JPS614291A - Surface light-emission laser - Google Patents

Surface light-emission laser

Info

Publication number
JPS614291A
JPS614291A JP12588784A JP12588784A JPS614291A JP S614291 A JPS614291 A JP S614291A JP 12588784 A JP12588784 A JP 12588784A JP 12588784 A JP12588784 A JP 12588784A JP S614291 A JPS614291 A JP S614291A
Authority
JP
Japan
Prior art keywords
layer
type
laser
active layer
multilayer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP12588784A
Other languages
Japanese (ja)
Inventor
Mutsuro Ogura
睦郎 小倉
Takafumi Yao
隆文 八百
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agency of Industrial Science and Technology filed Critical Agency of Industrial Science and Technology
Priority to JP12588784A priority Critical patent/JPS614291A/en
Publication of JPS614291A publication Critical patent/JPS614291A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18386Details of the emission surface for influencing the near- or far-field, e.g. a grating on the surface
    • H01S5/18394Apertures, e.g. defined by the shape of the upper electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/04Processes or apparatus for excitation, e.g. pumping, e.g. by electron beams
    • H01S5/042Electrical excitation ; Circuits therefor
    • H01S5/0421Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers
    • H01S5/0422Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer
    • H01S5/0424Electrical excitation ; Circuits therefor characterised by the semiconducting contacting layers with n- and p-contacts on the same side of the active layer lateral current injection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1028Coupling to elements in the cavity, e.g. coupling to waveguides adjacent the active region, e.g. forward coupled [DFC] structures
    • H01S5/1032Coupling to elements comprising an optical axis that is not aligned with the optical axis of the active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18341Intra-cavity contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18344Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] characterized by the mesa, e.g. dimensions or shape of the mesa
    • H01S5/1835Non-circular mesa

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To provide a surface light-emission laser, which can be implemented even at a low threshold current value, by forming a light resonator structure with an active layer, which comprises a semiconductor heterogeneous multilayer film and has an active function and a distribution feedback type light resonator function; providing clad layer for confining minority carriers; and arranging said structure and layer vertically with respect to a substrate side by side. CONSTITUTION:A light resonator structure 11 with an active layer comprises a semiconductor heterogeneous multilayer film and it is set in a P type. Therefore, minority carriers, i.e., electrons in this case, can be confined by energy- gap differences between a P type clad layer 12 and a P type active layer in the structur 11. A part, which is located at the right side of the light resonator structure 11 with active layer, is a carrier supplying layer 16 (electrons in this case), which is set in an N type by doping suitable atoms in the semiconductor heterogeneous multilayer film. An electrode 15 on the side of the N layer is formed on the upper surface of the carrier supplying layer 16. An electrode 14 on the side of the P type clad layer is formed on the surface of the etched- out part on the left.

Description

【発明の詳細な説明】 本発明はレーザに関し、特に分布帰還型面発光レーザの
改良に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to lasers, and more particularly to improvements in distributed feedback surface emitting lasers.

基板に対して垂直にレーザ出力光が得られる面発光レー
ザは、9J開工程が不要である。大面積化が容易である
等の利点から、レーザアレイや大出力レーザへの応用が
検討されている。
A surface emitting laser that can obtain laser output light perpendicular to the substrate does not require the 9J opening process. Due to its advantages such as ease of increasing the area, applications to laser arrays and high-output lasers are being considered.

・特に半導体ヘテロエピタキシャル多層膜を用いた面発
光レーザは、−回のエピタキシャル成長で波長選択性を
有する光共振器と活性層とをモノリシックに形成できる
ため、反射層を形成するための基板エツチングが不要で
ある、発振波長が安定である等の利点も付加され、集積
化にも有利であることから期待が寄せられている。
・In particular, surface-emitting lasers using semiconductor heteroepitaxial multilayer films can monolithically form an optical resonator with wavelength selectivity and an active layer in -times of epitaxial growth, so there is no need for substrate etching to form a reflective layer. It has the added advantage of having a stable oscillation wavelength, and is expected to be advantageous for integration.

然し一般にこの種面発光レーザのレーザ長は短く、十分
な利得が得られないため、実用的な閾値電流を持つ素子
は未だ得られていない。
However, since the laser length of this type of surface emitting laser is generally short and sufficient gain cannot be obtained, an element with a practical threshold current has not yet been obtained.

一般に半導体レーザの発振条件は、レーザ利得とレーザ
長との積が光共振器の損失を越えた時点で満たされる。
Generally, the oscillation condition of a semiconductor laser is satisfied when the product of the laser gain and the laser length exceeds the loss of the optical resonator.

この中、レーザ利得は少−数キャリア閉じ込め効率及び
キャリア再結合領域と光共振器との結合効率に支配され
る。
Among these, the laser gain is controlled by the minority carrier confinement efficiency and the coupling efficiency between the carrier recombination region and the optical resonator.

また、レーザ長は、活性層の光共振器間の光路方向の長
さ乃至雇さに対応し、面発光レーザの、場合、少数キャ
リア拡散長或いはエピタキシャル層の厚さにより制限さ
れる。     。
Further, the laser length corresponds to the length in the optical path direction between the optical resonators of the active layer, and is limited by the minority carrier diffusion length or the thickness of the epitaxial layer in the case of a surface emitting laser. .

一方、光共振器の損失は、当該光共振鼻端面の等価的な
反射率をRとすると、In(1/R)で表され、例えば
反射率を85%に増加させればそれ自体は約1/20に
低下させることができる。
On the other hand, the loss of the optical resonator is expressed as In(1/R), where R is the equivalent reflectance of the optical resonator nose end surface. For example, if the reflectance is increased to 85%, the loss itself is approximately It can be reduced to 1/20.

従来の面発光レーザは、基本的にはi1図(A)に示す
ように、層状に形成された活性層4及びその上下のクラ
ッド層3,5から成るpn接合を有し、上下端面にはこ
のレーザの電流注入用電極としても機能する金属ミラー
lが設けられて垂直方向の光共振器が構成され、出力レ
ーザ光は大きな矢印工で示すように、このミラー1.1
の対向方向に治った方向に出射される。
A conventional surface emitting laser basically has a pn junction consisting of an active layer 4 formed in a layered manner and cladding layers 3 and 5 above and below the active layer 4, as shown in FIG. A vertical optical resonator is constructed by providing a metal mirror 1 that also functions as a current injection electrode for this laser, and the output laser beam is directed to the mirror 1.1 as shown by the large arrow.
It is emitted in the opposite direction.

また、既に知られているように、所期の電流狭窄効果を
起こすため、上側金属層lの下には狭窄対象部分を残L
7てそれ以外の部分を覆う絶縁層2が設けられ、当該金
属層lはこの絶縁層2のない部分にて上側クラッド層3
に接するようになっ、ており、基板6も同様に狭窄対象
部分にて産制られ、下側金属層1もこの産制り部分にお
いてト′側りラフト層5に接するようになっている。
In addition, as is already known, in order to cause the desired current confinement effect, a portion to be constricted is left under the upper metal layer L.
7 is provided with an insulating layer 2 that covers the other parts, and the metal layer l is provided with an upper cladding layer 3 in the part where this insulating layer 2 is not provided.
Similarly, the substrate 6 is also formed in the narrowed area, and the lower metal layer 1 is also in contact with the raft layer 5 on the side of the substrate 5 in this formed area.

しかしこうした構造の場合、電流注入の方向と光共振器
による光共振方向が一致するため、少数キャリアの注入
密度を増加させるために活性層4の厚さLを薄くすると
、そのことが逆に面発光レーザのレーザ長りを縮めると
いう結果になってしまう。従って、この種のレーザ素子
ではレーザ長りを 1脚程度以上に増加させることは不
可能であった。また構造的にも、上記産制り部分を形成
するために基板のエツチングを必要とすることから、集
積化が難しく、機械的強度も弱くなるという欠点もあっ
た。
However, in the case of such a structure, the direction of current injection and the direction of optical resonance by the optical resonator coincide, so if the thickness L of the active layer 4 is reduced in order to increase the injection density of minority carriers, this will have the opposite effect. The result is that the laser length of the light emitting laser is shortened. Therefore, in this type of laser element, it has been impossible to increase the laser length beyond about one leg. Further, in terms of structure, since etching of the substrate is required to form the above-mentioned production-limited portions, there are also disadvantages in that integration is difficult and mechanical strength is weakened.

一方、第1図(B)に示すように瓦−耐層乃至先具゛ 
振器リフレクタとして半導体ヘテロ多層膜8,9を利用
した従来構造もあるが、機械的強度の問題や基板加工の
必要等からは逃れ得るものの、レーザ長りの増加が難し
いという事情は何等変わらなかった。同一符号は先の第
1図(A)に示す従来例における構成子)両様の構成子
を示すが、この素子では活性層4の上下両面をp型ヘテ
ロ半導体多層膜ミラー8とn型ヘテロ半導体多層Sミラ
ー9とで挟んだ格好になっており、素子上下両端面上の
金属層7,7は電極のみの作用を営むようになっている
On the other hand, as shown in FIG.
There is also a conventional structure that uses semiconductor hetero multilayer films 8 and 9 as an oscillator reflector, but although it can avoid mechanical strength problems and the need for substrate processing, it does not change the situation that it is difficult to increase the laser length. Ta. The same reference numerals refer to both components in the conventional example shown in FIG. It is sandwiched between a multilayer S mirror 9, and the metal layers 7, 7 on both the upper and lower end surfaces of the element function only as electrodes.

いづれにしても、こうした垂゛直発振型面発光レーザの
レーザ利得を増加させるためには、上記二側に示さ゛れ
るような相反する要素を除去し、少数キャリアの閉じ込
め効率′を損わないでレーザ長りを十分に稼ぐ必要があ
る。
In any case, in order to increase the laser gain of such a vertical oscillation type surface emitting laser, it is necessary to remove the contradictory elements shown in the above two sides and do not impair the minority carrier confinement efficiency. It is necessary to obtain sufficient laser length.

然し一方で、単にレーザ長りを稼げば良いというもので
もなく、余りに長くすることは製造−し、問題が生ずる
ことがある6例えば、第1図(G)に示すように、従来
の横型DH(ダブル・ペテロ接合)レーザを単に横に寝
かせて垂直発振型とした素子を仮定してみよう。図中の
符号及び記号は第1図(A)におけるそれらに対応して
いるが、勿論、このように横に寝かせて使用する場合は
、横方向両側の電極7.7間に亘る方向とは直交する方
向にある活性層4の上下両端に位置する襞開面9.9が
西共振器構成用ミラーとなる。 ・こうしたものではレ
ーザ長は図中に符号りで示す距離となり、相当に長く採
り得るが、逆にこうした、構造で本来の横型と同程度の
特性を確保するためには、既存の横型と全く同様に実際
の長さLは 150〜200川も採らねばならない。こ
れは余りに長過ぎる。
However, it is not just a matter of increasing the length of the laser; making it too long may cause manufacturing problems.6 For example, as shown in Figure 1 (G), the conventional horizontal DH (Double Peter junction) Let's assume a vertical oscillation type device by simply laying the laser on its side. The numerals and symbols in the figure correspond to those in FIG. The fold-opening surfaces 9.9 located at the upper and lower ends of the active layer 4 in orthogonal directions serve as mirrors for forming the west resonator.・In such a case, the laser length is the distance indicated by the symbol in the diagram, and it can be quite long, but conversely, in order to ensure the same characteristics as the original horizontal type in the structure, it is necessary to completely remove the laser length from the existing horizontal type. Similarly, the actual length L must be 150 to 200 lengths. This is way too long.

というのも、実際にこうした第1図(C)図示の構成の
レーザを作るには、本来の横型用におけると同様に一個
づつ縦に各層を形成してから横に寝かせて組上げる等は
できず、殊に集積化を考えると図示していない適当′な
基板の上に始めから図示のように、横に寝かせた状態で
作られな!すればならない。してみる・と、上記のよう
に1503unから200脚にも及ぶレーザ長りは、既
存のエピタキシャル成長技術で一遍に作ることのできる
厚さ限界を遥かに越えた厚さとなってしまうのである。
This is because, in order to actually make a laser with the configuration shown in Figure 1(C), it is not possible to form each layer vertically one by one and then lay them horizontally and assemble them, as in the original horizontal type. Especially when considering integration, it must be fabricated from the beginning on an appropriate substrate (not shown), lying horizontally as shown in the figure. Must do. However, as mentioned above, the laser length, which ranges from 1503 nm to 200 legs, far exceeds the thickness limit that can be produced at once using existing epitaxial growth techniques.

尚、構造的にもこうした仮定素子では、面発光レーザの
−っの本来的な利点である臂開面を不要とするという特
徴も損われてしまう。
In addition, structurally, such a hypothetical element also loses the inherent advantage of a surface-emitting laser, which is that it does not require an arm-opening surface.

本発明は゛こうした従来の実情に鑑みて成されたもので
、半導体ヘテロ多層膜の活性層・を有する分布帰還型面
発光レーザの電流注入及び少数キャリアの閉じ込め構造
に改良を施し、」二記従来例の各欠点を除去し、低閾値
電流で製造的にも実現可能である実用的な面発光レーザ
を提供せんとするものである。
The present invention has been made in view of these conventional circumstances, and improves the current injection and minority carrier confinement structure of a distributed feedback surface emitting laser having an active layer of a semiconductor heteromultilayer film. It is an object of the present invention to provide a practical surface-emitting laser that eliminates the drawbacks of the previous example and has a low threshold current and is easily manufactured.

本発明はこうした目的を達成するため、半導体ヘテロ多
層膜により構成された活性機能と分41帰還型光共振機
能とを併せ有する活性層無光共振器構造体と;その少な
くとも横方向−側に接した少数キャリア閉じ込め用のク
ラッド層と;を基板に対して各々垂直に、そして互いに
は並設的に形成することを提案する。
In order to achieve these objects, the present invention provides an active layer non-optical resonator structure having both an active function and a feedback type optical resonant function constituted by a semiconductor heteromultilayer; We propose that the cladding layers for confining minority carriers are formed perpendicularly to the substrate and in parallel with each other.

このようにすれば、通常のエピタキシャル成長技術等に
おいて製造可能な膜厚範囲でも十分なレーザ利得を得る
ことができ、低閾値電流で実用的な垂直発振型面発光レ
ーザを提供することができる。
In this way, sufficient laser gain can be obtained even in a film thickness range that can be manufactured using ordinary epitaxial growth techniques, etc., and a practical vertical oscillation type surface emitting laser with a low threshold current can be provided.

尚、本発明の活性層無光共振器構造体に用いる半導体ヘ
テロ多層膜自体は、本出願人が既に開示−、え特開□5
9−313988%/、’[4:お1ゎ工い、、。
The semiconductor heteromultilayer film itself used in the active layer non-optical resonator structure of the present invention has already been disclosed by the present applicant, and in JP-A-5
9-313988%/,' [4: 1ゎwork...

等、公知のものであって良い。It may be a known one such as.

例えば上記公報に記載されているものは、当該半導体ヘ
テロ多層膜の厚さ方向の屈折率の変化の基本周期がレー
ザ光の管内波長の1/2となっており、この1/2の屈
折率基本周期は、1/4管内波長の整数倍(lを含む)
の厚味を持つ高屈折率媒質層と、同じ<174管内波長
の整数倍の厚味を持つ低屈折率媒質層とで構成するか、
或いは厚味方向の組成等をl/2管内波長を周期として
連続的に変化させることにより得ている。
For example, in the one described in the above-mentioned publication, the basic period of change in refractive index in the thickness direction of the semiconductor hetero multilayer film is 1/2 of the tube wavelength of the laser beam, and the refractive index is 1/2 of this 1/2 wavelength. The fundamental period is an integral multiple of 1/4 pipe wavelength (including l)
A high refractive index medium layer having a thickness of
Alternatively, it is obtained by continuously changing the composition in the thickness direction with a period of 1/2 tube wavelength.

こうした多層膜を用いた本発明の基本的な構造実施例と
しては、先づ第2図(A)、(B)に示す構造が挙げら
れる。
Examples of the basic structure of the present invention using such a multilayer film include the structures shown in FIGS. 2(A) and 2(B).

第2図(A)に示す実施例は、基板lOの上に縦方向乃
至垂直方向に上記特開昭59−38988号公報に開示
されている1/2波長周期の半導体ヘテロ多層膜を形成
して活性機能と分布帰還型光共振器機能を持つ活性層兼
先具植器構造体11としたもので、その横方向一側には
少数キャリア閉じ込め用のp型りラッド層12を、他側
にはn型クラッド層13を、夫々同様に基板10に対し
て垂直方向に形成している。これに伴い、電流注入用電
極14.15も両クラッド層12.13の外側に沿って
基板lOに対し重直に形成されている。
In the embodiment shown in FIG. 2(A), a semiconductor hetero multilayer film with a 1/2 wavelength period, which is disclosed in the above-mentioned Japanese Patent Laid-Open No. 59-38988, is formed vertically or vertically on a substrate IO. A p-type rad layer 12 for confining minority carriers is formed on one side in the lateral direction, and a p-type rad layer 12 is formed on the other side in the lateral direction. In each case, an n-type cladding layer 13 is similarly formed in a direction perpendicular to the substrate 10. Accordingly, current injection electrodes 14.15 are also formed along the outer sides of both cladding layers 12.13, perpendicular to the substrate IO.

このような構造であると、閾値電流を増加させることな
くレーザ長りを第1図(C)に示す仮定の素子構造に比
し約1/20程度に短縮することができる。即ち、第1
図(C)図示の場合、この仮定構造を実現するにはレー
ザ長りは15011mから200JImを要すること既
述したが、第2図(^)図示の本発明実施例の構造では
レーザ長りは7乃至10J1mでも足りるのである。
With such a structure, the laser length can be shortened to about 1/20 of the hypothetical device structure shown in FIG. 1(C) without increasing the threshold current. That is, the first
In the case shown in Figure (C), the laser length is required to be 15011m to 200JIm to realize this hypothetical structure.However, in the structure of the embodiment of the present invention shown in Figure 2(^), the laser length is 7 to 10J1m is sufficient.

一゛この程度の厚さであれば、当該活性層兼光共振器構
造体11及びその両側のクラッド層12.13等も既存
のエピタキシャル成長技術で容易に形成することができ
る。
With a thickness of this order, the active layer/optical resonator structure 11 and the cladding layers 12, 13 on both sides thereof can be easily formed using existing epitaxial growth techniques.

しかしまた、この厚さ乃至レーザriLは、実現してい
る従来例素子としての第1図(^)、(B)図示のもの
に比せば十分長いものである。
However, this thickness or laser riL is sufficiently long compared to the realized conventional device shown in FIGS. 1(^) and 1(B).

換言すれば、第1図(A)、(B、)図示の従来倹素f
−に比し、本実施例構造の場合、電流注入方向と光共振
器の方向とが直交しているため、レーザ長りを十分長く
採りながらも、活性層@Wは、例えば0.24〜 IJ
1m程度にまで十分に短くすることができ、少数キャリ
ア閉じ込め効率を大きく上げることができるのである。
In other words, the conventional frugal element f shown in FIGS. 1(A) and (B)
- Compared to the structure of this embodiment, the current injection direction and the direction of the optical resonator are perpendicular to each other. I.J.
It can be made sufficiently short to about 1 m, and the minority carrier confinement efficiency can be greatly increased.

更に、同様にリフレクタにのみ半導体ヘテロ多層膜を用
いている第1図(B)図示の従来例素子との個別的な対
比においても、当該素子ではその活性層4は上下の多層
膜8,91こ挟まれた唯一層であったのに対し1本発明
の素子では、第2図(A)図示のものを始め後述する第
2図CB)及び第3図示の実施例においても、半導体ヘ
テロ多層膜11中の全ての低エネルギ・バンド・ギャッ
プ材料膜を活性層として用いることが可能なため、レー
ザ長りを少数キャリア拡散長の制限なしに長くすること
ができる。また、少数キャリアの注入が半導体ヘテロ多
層膜の工jルギ・バンド・ギャップの障壁に沿って行な
われるため、寄生抵抗が低減する利点もある。
Furthermore, in a separate comparison with the conventional element shown in FIG. 1B, in which a semiconductor hetero multilayer film is similarly used only for the reflector, in this element, the active layer 4 is formed by the upper and lower multilayer films 8, 91. In contrast, in the device of the present invention, in the embodiment shown in FIG. 2(A), as well as in the embodiment shown in FIG. 2(CB) and FIG. Since all of the low energy band gap material films in film 11 can be used as active layers, the laser length can be increased without the limitation of minority carrier diffusion length. Furthermore, since the injection of minority carriers is performed along the barrier of the engineering band gap of the semiconductor heteromultilayer film, there is also the advantage that parasitic resistance is reduced.

第2図(A)に示す実施例素子の実際の製造手順は、基
i10の上に先づ分子線エピタキシャル(MBE)法等
で半導体ヘテロ多層膜乃至活性層兼光共振器構造体11
とすべき層を適当層厚に形成した後、図中の所要幅Wの
部分を残して片側の部分をステップ・エツチングによる
等して除去し、その後にこの除去部分にp型クラッド層
12を成長させ、再び図中の所用幅Wの部分を残して反
対側をステップ・エツチング等により除去し、この除去
部分にn型クラッド層13を液相成長させるか、或いは
近年開発されつつある選択MBE法と選択イオン・プラ
ンテーションを利用して両クラ・・ド層12.13を選
択形成する等が考えられる。
The actual manufacturing procedure of the example device shown in FIG.
After forming a layer to an appropriate thickness, one side of the layer is removed by step etching, leaving a portion of the required width W in the figure, and then a p-type cladding layer 12 is formed on this removed portion. Then, the opposite side is removed again by step etching, leaving a portion of the required width W in the figure, and the n-type cladding layer 13 is grown in a liquid phase on this removed portion, or alternatively, selective MBE, which has been developed in recent years, is used. It is conceivable to selectively form both the cladding layers 12 and 13 using a method and selective ion plantation.

第2図(B)に示す第二の実施例t」、p型クラッド層
12の形成にZnの拡散による原子混合効果を利用した
もので、活性層兼光共振器構造体IIをp型に設定する
ことにより、p型クラッド層12と構造体11中のp型
活性層とのエネルギ・ギャップ差によって少数キャリア
、即ちこの場合電子の閉じ込めを行なうことができる。
In the second embodiment shown in FIG. 2(B), the atomic mixing effect due to Zn diffusion is used to form the p-type cladding layer 12, and the active layer/optical resonator structure II is set to be p-type. By doing so, minority carriers, that is, electrons in this case, can be confined due to the energy gap difference between the p-type cladding layer 12 and the p-type active layer in the structure 11.

また、第一の実施例と更に異なる点は、n型クラッド層
13に代えて、活性層兼光共振器構造体11の右横に位
置する部分は半導体ヘテロ多層膜に適当な原子をドープ
することによってn型に設定したキャリア(この場合電
子)供給層1Bとなっていることである。そして この
n層側の電極15は当該キャリア供給層16の上面に形
成されている。
A further difference from the first embodiment is that instead of the n-type cladding layer 13, the portion located on the right side of the active layer/optical resonator structure 11 is doped with appropriate atoms into the semiconductor hetero multilayer film. Therefore, the carrier (electron in this case) supply layer 1B is set to be n-type. The n-layer electrode 15 is formed on the upper surface of the carrier supply layer 16.

第3図(A)はこの第2図(B)に示す基本構造を実際
の素子としてAlGaAs系で具現した、より具体的な
実施例を示すもので、同図(B)は走査型電子顕微鏡(
SEM)写真による断面構成を示している。
Figure 3 (A) shows a more specific example in which the basic structure shown in Figure 2 (B) is realized as an actual element using an AlGaAs system, and Figure 3 (B) shows a scanning electron microscope. (
SEM) The cross-sectional structure is shown in a photograph.

本構造の面発光レーザ素子を作成するための出発ウェハ
としては、アン・ドープGaAs基板10の上に将来、
p型クラッド層12、活性層兼光共振器構造体11、及
び電子供給層18の各層を形成するために用いられる半
導体ヘテロ多層膜として、媒質内の1/2管内波長周期
で50ペアのAIn、3Gao、7As(58nm)と
GaAs(83nm)とをMBE法により形成したもの
を用いた。
As a starting wafer for producing a surface-emitting laser device with this structure, an undoped GaAs substrate 10 is used as a starting wafer.
As a semiconductor hetero multilayer film used to form each layer of the p-type cladding layer 12, the active layer/optical resonator structure 11, and the electron supply layer 18, 50 pairs of AIn, 3Gao, 7As (58 nm) and GaAs (83 nm) formed by the MBE method were used.

第3図(B)における断面写真において、横縞の中、白
い縞がAIo、3Gao、yAs薄膜、黒で表されてい
る縞がGaAs薄膜である。そして、この基板10上の
エピタキシャル層の全厚は、GaASバッファ層を含め
て6脚である。
In the cross-sectional photograph in FIG. 3(B), among the horizontal stripes, white stripes are AIo, 3Gao, and yAs thin films, and black stripes are GaAs thin films. The total thickness of the epitaxial layer on this substrate 10 is six legs including the GaAS buffer layer.

本発明における活性層兼光共振器構造体ll中、垂直方
向の分布帰還型光共振器は、既に述べたようにAlGa
As/GaAs多層膜の屈折率の凹凸によって形成され
ている。
In the active layer/optical resonator structure 11 of the present invention, the vertical distributed feedback optical resonator is made of AlGa
It is formed by the unevenness of the refractive index of the As/GaAs multilayer film.

AlGaAs系 GaAs多層膜にあって活性層兼光共
振器構造体11の右横に位置する領域にはMBE成長時
にSiが添加され、Siドーブギのn型電子供給領Jl
&1Gとされており、GaAs層に対応するキャリア濃
1mは2 X 1018c+a−3である。
Si is added to the region located on the right side of the active layer/optical resonator structure 11 in the AlGaAs-based GaAs multilayer film during MBE growth, and an n-type electron supply region Jl of the Si dovetail is added.
&1G, and the carrier concentration 1m corresponding to the GaAs layer is 2×1018c+a-3.

第3図(A)中で点描している左手側の部分蔭外を拡散
したP型領域を示しており、特にエツチング溝20内に
図中、右手から左手に向けて張り出すように立ち上がっ
ている点描部分12はp型クラッド層12となる。
It shows a P-type region diffused outside the left-hand side portion dotted in FIG. The dotted portion 12 becomes the p-type cladding layer 12.

第3図(A)中、仮想線Esで示すエツチング段差から
横方向右手へのZnの拡散によって、第3図(B)に示
されるように略ゾ垂直なpn接合の境界が得られている
In FIG. 3(A), by diffusion of Zn from the etching step shown by the imaginary line Es to the right side in the lateral direction, a substantially perpendicular pn junction boundary is obtained as shown in FIG. 3(B). .

尚、実際の本素子製造の現場では、ステップ・エツチン
グ及びZn拡散用マスクとしてCVDによるSiN膜(
1000人)を用いた。また、ステップ。
In the actual production of this device, a SiN film (CVD) is used as a mask for step etching and Zn diffusion.
1000 people) were used. Also, step.

エツチングの条件は、30%H2O2: 30%NH4
OH:H2O= 5:40:10(VIllll)にて
室温8,5分とし、 S p、マスクは逆メサに対応す
る(110)方向に形成しlた。
Etching conditions are 30% H2O2: 30% NH4
The film was left at room temperature for 8.5 minutes at OH:H2O=5:40:10 (VIllll), and a mask was formed in the (110) direction corresponding to the reverse mesa.

モしてZn拡散条件は、ZnAs210鵬gを封入した
石卜、アンプル中にてl100’C!、 14時間であ
る。
The conditions for Zn diffusion were 1100'C! , 14 hours.

この拡散条件によって、GaAs基板の場合、キャリア
濃度7 X 1019cm−3のp型層12が3脚程度
形成される。
Under these diffusion conditions, in the case of a GaAs substrate, about three legs of the p-type layer 12 with a carrier concentration of 7.times.10.sup.19 cm.sup.-3 are formed.

次に石英アンプル中にてダミーのGaAs基板を対向さ
せながら拡散済みのウェハを1000℃、1分間、熱処
理を行なった。この熱処理によって本素子の発光効率は
約−桁、向上した。
Next, the diffused wafer was heat-treated at 1000° C. for 1 minute in a quartz ampoule while facing the dummy GaAs substrate. This heat treatment improved the luminous efficiency of the device by about -0.

第3図(B)においてエツチング・ステップEsから右
手に約2控の範囲は多層膜による横縞のコントラストが
完全に消滅している。これは、Znの拡散によってAl
Ga、As/ GaAs多層膜がA1組成の均一・なA
 lGaAs領域12に変成したことを示している。こ
のp型AlGaAs層12は、n型電子供給層IO側か
ら注入された電子に対して拡散障壁として働くため、電
子の閉じ込め効果が期待できる。
In FIG. 3B, the contrast of the horizontal stripes due to the multilayer film has completely disappeared in a range approximately two rows to the right from the etching step Es. This is due to the diffusion of Zn.
The Ga, As/GaAs multilayer film has a uniform A1 composition.
This shows that it has been transformed into an lGaAs region 12. Since this p-type AlGaAs layer 12 acts as a diffusion barrier for electrons injected from the n-type electron supply layer IO side, an electron confinement effect can be expected.

Zn拡散によるpfJ領域は、エツチング・ステラ。The pfJ region due to Zn diffusion is an etching stela.

プ近傍の上記均一なAlGaAs層の右手側境界から更
に IJ1m程度、拡張した領域11を形成している。
A region 11 is formed which extends further by about IJ1 m from the right-hand side boundary of the uniform AlGaAs layer near the top.

この領域は第3図(B)中では横縞のコノトラストが強
く出た多層膜領域11として示されており、この領域1
1が本面発光レーザの活性層兼光共振器構造体11とな
る。
This region is shown in FIG. 3(B) as a multilayer film region 11 with strong horizontal striped conolasts, and this region 1
1 is an active layer/optical resonator structure 11 of the main-emitting laser.

しかして、先にも少し触れたように、低閾値電流性する
ためには、できるだけ小さな体積部分に注入電流を集中
したい。そこで本素子の実際においても、 Zn拡散に
より形成されるpn接合の幅は3JIIn程度に制限し
た。
However, as mentioned earlier, in order to achieve low threshold current properties, it is desirable to concentrate the injected current in as small a volume as possible. Therefore, in the actual implementation of this device, the width of the pn junction formed by Zn diffusion was limited to about 3JIIn.

また、光共振器の損失は、」二部及び下部の反射4  
  い7、□。あ□。オ1.4.20.9工幾何的な配
慮としては、光共振器の幾何的な中央部分に電流を注入
することが望ましい。
Moreover, the loss of the optical resonator is ``the second part and the bottom reflection 4
7, □. Ah□. E1.4.20.9 As an engineering consideration, it is desirable to inject the current into the geometrical center of the optical resonator.

この条件を満たすため、n型電子供給層18側の電極1
5は1層だけ基板10側に掘り下げて形成し、また基板
近くの下から10ペア分の多層膜をアン・ドープとする
ことにより、表面及び基板側への望ましくない電流の注
入を制限した。
In order to satisfy this condition, the electrode 1 on the n-type electron supply layer 18 side
No. 5 was formed by digging one layer into the substrate 10 side, and by making 10 pairs of multilayer films from the bottom near the substrate undoped, undesirable current injection into the surface and substrate side was restricted.

尚、P型りラッド層12側の電極14は第3図(A)中
で左手のエツチング除去部分の表面に形成しである。
The electrode 14 on the P-type rad layer 12 side is formed on the surface of the etched portion on the left side in FIG. 3(A).

第3図(B)に示されるように、この実施例では中心付
近の一層のGaAs層21の厚さが他に比して倍に設定
されている。これは、上部の20ペアと下部の30ペア
から成る反射層を多重反射する光の位相条件を整合させ
るためであり、一種のフェイズ・シフタ21となる。こ
のようにすると、レーザ発振波長と多層膜のブラッグ周
期が一致するため、短共振器条件におい゛て高い波長選
択性と反射率を維持することができる。
As shown in FIG. 3(B), in this embodiment, the thickness of the GaAs layer 21 near the center is set to be twice that of the other layers. This is to match the phase conditions of the light that is multiple-reflected on the reflective layer consisting of the upper 20 pairs and the lower 30 pairs, and serves as a kind of phase shifter 21. In this way, since the laser oscillation wavelength and the Bragg period of the multilayer film match, high wavelength selectivity and reflectance can be maintained under short cavity conditions.

第4図は第3図示レーザの発振スペ、クトラムを示して
いる。本図によれば、作成したレーザの閾値電流は15
0Kにて120mA、 54Kにて80mA (パルス
)と十分低いことが分かる。
FIG. 4 shows the oscillation spectrum of the laser shown in the third figure. According to this figure, the threshold current of the created laser is 15
It can be seen that the current is 120mA at 0K and 80mA (pulse) at 54K, which is sufficiently low.

また2発振スペクトラムの幅−は図中、左J二に併示す
るように、5層以内と十分狭い。
Furthermore, the width of the two oscillation spectra is sufficiently narrow, within five layers, as shown in J2 on the left in the figure.

発振スペクトラムの温度特性は54Kから125にの間
で0.48A /にである。この値は従来の横型DFB
(分布帰還)レーザにおい′て報告されている値に一致
する。発振波長の励起電流依存性も、閾値電流の二倍程
度までは無視できる。従って本発明の思想に即して構成
した第3図示面発光レーザの分布帰還型光共振器による
発振周波数の安定性が確認できる。
The temperature characteristic of the oscillation spectrum is 0.48 A/2 between 54 K and 125 K. This value is the same as the conventional horizontal DFB.
(distributed feedback) lasers. The dependence of the oscillation wavelength on the excitation current can also be ignored up to about twice the threshold current. Therefore, the stability of the oscillation frequency due to the distributed feedback optical resonator of the third illustrated surface emitting laser constructed according to the idea of the present invention can be confirmed.

尚、上記第3図示の実施例においては、用いた半導体ヘ
テロ多層膜はAlGaAs層 GnAs系であるが、連
続ヘテロエピタキシィが可能で格子−整合を採ることが
できる系であれば、他の系であっても本発明の多層膜と
して用いることができる6例えば、TI −IV族化合
物半導体ではGaAs基板上亜鉛−カルコゲナイド系、
m−v族ではGa1nAsP系、 C1aA、1InP
系、GaAlSb系等々が挙げられる。
In the embodiment shown in the third figure, the semiconductor heteromultilayer film used is an AlGaAs layer and a GnAs system, but other systems may be used as long as continuous heteroepitaxy is possible and lattice matching can be achieved. For example, in the case of TI-IV group compound semiconductors, zinc-chalcogenide based,
In the m-v group, Ga1nAsP system, C1aA, 1InP
Examples include GaAlSb type, GaAlSb type, and the like.

いづれにしても、以上のように、半導体ヘテロ多層膜製
の活性層兼光共振器構造体を用いた本発明による少数キ
ャリア閉じ込め構造と横方向電流注入構造は、分布帰還
型面発光レーザの波長安定性及び低閾値電流性を保証で
き、室温連続発振を始めて可能とし得る極めて大きな効
果を有するものである。
In any case, as described above, the minority carrier confinement structure and lateral current injection structure according to the present invention using an active layer/optical resonator structure made of a semiconductor heteromultilayer film can stabilize the wavelength of a distributed feedback surface emitting laser. This has an extremely large effect in that it can guarantee high performance and low threshold current characteristics, and can enable continuous oscillation at room temperature for the first time.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来既存の、及び横型レーザから推定できる面
発光レーザの概略構成図、第2図は本発明の基本的な実
施例の概略構成図、第3図は第2図(B)に示す基本構
造に即して作成したより具体的な実施例の面発光レーザ
の概略構成を示す斜視図、第4図は第3図示実施例のレ
ーザ発振スペクトラムである。 図中、10は基板、11は半導体ヘテロ多層膜による活
性層兼先具−°器構造体、12はP型りラ・ド第3図(
A) !
Figure 1 is a schematic configuration diagram of a surface emitting laser that can be estimated from conventional existing and horizontal lasers, Figure 2 is a schematic configuration diagram of a basic embodiment of the present invention, and Figure 3 is similar to Figure 2 (B). FIG. 4 is a perspective view showing a schematic configuration of a surface-emitting laser according to a more specific embodiment created in accordance with the basic structure shown, and FIG. 4 is a laser oscillation spectrum of the third illustrated embodiment. In the figure, 10 is a substrate, 11 is an active layer/chip structure made of a semiconductor hetero multilayer film, and 12 is a P-type re-rad (see Fig. 3).
A)!

Claims (1)

【特許請求の範囲】 半導体ヘテロ多層膜を用いて構成された活性機能と分布
帰還型光共振機能を有する活性層兼光共振器構造体と; その少なくとも横方向一側に接した少数キャリア閉じ込
め用のクラッド層と; を有し、上記活性層兼光共振器構造体及び上記クラッド
層を基板に対して各々垂直に、そして互いには並設的に
形成したことを特徴とする分布帰還型面発光レーザ。
[Scope of Claims] An active layer/optical resonator structure having an active function and a distributed feedback optical resonance function constructed using a semiconductor hetero multilayer film; A distributed feedback surface emitting laser comprising: a cladding layer; the active layer/optical resonator structure and the cladding layer are each formed perpendicularly to the substrate and in parallel with each other.
JP12588784A 1984-06-19 1984-06-19 Surface light-emission laser Pending JPS614291A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12588784A JPS614291A (en) 1984-06-19 1984-06-19 Surface light-emission laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12588784A JPS614291A (en) 1984-06-19 1984-06-19 Surface light-emission laser

Publications (1)

Publication Number Publication Date
JPS614291A true JPS614291A (en) 1986-01-10

Family

ID=14921377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12588784A Pending JPS614291A (en) 1984-06-19 1984-06-19 Surface light-emission laser

Country Status (1)

Country Link
JP (1) JPS614291A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4901327A (en) * 1988-10-24 1990-02-13 General Dynamics Corporation, Electronics Division Transverse injection surface emitting laser
US4943970A (en) * 1988-10-24 1990-07-24 General Dynamics Corporation, Electronics Division Surface emitting laser
US4999842A (en) * 1989-03-01 1991-03-12 At&T Bell Laboratories Quantum well vertical cavity laser
US5068869A (en) * 1987-06-19 1991-11-26 Lockheed Missiles & Space Company, Inc. Surface-emitting laser diode
NL1005570C2 (en) * 1997-03-19 1998-09-22 Univ Eindhoven Tech Vertical contact surface emitting laser manufacture

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104188A (en) * 1982-12-07 1984-06-15 Toshiba Corp Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59104188A (en) * 1982-12-07 1984-06-15 Toshiba Corp Semiconductor laser device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5068869A (en) * 1987-06-19 1991-11-26 Lockheed Missiles & Space Company, Inc. Surface-emitting laser diode
US4901327A (en) * 1988-10-24 1990-02-13 General Dynamics Corporation, Electronics Division Transverse injection surface emitting laser
US4943970A (en) * 1988-10-24 1990-07-24 General Dynamics Corporation, Electronics Division Surface emitting laser
US4999842A (en) * 1989-03-01 1991-03-12 At&T Bell Laboratories Quantum well vertical cavity laser
NL1005570C2 (en) * 1997-03-19 1998-09-22 Univ Eindhoven Tech Vertical contact surface emitting laser manufacture

Similar Documents

Publication Publication Date Title
US5403775A (en) Method of making semiconductor devices and techniques for controlled optical confinement
US20090078944A1 (en) Light emitting device and method of manufacturing the same
US6707071B2 (en) Semiconductor light-emitting device
EP0579244B1 (en) A semiconductor laser and a method for producing the same
JPS6180882A (en) Semiconductor laser device
JP3432910B2 (en) Semiconductor laser
JPH07162086A (en) Manufacture of semiconductor laser
JPS614291A (en) Surface light-emission laser
JP4345673B2 (en) Semiconductor laser
JP2004063634A (en) Semiconductor distributed bragg reflector, surface emitting laser element, surface emitting laser array, optical communication system, and optical interconnection system
JPH10256647A (en) Semiconductor laser element and fabrication thereof
JPH0936474A (en) Semiconductor laser and fabrication thereof
JP3254812B2 (en) Semiconductor laser and manufacturing method thereof
JPH0648742B2 (en) Method for manufacturing semiconductor laser
JPH11340568A (en) Semiconductor device and its manufacture
JP2679974B2 (en) Semiconductor laser device
JP2865160B2 (en) Manufacturing method of semiconductor laser
JP4229681B2 (en) Semiconductor laser device, optical transmission module and optical transmission system
JPH0478036B2 (en)
JP2751699B2 (en) Semiconductor laser
JPH05145170A (en) Plane emission laser
JP2000058969A (en) Semiconductor laser device
JPH03208390A (en) Semiconductor laser element and manufacture thereof
JPH05167186A (en) Manufacture of semiconductor laser element
CA1126374A (en) Strip buried heterostructure laser