用
した端面透明化の為には、一般に活性層厚を〜60nm
以下とする必要があると考える。
Referring to Figure A, in order to make the end face transparent by utilizing interface sag due to impurity introduction, the active layer thickness is generally ~60 nm.
I think it is necessary to do the following.

以上をまとめると、活性層厚を変化させて実験した結果
、次のことが判明した。1)活性層厚が薄いほど、界面
ダレによる活性層のA Q As組成が増大し、端面透
明化の効果が大きくなる。
To summarize the above, as a result of experiments with varying active layer thicknesses, the following was found. 1) The thinner the active layer is, the greater the A Q As composition of the active layer due to interfacial sagging, and the greater the effect of making the end face transparent.

2)活性層厚が30nmより薄くなると量子サイズ効果
により、発振スペクトルが縦単一化しやすくなる。3)
活性層厚が55nmより厚い場合にはZn拡散温度を高
くする等を行なえば、実施例と同様に界面ダレによる端
面透明化ができるが、60nmを越えると効果は小さく
なる。
2) When the active layer thickness becomes thinner than 30 nm, the oscillation spectrum tends to be vertically unified due to the quantum size effect. 3)
When the active layer thickness is thicker than 55 nm, by increasing the Zn diffusion temperature, it is possible to make the end face transparent by interfacial sagging as in the embodiment, but the effect becomes smaller when the active layer thickness exceeds 60 nm.

さらに、同様の実験をInGaAsP/I nP系レー
ザ、InGaAQP/InGaP系レーザについて行な
った結果、同様の結果を得た。
Furthermore, similar experiments were conducted for InGaAsP/InP lasers and InGaAQP/InGaP lasers, and similar results were obtained.

なお1本実施例で用いたZn拡散による不純物導入以外
に、他の不純物の拡散やイオン打込み等信の不純物導入
技術を用いた場合にも同様の効果が得られることは言う
までもない。
It goes without saying that, in addition to the impurity introduction by Zn diffusion used in this embodiment, similar effects can be obtained by using other impurity introduction techniques such as diffusion of other impurities or ion implantation.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、簡便な結晶成長プロセスにより、端面
透明化ができるので、高出力半導体レーザの低コスト、
m産化に効果がある。また、活性層の厚さを30nm以
上とした場合には、縦多モード発振しやすくなる為、戻
り光雑音の低い半導体レーザの実現に効果がある6
According to the present invention, it is possible to make the end face transparent through a simple crystal growth process.
It is effective in increasing m production. In addition, when the thickness of the active layer is 30 nm or more, longitudinal multimode oscillation becomes easier, which is effective in realizing a semiconductor laser with low return optical noise6.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1のAQGaAs系レーザの模
式図、第2図はZn拡散による界面ダレを利用した活性
層のA n Asモル比の増大を示す実験図、第3図は
本発明の実施例2のAQGaAs系レーザの模式図、第
4図は第3図の半導体レーザのA−A’部の断面構造図
、第5図は本発明の実施例3のA(lGaAs系レーザ
の模式図、第6回は第5図の半導体レーザのB−B’部
の断面構造図、第7図は本発明の実施例4において求め
たZn拡散による端面透明化の効果を示すための活性層
厚に対するエネルギギャップの拡大量の関係を示す図で
ある。 1−−−n−GaAs基板、2− n −A Q Ga
Asクラッド層、3・・・AQGaAs活性層、4− 
p −A Q GaAsクラッド層、5・・・n”−G
aAs電流狭窄層。 6− p −A EI GaAsff、’7”・p  
GaAsキャップ層、8−Zn拡散領域、11−n−G
aAs基板、12−・・n −A Q GaAsクラッ
ド層、13−A Q GaAs活性層、  14− p
−A Q GaAsクラッド層、15・・・n−GaA
sキャップ層、16− Z n拡散領域、2l−n−G
aAs基板、22− n −A Q GaAsクラッド
層。
FIG. 1 is a schematic diagram of an AQGaAs-based laser according to Example 1 of the present invention, FIG. 2 is an experimental diagram showing an increase in the A n As molar ratio of the active layer using interface sag due to Zn diffusion, and FIG. 3 is a diagram of the present invention. Embodiment 2 of the invention A schematic diagram of an AQGaAs-based laser, FIG. 4 is a cross-sectional structural diagram of the semiconductor laser of FIG. The sixth part is a cross-sectional structural diagram of the BB' section of the semiconductor laser shown in FIG. It is a diagram showing the relationship between the amount of expansion of the energy gap and the active layer thickness. 1--n-GaAs substrate, 2-n-A Q Ga
As cladding layer, 3... AQGaAs active layer, 4-
p -A Q GaAs cladding layer, 5...n''-G
aAs current confinement layer. 6-p-A EI GaAsff,'7”・p
GaAs cap layer, 8-Zn diffusion region, 11-n-G
aAs substrate, 12-...n-A Q GaAs cladding layer, 13-A Q GaAs active layer, 14-p
-A Q GaAs cladding layer, 15...n-GaA
s cap layer, 16-Z n diffusion region, 2l-n-G
aAs substrate, 22-n-AQ GaAs cladding layer.

Claims (1)

【特許請求の範囲】 1、単一組成の活性層をクラッド層で挟んだ構造を有す
る半導体レーザにおいて、レーザ共振器の少なくとも一
方の端面近傍領域に、上記活性層および上記クラッド層
にわたって不純物原子を導入し該領域の活性層の禁制帯
幅を広げたことを特徴とする半導体レーザ。 2、特許請求範囲第1項記載の半導体レーザにおいて、
上記活性層厚は30nm以上である半導体レーザ。
[Claims] 1. In a semiconductor laser having a structure in which an active layer of a single composition is sandwiched between cladding layers, impurity atoms are added to a region near at least one end facet of a laser resonator across the active layer and the cladding layer. A semiconductor laser characterized in that the forbidden band width of an active layer in the region is widened. 2. In the semiconductor laser according to claim 1,
The semiconductor laser has an active layer thickness of 30 nm or more.
JP31881487A 1987-12-18 1987-12-18 Semiconductor laser Pending JPH01161885A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31881487A JPH01161885A (en) 1987-12-18 1987-12-18 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31881487A JPH01161885A (en) 1987-12-18 1987-12-18 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPH01161885A true JPH01161885A (en) 1989-06-26

Family

ID=18103242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31881487A Pending JPH01161885A (en) 1987-12-18 1987-12-18 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPH01161885A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040050598A (en) * 2002-12-10 2004-06-16 삼성전기주식회사 A semiconductor laser device and a method of producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20040050598A (en) * 2002-12-10 2004-06-16 삼성전기주식회사 A semiconductor laser device and a method of producing the same

Similar Documents

Publication Publication Date Title
US4635268A (en) Semiconductor laser device having a double heterojunction structure
JP2002057406A (en) Edge non-injection type semiconductor laser and its manufacturing method
US5776792A (en) Method for forming semiconductor laser device
JPH09199803A (en) Semiconductor laser and its manufacture method
JPH07162086A (en) Manufacture of semiconductor laser
CN110459952A (en) The production method that SAG improves semiconductor laser chip reliability is grown by selective area
US5524017A (en) Quantum well semiconductor laser
JPH10256647A (en) Semiconductor laser element and fabrication thereof
US6671301B1 (en) Semiconductor device and method for producing the same
JPH01161885A (en) Semiconductor laser
JPH0758412A (en) Buried semiconductor laser
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPS614291A (en) Surface light-emission laser
JPH05167186A (en) Manufacture of semiconductor laser element
JPS61253882A (en) Semiconductor laser device
JP3200918B2 (en) Semiconductor laser device
JP2973215B2 (en) Semiconductor laser device
JPH11145553A (en) Semiconductor laser device and manufacture thereof
JPS595689A (en) Distributed feedback type semiconductor laser
JP3194616B2 (en) Semiconductor laser device
JP2002252406A (en) Ribbon embedded semiconductor laser and its manufacturing method
JP2912775B2 (en) Semiconductor laser device
JPH02240988A (en) Semiconductor laser
JPH0294588A (en) Semiconductor device