JPH0478036B2 - - Google Patents

Info

Publication number
JPH0478036B2
JPH0478036B2 JP57190391A JP19039182A JPH0478036B2 JP H0478036 B2 JPH0478036 B2 JP H0478036B2 JP 57190391 A JP57190391 A JP 57190391A JP 19039182 A JP19039182 A JP 19039182A JP H0478036 B2 JPH0478036 B2 JP H0478036B2
Authority
JP
Japan
Prior art keywords
light emitting
semiconductor
emitting region
refractive index
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57190391A
Other languages
Japanese (ja)
Other versions
JPS5979591A (en
Inventor
Katsuto Shima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP19039182A priority Critical patent/JPS5979591A/en
Publication of JPS5979591A publication Critical patent/JPS5979591A/en
Publication of JPH0478036B2 publication Critical patent/JPH0478036B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/2054Methods of obtaining the confinement
    • H01S5/2059Methods of obtaining the confinement by means of particular conductivity zones, e.g. obtained by particle bombardment or diffusion

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体発光装置、特に発振モードが軸
方向及び横方向について単一化され、低閾値電
流、高効率であつて、出力の増大に適する面発光
半導体レーザに関する。
[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to a semiconductor light emitting device, and in particular, to a semiconductor light emitting device, which has a single oscillation mode in the axial and lateral directions, has a low threshold current, has high efficiency, and is capable of increasing output. The present invention relates to a suitable surface emitting semiconductor laser.

(b) 技術の背景 光フアイバ通信及び各種の産業分野或いは民生
機器を対象としてレーザ光の応用が進められてい
る。これらの分野において目的に応じて各種のレ
ーザが選択使用されているが、半導体レーザはそ
の発振波長を制御することが可能であること、小
形で量産性があり、電流を流すだけで高効率が発
振するために容易に使用できることなどの特徴に
よつて最も将来性を有し、要求される波長帯域の
実現、安定した単一の横及び軸モード発振、電流
−光出力特性の向上、光ビーム発散角の減少、出
力の増大などの諸特性の向上について多くの努力
が重ねられている。
(b) Background of the Technology Laser light is being applied to optical fiber communications, various industrial fields, and consumer equipment. Various types of lasers are selected and used in these fields depending on the purpose, but semiconductor lasers have the advantage of being able to control their oscillation wavelength, being compact and suitable for mass production, and achieving high efficiency simply by passing a current through them. It has the most future potential due to its features such as ease of use for oscillation, realization of the required wavelength band, stable single transverse and axial mode oscillation, improvement of current-light output characteristics, and optical beam Many efforts have been made to improve various characteristics such as reducing the divergence angle and increasing the output power.

(c) 従来技術と問題点 前記の目的を達成するために現在までに数多く
の半導体レーザの構造が提案されているが、その
多くはフアブリー−ペロー光共振器を半導体結晶
の劈開等によつて形成する構造である。
(c) Prior art and problems A number of semiconductor laser structures have been proposed to date to achieve the above objectives, but most of them are fabricated by fabricating a Fabry-Perot optical cavity by cleaving a semiconductor crystal, etc. It is a structure that forms.

この劈開による端面形成はレーザチツプの形状
寸法を制約し、共振器長の短縮、軸モード制御が
困難であり、またレーザを含む集積回路の形成も
困難である。
This end face formation by cleavage restricts the shape and dimensions of the laser chip, making it difficult to shorten the cavity length and control the axial mode, and also making it difficult to form an integrated circuit including the laser.

これらの問題点に対処する半導体レーザの一つ
として、面発光レーザが知られている。面発光レ
ーザはレーザ光を半導体基体の主面に垂直な方向
に出射する半導体レーザであつて、フアブリー−
ペロー光共振器はエピタキシヤル成長させた結晶
の表面を反射面として構成される。
A surface emitting laser is known as one type of semiconductor laser that addresses these problems. A surface-emitting laser is a semiconductor laser that emits laser light in a direction perpendicular to the main surface of a semiconductor substrate.
A Perot optical resonator is constructed using the surface of an epitaxially grown crystal as a reflective surface.

面発光レーザはこの様な構造であるために、(イ)
光共振器長を短くすることが容易で軸モードの単
一化が可能となる。(ロ)光放射面積を広くすること
が容易で、光出力を増大し、光出射角を狭くする
ことが可能となる。(ハ)2次元レーザアレイの構成
が容易である。(ニ)モノリシツク光集積回路の構成
に適する。などの優れた特徴を有している。
Since the surface emitting laser has such a structure, (a)
It is easy to shorten the optical resonator length and it is possible to unify the axial mode. (b) It is easy to widen the light emission area, increase the light output, and narrow the light emission angle. (c) The configuration of a two-dimensional laser array is easy. (d) Suitable for the configuration of monolithic optical integrated circuits. It has excellent characteristics such as:

しかしながら従来の面発光レーザではこの様な
構造に起因して、(イ)フアブリー−ペロー光共振器
の共振面がエピタキシヤル成長させた結晶表面で
あるために劈開面の如き鏡面にはなり難く、一様
な共振が実現し難いこと。(ロ)発振の横モードの安
定化が不可能であること。(ハ)電流が光共振器に平
行な方向に導入されるために、活性領域における
電流密度を効果的に高くすることが困難であつ
て、変換効率が低いこと。などの欠点が伴なつて
いる。
However, in conventional surface emitting lasers, due to this structure, (a) the resonant surface of the Fabry-Perot optical cavity is an epitaxially grown crystal surface, so it is difficult to form a mirror surface like a cleaved surface; It is difficult to achieve uniform resonance. (b) It is impossible to stabilize the transverse mode of oscillation. (c) Since the current is introduced in a direction parallel to the optical resonator, it is difficult to effectively increase the current density in the active region, and the conversion efficiency is low. It comes with drawbacks such as:

面発光レーザの先に述べた優れた特徴は、将来
の半導体レーザとして要望されている特徴であ
り、前記の欠点が改善されることは半導体レーザ
の応用分野に大きい効果を及ぼす。
The above-mentioned excellent features of the surface emitting laser are features that are desired for future semiconductor lasers, and improvement of the above-mentioned drawbacks will have a great effect on the application field of semiconductor lasers.

(d) 発明の目的 本発明は半導体発光装置、特に面発光レーザに
ついて、フアブリー−ペロー共振面を必要とせ
ず、かつ閾値電流の低減、量子効率の向上、並び
に軸及び横モードの単一化が達成される構造を提
供することを目的とする。
(d) Purpose of the Invention The present invention provides a semiconductor light emitting device, particularly a surface emitting laser, which does not require a Fabry-Perot resonance surface, reduces threshold current, improves quantum efficiency, and unifies axial and transverse modes. The purpose is to provide a structure to be achieved.

(e) 発明の構成 本発明の前記目的は、禁制帯幅がEa、屈折率
がnaかつ厚さがdaである第1導電型の第1の半導
体層と、禁制帯幅がEc、屈折率がncかつ厚さがdc
である第1導電型の第2の半導体層とが交互に積
層されてなり、該第一及び第二の半導体層の垂直
方向に光出力される発光領域と、該第1、第2の
半導体層の延在方向に隣接し、該発光領域とpn
接合を構成する第2導電型の半導体層とを有し、
前記発光領域における前記禁制帯幅及び屈折率が Ea<Ecかつna>nc であつて、出射光の真空中の波長λp、該発光領域
の積層構造の有効屈折率ne、正の整数lの関係
が、ほぼ da+dc=l・λp/(2ne) を満たすことにより達成され、及び 前記発光領域及び該発光領域とpn接合を構成
する半導体層は、第2導電型の半導体基板上に共
通に形成されてなり、該半導体基板を貫通して該
発光領域の一端を表出する開口と、該半導体基板
及び該発光領域の他端の表面に形成された電極と
を有することにより達成される。
(e) Structure of the Invention The object of the present invention is to provide a first semiconductor layer of a first conductivity type having a forbidden band width of Ea, a refractive index of n a and a thickness of d a , a forbidden band width of Ec, refractive index n c and thickness d c
and a second semiconductor layer of a first conductivity type that is stacked alternately, a light-emitting region that outputs light in a direction perpendicular to the first and second semiconductor layers, and a light-emitting region that outputs light in the vertical direction of the first and second semiconductor layers; Adjacent to the layer extending direction, the light emitting region and pn
and a second conductivity type semiconductor layer constituting a junction,
The forbidden band width and the refractive index in the light emitting region are Ea<Ec and n a >n c , the wavelength in vacuum of the emitted light λ p , the effective refractive index n e of the laminated structure of the light emitting region, and the positive The relationship of the integer l is achieved by approximately satisfying d a +d c =l·λ p /(2n e ), and the light emitting region and the semiconductor layer forming the pn junction with the light emitting region are of the second conductivity type. an opening that is commonly formed on a semiconductor substrate and that penetrates the semiconductor substrate to expose one end of the light emitting region; and an electrode formed on the surface of the semiconductor substrate and the other end of the light emitting region. This is achieved by having.

(f) 発明の実施例 以下、本発明を実施例により図面を参照して具
体的に説明する。
(f) Embodiments of the Invention The present invention will be specifically described below using embodiments with reference to the drawings.

図は本発明の実施例を2等分した1片を示す斜
視図である。
The figure is a perspective view showing one piece obtained by dividing the embodiment of the present invention into two equal parts.

図において、1はn型ガリウム、砒素
(GaAs)基板、2はn型ガリウム・アルミニウ
ム・砒素(Ga0.7Al0.3As)クラツド層、3はn型
GaAs活性層であつて、後に詳細に説明する如く
クラツド層2と活性層3とは交互に積層して形成
されている。斜線で示した4は前記クラツド層2
と活性層3とよりなる積層構造に不純物を拡散す
ることによつて形成されたp型領域、5は絶縁
層、6はn側電極、7はp側電極を示す。
In the figure, 1 is an n-type gallium, arsenic (GaAs) substrate, 2 is an n-type gallium-aluminum-arsenic (Ga 0.7 Al 0.3 As) cladding layer, and 3 is an n-type
The GaAs active layer is formed by alternately laminating a cladding layer 2 and an active layer 3 as will be explained in detail later. 4 shown with diagonal lines is the cladding layer 2
5 is an insulating layer, 6 is an n-side electrode, and 7 is a p-side electrode.

本実施例においては、活性層を構成するGaAs
層3は禁制帯幅Ea=1.42〔eV〕、フオトルミネセ
ンスのピーク波長λp=0.87〔μm〕に対する屈折率
na=3.60であり、クラツド層を構成するGa0.7
Al0.3As層2は禁制帯幅Ec=1.8〔eV〕、前記波長
0.87〔μm〕の光に対する屈折率nc=3.39であつて、
Ea<Ec、na>ncなる関係が満足されている。
In this example, GaAs constituting the active layer is
Layer 3 has a forbidden band width Ea = 1.42 [eV] and a refractive index for the peak wavelength of photoluminescence λp = 0.87 [μm].
n a = 3.60, Ga 0.7 forming the cladding layer
The Al 0.3 As layer 2 has a forbidden band width Ec = 1.8 [eV] and the wavelength
The refractive index n c = 3.39 for light of 0.87 [μm],
The relationship Ea<Ec, n a > n c is satisfied.

また、GaAs活性層3は各層の厚さをda=0.15
〔μm〕、Ga0.7Al0.3Asクラツド層2は活性層3に
挟まれた各層の厚さをde=0.225〔μm〕に形成す
ることによつて、da+de=0.375〔μm〕とし、か
つ出射光の真空中の波長λp=λp=0.87〔μm〕に対
するGaAs活性層3とGa0.7Al0.3Asクラツド層2
とよりなる半導体積層構造の有効屈折率(半導体
積層構造内の伝播定数βと真空中の伝播定数kp
の比β/kO)ne=3.48ならしめて、Braggの反射
条件 da+de=lλp/2ne をl=3について満足させて、GaAs活性層3を
20層、Ga0.7Al0.3Asクラツド層2を最初と最後の
厚さが制約されない2層を含めて21層交互に分子
線エピタキシヤル成長法によつて形成している。
なお、GaAs活性層3の層数Nは10程度以上とす
ることが望ましく、これらの層の成長方法は金属
有機化学気相成長法などを採用してもよい。
In addition, the thickness of each layer of the GaAs active layer 3 is d a =0.15
[μm], Ga 0.7 Al 0.3 As cladding layer 2 is formed so that the thickness of each layer sandwiched between active layers 3 is d e =0.225 [μm], so that d a +d e =0.375 [μm]. , and the GaAs active layer 3 and the Ga 0.7 Al 0.3 As cladding layer 2 for the vacuum wavelength λ p = λ p = 0.87 [μm] of the emitted light.
The effective refractive index of the semiconductor laminated structure (the ratio β/k O of the propagation constant β in the semiconductor laminated structure and the propagation constant k p in vacuum) n e = 3.48, Bragg's reflection condition d a + d e =lλ p /2n e is satisfied for l=3, and the GaAs active layer 3 is
20 layers of Ga 0.7 Al 0.3 As cladding layer 2 are formed alternately by molecular beam epitaxial growth in 21 layers, including the first and last two layers whose thickness is not restricted.
Note that the number N of layers in the GaAs active layer 3 is desirably about 10 or more, and a metal-organic chemical vapor deposition method or the like may be used as the growth method for these layers.

以上説明した構成よりなるクラツド層2と活性
層3との積層構造体に、本実施例においては図に
示す如く基板1に接するクラツド層2から絶縁層
5に接するクラツド層2を貫通する円筒状のp型
領域4を例えば亜鉛(Zn)の拡散によつて形成
する。
In this embodiment, in the laminated structure of the cladding layer 2 and the active layer 3 having the configuration described above, a cylindrical structure is added which penetrates from the cladding layer 2 in contact with the substrate 1 to the cladding layer 2 in contact with the insulating layer 5, as shown in the figure. The p-type region 4 is formed by, for example, diffusion of zinc (Zn).

次いで基板1上にn側電極6とする例えば金・
ゲルマニウム/金(AuGe/Au)膜を被着した
後に該AuGe/Au膜及び基板1を貫通して最初
のクラツド層2を表出する開口を設け、また最後
のクラツド層2に接して選択的にp型領域4に表
出する絶縁膜5及び例えば金・亜鉛(AuZn)よ
りなるp側電極7を形成する。
Next, a layer of gold, for example, is deposited on the substrate 1 to form the n-side electrode 6.
After depositing the germanium/gold (AuGe/Au) film, an opening is provided through the AuGe/Au film and the substrate 1 to expose the first cladding layer 2, and selectively in contact with the last cladding layer 2. Then, an insulating film 5 exposed in the p-type region 4 and a p-side electrode 7 made of, for example, gold/zinc (AuZn) are formed.

以上説明した構造を有する本実施例のレーザに
おいては、p側電極7よりn側電極6に到る電流
は、ビルトインポテンシヤルの低いGaAs層3に
おいてn型領域3からp型領域4に電子によつて
注入されて、電子の拡散幅(数μm程度)の範囲
において発光再結合が行なわれる。
In the laser of this embodiment having the structure described above, the current flowing from the p-side electrode 7 to the n-side electrode 6 is caused by electrons flowing from the n-type region 3 to the p-type region 4 in the GaAs layer 3 with a low built-in potential. The electrons are then injected, and radiative recombination occurs within the electron diffusion width (on the order of several μm).

ここで発生した光のうち、真空中の波長がλp
あるピーク成分は、Braggの反射条件を満足する
半導体積層構造によつて縦モードが界面に整合す
る供振状態となり、基板1に設けられた前記開口
より、図中矢印をもつて模式的に示す如くレーザ
光として出射する。
Of the light generated here, the peak component whose wavelength in vacuum is λ p becomes a oscillation state in which the longitudinal mode is matched to the interface due to the semiconductor stacked structure that satisfies Bragg's reflection condition. The laser beam is emitted from the aperture, as schematically shown by the arrow in the figure.

特に本実施例のpn接合が無終端の環状をなす
構造において、例えばn型領域の電子濃度を5×
1018〔cm-3〕以上とし、p型領域の正孔濃度を8
×1018〔cm-3〕以下とするなど、両領域の不純物
濃度を選択することによつて、p型領域4の屈折
率をその周囲のn型領域の屈折率より大きくして
光の閉じ込めを行なうことが可能であつて、横モ
ードについても安定化が実現され、単一モードも
可能である。
In particular, in the structure in which the pn junction of this embodiment has an endless annular shape, for example, the electron concentration in the n-type region is set to 5×
10 18 [cm -3 ] or more, and the hole concentration in the p-type region is 8
By selecting the impurity concentration of both regions to be below ×10 18 [cm -3 ], the refractive index of the p-type region 4 is made larger than the refractive index of the surrounding n-type region, thereby confining light. In addition, stabilization is achieved even in the transverse mode, and even a single mode is possible.

ただし横モードの安定化は、例えばトランスバ
ースジヤンクシヨンストライプ構造の半導体レー
ザ等について既に行なわれている如く、n側半導
体積層構造にアクセプタ不純物を拡散せしめて1
×1020〔cm-3〕程度の高濃度のp+型領域を形成し
次いで不純物の再拡散を行なつて高屈折率のp型
領域を形成して屈折率ガイデイングを構成するこ
とによつても可能である。この種の屈折率ガイデ
イングを設けるならばpn接合が無終端の環状を
なすことは光のガイデイングのためには不必要で
あるが、実用に適し更に光放出面の拡大及び集積
化に適する面発光レーザとしては、例えば前記実
施例の如く、pn接合が環状をなしてこの接合界
面内に光が閉じ込められる構造が有利である。
However, the transverse mode can be stabilized by diffusing acceptor impurities into the n-side semiconductor stack structure, as has already been done for semiconductor lasers with a transverse junction stripe structure.
By forming a p + type region with a high concentration of about ×10 20 [cm -3 ] and then re-diffusing impurities to form a p type region with a high refractive index, refractive index guiding is formed. is also possible. If this type of refractive index guiding is provided, it is unnecessary for the pn junction to form an endless ring shape for guiding light, but it is suitable for practical use and is suitable for expanding the light emitting surface and integrating it. For the laser, it is advantageous to have a structure in which the pn junction is annular and light is confined within the junction interface, for example, as in the above embodiment.

本発明の面発光レーザは従来の面発光レーザと
異なつて発光領域がBraggの反射条件を満たして
多層重畳されているために閾値電流が低減され、
かつ量子効率が向上する。
Unlike conventional surface emitting lasers, the surface emitting laser of the present invention has a light emitting region that satisfies Bragg's reflection condition and is superimposed in multiple layers, so the threshold current is reduced.
And quantum efficiency is improved.

なお、前記実施例においてはpn接合はホモ接
合であるが、例えば前記半導体積層構造をその導
電型をp型として成長形成させ、所要のp型領域
を残置する選択的エツチング後に、n型GaAlAs
層を選択成長させることによつて、活性層のpn
接合をヘテロ接合とすることができてキヤリア注
入効率が改善される。
In the above embodiment, the pn junction is a homojunction, but for example, the semiconductor laminated structure is grown with its conductivity type as p-type, and after selective etching to leave a required p-type region, n-type GaAlAs is formed.
By selectively growing the active layer pn
Since the junction can be a heterojunction, carrier injection efficiency is improved.

また前記実施例においては、活性層の厚さda
クラツド層の厚さdcとの和をλ0/2ne整数倍に合
致させて共振条件を満足させているが、活性層の
厚さdaをクラツド層の厚さdcに比較して充分に薄
くし、クラツド層の厚さdeをλp/2neの整数倍に
合致させることによつても、ほぼ同様の効果を得
ることが可能である。
Furthermore, in the above embodiment, the resonance condition is satisfied by making the sum of the active layer thickness d a and the cladding layer thickness d c equal to an integer multiple of λ 0 /2n e ; Almost the same effect can be obtained by making d a sufficiently thinner than the cladding layer thickness d c and making the cladding layer thickness d e equal to an integral multiple of λ p /2n e . It is possible to obtain.

(g) 発明の効果 以上説明した如く本発明によれば、面発光レー
ザの軸モードの安定性が従来より更に向上し、光
放射面積を更に拡大して光出力を増大することが
容易となるのみならず、横モードの安定化、閾値
電流の低減、量子効率の向上がなされて、半導体
レーザに対する強い要求に応えるのみならず、2
次元レーザアレイは勿論モノリシツク光集積回路
の実現に大きい寄与を及ぼす。
(g) Effects of the Invention As explained above, according to the present invention, the stability of the axial mode of a surface emitting laser is further improved than before, and it becomes easy to further expand the light emission area and increase the optical output. In addition, the transverse mode has been stabilized, the threshold current has been reduced, and the quantum efficiency has been improved, not only meeting the strong demands for semiconductor lasers but also achieving two
Of course, dimensional laser arrays make a major contribution to the realization of monolithic optical integrated circuits.

【図面の簡単な説明】[Brief explanation of the drawing]

図面は本発明の実施例の半導体発光装置を2分
した1片の断面を含む斜視図である。 図において、1はn型GaAs基板、2はn型
GaAlAsクラツド層、3はn型GaAs活性層、4
はp型領域、5は絶縁層、6はn側電極、7はp
側電極を示す。
The drawing is a perspective view including a cross section of one piece obtained by dividing the semiconductor light emitting device according to the embodiment of the present invention into two. In the figure, 1 is an n-type GaAs substrate, 2 is an n-type
GaAlAs clad layer, 3 is n-type GaAs active layer, 4
is a p-type region, 5 is an insulating layer, 6 is an n-side electrode, and 7 is a p-type region.
The side electrode is shown.

Claims (1)

【特許請求の範囲】 1 禁制帯幅がEa、屈折率がnaかつ厚さがda
ある第1導電型の第1の半導体層と、禁制帯幅が
Ec、屈折率がncかつ厚さがdcである第1導電型の
第2の半導体層とが交互に積層されてなり、該第
一及び第二の半導体層の垂直方向に光出力される
発光領域と、 該第1、第2の半導体層の延在方向に隣接し、
該発光領域とpn接合を構成する第2導電型の半
導体層とを有し、 前記発光領域における前記禁制帯幅及び屈折率
がEa<Ecかつna>ncであつて、出射光の真空中
の波長λp、該発光領域の積層構造の有効屈折率
ne、正の整数lの関係が、ほぼ da+dc=l・λp/(2ne) を満たすことを特徴とする半導体発光装置。 2 前記発光領域及び該発光領域とpn接合を構
成する半導体層は、第2導電型の半導体基板上に
共通に形成されてなり、 該半導体基板を貫通して該発光領域の一端を表
出する開口と、 該半導体基板及び該発光領域の他端の表面に形
成された電極とを有する特許請求の範囲第1項記
載の半導体発光装置。
[Claims] 1. A first semiconductor layer of a first conductivity type having a forbidden band width of Ea, a refractive index of n a and a thickness of d a ;
Ec, a second semiconductor layer of the first conductivity type having a refractive index of nc and a thickness of dc are laminated alternately, and light is output in a direction perpendicular to the first and second semiconductor layers. a light emitting region adjacent to the first and second semiconductor layers in the extending direction;
a semiconductor layer of a second conductivity type forming a pn junction with the light emitting region, the forbidden band width and refractive index in the light emitting region are Ea<Ec and n a >n c , and the vacuum of the emitted light is wavelength λ p in the middle, the effective refractive index of the laminated structure of the light emitting region
A semiconductor light emitting device characterized in that the relationship between n e and a positive integer l satisfies approximately d a +d c =l·λ p /(2n e ). 2. The light emitting region and a semiconductor layer forming a pn junction with the light emitting region are formed on a semiconductor substrate of a second conductivity type, and penetrate through the semiconductor substrate to expose one end of the light emitting region. The semiconductor light emitting device according to claim 1, comprising an opening and an electrode formed on the surface of the semiconductor substrate and the other end of the light emitting region.
JP19039182A 1982-10-29 1982-10-29 Semiconductor light emitting device Granted JPS5979591A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19039182A JPS5979591A (en) 1982-10-29 1982-10-29 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19039182A JPS5979591A (en) 1982-10-29 1982-10-29 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JPS5979591A JPS5979591A (en) 1984-05-08
JPH0478036B2 true JPH0478036B2 (en) 1992-12-10

Family

ID=16257375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19039182A Granted JPS5979591A (en) 1982-10-29 1982-10-29 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JPS5979591A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60223706A (en) * 1984-04-20 1985-11-08 Central Conveyor Kk Stop positioning device for pallet of pallet conveyor driven by brush belt
JPH0513021Y2 (en) * 1986-02-20 1993-04-06
JPH0521899Y2 (en) * 1986-09-19 1993-06-04
US4881236A (en) * 1988-04-22 1989-11-14 University Of New Mexico Wavelength-resonant surface-emitting semiconductor laser
US5212703A (en) * 1992-02-18 1993-05-18 Eastman Kodak Company Surface emitting lasers with low resistance bragg reflectors

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648192A (en) * 1979-09-13 1981-05-01 Xerox Corp Lateral light emitting electroluminescence unit
JPS56164588A (en) * 1980-05-23 1981-12-17 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light amplifier

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5648192A (en) * 1979-09-13 1981-05-01 Xerox Corp Lateral light emitting electroluminescence unit
JPS56164588A (en) * 1980-05-23 1981-12-17 Nippon Telegr & Teleph Corp <Ntt> Semiconductor light amplifier

Also Published As

Publication number Publication date
JPS5979591A (en) 1984-05-08

Similar Documents

Publication Publication Date Title
US4633476A (en) Semiconductor laser with internal reflectors and vertical output
US6472691B2 (en) Distributed feedback semiconductor laser device
US4803691A (en) Lateral superradiance suppressing diode laser bar
JPH07107949B2 (en) Phased array semiconductor laser
EP0622876A1 (en) Vertical cavity laser diode
JPH07101768B2 (en) Semiconductor laser device and manufacturing method thereof
US5084892A (en) Wide gain region laser diode
US4819243A (en) Semiconductor laser with active layer having a radiation emitting active region therein which extends through and is bounded by a current limiting blocking layer
US4636821A (en) Surface-emitting semiconductor elements
JPH06302908A (en) Semiconductor laser
US5173913A (en) Semiconductor laser
JP4599700B2 (en) Distributed feedback laser diode
JPH0478036B2 (en)
JPS61168981A (en) Semiconductor laser device
JP2758598B2 (en) Semiconductor laser
JP2679974B2 (en) Semiconductor laser device
JP2927661B2 (en) Super luminescent diode element and method of manufacturing the same
Bhattacharya et al. High-power near-resonant 1.55 μm emitting InGaAsP/InP antiguided diode laser arrays
JPS614291A (en) Surface light-emission laser
JPH04234188A (en) Optoelectronic element and laser and their uses in optical detector manufacture
US6587492B2 (en) Bipolar cascade arrow laser
EP0144205B1 (en) Semiconductor laser
JPH03104292A (en) Semiconductor laser
JP3355016B2 (en) Semiconductor light emitting device and method of manufacturing the same
JP3189900B2 (en) Semiconductor laser device