JP2758598B2 - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JP2758598B2
JP2758598B2 JP62171525A JP17152587A JP2758598B2 JP 2758598 B2 JP2758598 B2 JP 2758598B2 JP 62171525 A JP62171525 A JP 62171525A JP 17152587 A JP17152587 A JP 17152587A JP 2758598 B2 JP2758598 B2 JP 2758598B2
Authority
JP
Japan
Prior art keywords
active layer
mixed crystal
face
semiconductor laser
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62171525A
Other languages
Japanese (ja)
Other versions
JPS6414986A (en
Inventor
功 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP62171525A priority Critical patent/JP2758598B2/en
Publication of JPS6414986A publication Critical patent/JPS6414986A/en
Application granted granted Critical
Publication of JP2758598B2 publication Critical patent/JP2758598B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高信頼,高出力の半導体レーザに関する。 〔従来の技術〕 従来普通に用いられる半導体レーザは、電流注入型で
あり、活性層となる半導体を、それよりも大きなバンド
ギャップエネルギをもつ半導体をクラッド層として挟ん
だダブルヘテロ構造をもつ。さらに通常の半導体レーザ
は活性層の組成および不純物ドーピングによるキャリア
濃度は共振器内全域に亘って均一である。しかし、光の
反射或いは出射面となる端面の劣化や損傷を防ぐため
に、端面近傍の活性層を中央部の活性層よりもバンドギ
ャップの大きな材料で形成すると効果のあることが知ら
れている。その一例、ウィンド・ストライプレーザ(IE
EE ジャーナル・オブ・クァンタム・エレクトロニクス
第QE−15巻、775ページ(1979年)の構造を第2図に示
す。Al0.06Ga0.94As活性層103をAl0.3Ga0.7Asクラッド
層102,104で挟みこむことにより、ダブルヘテロ構造が
形成されている。最初にすべてをn+型として形成し、次
に、端面近傍以外の中央部に選択的に亜鉛などのp型不
純物を拡散し、表面から活性層までをp+型とする。こう
して、活性層103のうち中央部をp+、端面近傍をn+型と
する。同じ材料の場合n+型の方がp+型よりも実効的エネ
ルギギャップが大きいため、このようにして端面付近の
みエネルギギャップを大きくすることができる。その結
果端面の109の吸収がへり、端面109の劣化や損傷を防ぐ
ことができ、高信頼,高出力を実現できる。この考え方
はAlGaAs系に限らず、他の材料系にも適用できる。 〔発明が解決しようとする問題点〕 前述の従来技術は、活性層の全域がp+またはn+にドー
プされている。このため、結晶品質の低下や、フリーキ
ャリアによる吸収係数の増大を招き、レーザの発振閾値
の上昇や、効率の低下を招く。また、p領域・n領域と
ともに表面に出るため、p側の電極106をつけるために
は、n領域を避けてp領域と接触させねばならぬため、
電極構造が複雑になる。さらにpn接合は、活性層とnク
ラッド層の間でとらねばならぬため、その拡散の制御は
難しい。また、レーザゲインを与える領域が高不純物濃
度となるので信頼性に問題がある。従来構造は以上述べ
た如きいくつかの欠点を有していた。 そこで本発明の目的は、結晶成長の性質や材料の性質
を利用して上述の欠点を除き、高信頼,高性能の半導体
レーザの提供することにある。 〔問題点を解決するための手段〕 本発明の半導体レーザは、活性層を含む多層構造を備
え、結晶中でIII族原子とV族原子間の結合長が互いに
異なり、同一混晶組成において通常の混晶状態よりもエ
ネルギーギャップが小さい混晶状態となる3元以上のII
I−V化合物混晶を活性層とし、光の反射面あるいは出
射面となる端面近傍の少なくとも活性層の不純物濃度を
約5〜15×1017cm-3程度とすることを特徴とする。 また本発明の半導体レーザは、活性層を含む多層構造
を備え、結晶中でIII族原子とV族原子間の結合長が互
いに異なり、同一混晶組成において通常の混晶状態より
もエネルギーギャップが小さい混晶状態となる3元以上
のIII−V化合物混晶を活性層とし、光の反射面あるい
は出射面となる端面近傍の少なくとも活性層の不純物濃
度を約5×1017cm-3以上とすることを特徴とする。結合
長の異なるIII−V族化合物の例としては、InGaP、AlGa
InP、GaInPAs、GaAsSb、等多数有り、いずれの場合にも
適用される。 〔作用〕 III−V化合物混晶のエネルギギャップは、従来その
組成により一義的に決まると考えられてきた。しかし、
例えば有機金属熱分解気相成長法(MOVPE法)で成長し
たGaInPやAlGaInPのように、成長温度、気相中V族原料
対III族原料比(V/III比)、不純ドーピングなどによっ
て、その混晶組成が一定でもエネルギギャップが異なり
得ることが示されている(例えば1987年春季第34回応用
物理学関係連合講演会講演予稿集第1分冊、講演番号28
p−ZA−4および28p−ZA−5(1987年))。つまり、あ
る成長温度とV/III比の値の組み合せを用いると、GaInP
やAlGaInPのエネルギギャップが、通常混晶に対する値
として知られているものよりも最大50〜80meVと小さく
なるということ。また、5×1017〜1018cm-3以上の不純
物導入(n型でもp型でもよい)を行なうと、小さくな
ったエネルギギャップの値はもとの混晶に回復するとい
うものである。これは、GaInP中のGa−PとIn−Pある
いはAlGaInP中のAl−PとIn−PGa−PとIn−Pのように
それぞれの結合長が異なることにより非混和領域に関連
して生じている。従って、AlGaAs中のAl−AsとGa−Asの
ように結合長がほぼ等しいものでは顕著にみられなかっ
た現像である。GaInAsやAlGaInAs、或いはGaAsSbなどの
ように、結晶中III族−V族の結合長の異なるものより
構成されているものでは、同様の現像がおきている。本
発明で利用する作用をMOVPE法により成長したGa0.5In
0.5Pを例として説明する。この場合、成長温度650℃、
V/III比400とすると、エネルギギャップの値は1.85eVと
なる。これは例えば成長温度700℃、V/III比58で成長し
たときに得られる。通常のGa0.5In0.5P混晶の値として
知られている1.90eVよりも50meV程小さい。この1.85eV
のGa0.5In0.5Pに、不純物を(5〜10)×1017cm-3以上
導入すると、エネルギギャップ(Eg)は、1.90eVの値を
回復する。このことをGa0.5In0.5Pを活性層とした半導
体レーザに適用する。共振器中の、中心部をEg〜1.85eV
のGa0.5In0.5Pで形成し、端面近傍領域に不純物を(5
〜10)×1017cm-3以上導入し、Egを1.90eV以上とする。
Egを大きくした領域は、レーザゲインには寄与しないの
で、その領域は、必要最小限にとどめることが望まし
い。そこで発振閾値の上昇を低く抑える目的で不純物導
入領域を端面から60μm以下にとどめる。レーザ発振は
1.85eVで決まる値でおこるため、大きなEgをもつ端面近
傍で光吸収が起らず、光損傷や端面劣化を防ぐことがで
きる。またレーザゲインを与える領域は高不純物濃度と
する必要がない。このために、高信頼,高出力の半導体
レーザを実現することができる。また、次の実施例でも
明らかなように、従来例よりも容易に本構造が実現でき
るものである。 〔実施例〕 次に図面を参照して本発明の実施例を説明することに
より、本発明の構成を一層具体的に示す。第1図は本発
明の実施例を側面より見た図である。600nmで帯で発振
するAlGaInP系可視光半導体レーザを例として示す。n
型GaAs基板1上に、MOVPE法により、n型(Al0.4G
a0.60.5In0.5Pクラッド層2、Ga0.5In0.5P活性層
3、p型(Al0.4Ga0.60.5In0.5Pクラッド層4、P+
GaAsキャップ層9を順次成長する。活性層3の成長条件
は、温度650℃、V/III比を400、不純物ドーピングなし
で行う。端面8の近傍にのみ、p型不純である亜鉛を拡
散して、少なくとも端面近傍の活性層部分が、1.5×10
18cm-3濃度をもつようにする。拡散フロントはn−(Al
0.4Ga0.60.5In0.5P層2に若干はいってもよい。共振
器全長は、200−300μm、端面近傍のZn拡散領域5は、
端面から約20μm内側までとした。端面8は劈開により
つくる。n型電極7は基板1側に、p型電極6はp+GaAs
コンタクト層9上に形成する。こうして得られた半導体
レーザは、不純物拡散領域のない半導体レーザと較べ
て、閾値の上昇は5%以下にとどまり、端面劣化が軽減
されるため、信頼性が飛躍的に向上した。また、端面の
光学的破壊を防げるため、最大光出力が数倍向上した。
また、この構造をつくる場合、拡散深さの制御が厳しく
ないこと、拡散域の絶縁が不要なことから製造プロセス
が容易である。従って製造歩留りがよく安価である。た
だし、Egを大きくした領域に対応するp型電極をSiO2
などで絶縁すると、レーザゲインに寄与しない電流成分
をへらすので、効率がよくなり、閾値も殆ど上昇しな
い。レーザゲインを与える領域に高濃度不純物を導入し
ないため、その信頼性が高い。ここに示した実施例で、
p型とn型と逆にしても同様の効果は得られる。又、他
の材料系でも条件を満たしていれば適用できることはい
うまでもない。なお、実施例では活性層をクラッド層で
挟んだ構造について説明したが、他の積層構造、例えば
活性層に隣接して光ガイド層を設け、この外側にクラッ
ド層を配した積層構造等でも同様の効果が得られる。ま
た、ファブリペロ共振器型のレーザ(実施例)でなく、
回折格子を備えたDFB、DBR型のレーザでもよい。ストラ
イプ構造は埋め込み型、プレーナ型等どのようにストラ
イプ構造でも適用できる。不純物の導入方法も拡散以外
の方法、例えばイオン注入等によっても本質的な効果は
変らない。 〔発明の効果〕 この様に、本発明の構造をとることにより、端面の光
吸収による劣化や端面損傷を防ぐことができ、従来より
も高信頼,高出力の半導体レーザを安価で実現できる。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly reliable and high-output semiconductor laser. [Prior Art] Conventionally used semiconductor lasers are of a current injection type, and have a double hetero structure in which a semiconductor serving as an active layer is sandwiched by a semiconductor having a band gap energy larger than that as a cladding layer. Further, in a usual semiconductor laser, the composition of the active layer and the carrier concentration due to impurity doping are uniform over the entire cavity. However, it is known that it is effective to form the active layer in the vicinity of the end face with a material having a larger band gap than the central active layer in order to prevent the end face serving as the light reflection or emission face from being deteriorated or damaged. One example is a wind stripe laser (IE
Fig. 2 shows the structure of the EE Journal of Quantum Electronics, QE-15, 775 pages (1979). By sandwiching the Al 0.06 Ga 0.94 As active layer 103 between the Al 0.3 Ga 0.7 As clad layers 102 and 104, a double hetero structure is formed. First, all are formed as n + -type, and then a p-type impurity such as zinc is selectively diffused into the central portion other than the vicinity of the end face, and the region from the surface to the active layer is made p + -type. Thus, the center of the active layer 103 is p + , and the vicinity of the end face is n + type. In the case of the same material, the n + type has a larger effective energy gap than the p + type, and thus the energy gap can be increased only near the end face. As a result, absorption of the end face 109 is reduced, and deterioration and damage of the end face 109 can be prevented, and high reliability and high output can be realized. This concept can be applied not only to the AlGaAs system but also to other material systems. [Problems to be Solved by the Invention] In the above-mentioned prior art, the entire area of the active layer is doped with p + or n + . For this reason, the crystal quality is reduced, the absorption coefficient due to free carriers is increased, and the laser oscillation threshold value is increased and the efficiency is reduced. In addition, since the light comes out to the surface together with the p region and the n region, in order to attach the p-side electrode 106, it is necessary to contact the p region avoiding the n region.
The electrode structure becomes complicated. Further, since the pn junction must be taken between the active layer and the n-cladding layer, it is difficult to control the diffusion. Further, since the region where the laser gain is applied has a high impurity concentration, there is a problem in reliability. The conventional structure has several disadvantages as described above. Therefore, an object of the present invention is to provide a highly reliable and high performance semiconductor laser that eliminates the above-mentioned disadvantages by utilizing the properties of crystal growth and the properties of materials. [Means for Solving the Problems] The semiconductor laser of the present invention has a multilayer structure including an active layer, and has different bond lengths between group III atoms and group V atoms in a crystal. Ternary or higher II in which the energy gap is smaller than the mixed crystal state
An active layer is made of an IV compound mixed crystal, and the impurity concentration of at least the active layer in the vicinity of an end face which is a light reflection surface or an emission surface is about 5 to 15 × 10 17 cm −3 . Further, the semiconductor laser of the present invention has a multilayer structure including an active layer, has different bond lengths between group III atoms and group V atoms in a crystal, and has an energy gap larger than that of a normal mixed crystal state in the same mixed crystal composition. The active layer is a ternary or more III-V compound mixed crystal in a small mixed crystal state, and the impurity concentration of at least the active layer in the vicinity of an end surface serving as a light reflecting surface or an emitting surface is about 5 × 10 17 cm -3 or more. It is characterized by doing. Examples of III-V compounds having different bond lengths include InGaP, AlGa
There are many such as InP, GaInPAs, GaAsSb, etc., which are applied in any case. [Action] The energy gap of a mixed crystal of a III-V compound has conventionally been considered to be uniquely determined by its composition. But,
For example, as in GaInP and AlGaInP grown by metal organic chemical vapor deposition (MOVPE), depending on the growth temperature, the ratio of group V material to group III material (V / III ratio) in the gas phase, and impurity doping, It has been shown that the energy gap can be different even when the mixed crystal composition is constant (for example, the 34th Spring Meeting of the 1987 Spring 1987 Conference on Applied Physics, the first volume of the proceedings of the lecture, lecture number 28)
p-ZA-4 and 28p-ZA-5 (1987)). In other words, when a certain combination of the growth temperature and the value of the V / III ratio is used, GaInP
The energy gap of AlGaInP or AlGaInP is typically up to 50-80 meV less than what is commonly known for mixed crystals. When an impurity of 5 × 10 17 to 10 18 cm −3 or more is introduced (either n-type or p-type), the reduced energy gap value is restored to the original mixed crystal. This is related to the immiscible region due to the different bond lengths such as Ga-P and In-P in GaInP or Al-P and In-PGa-P and In-P in AlGaInP. I have. Therefore, the development is not remarkably observed in the case where the bond lengths are almost equal, such as Al-As and Ga-As in AlGaAs. The same development is performed in a material such as GaInAs, AlGaInAs, or GaAsSb which is composed of those having different group III-V bond lengths in the crystal. Ga 0.5 In grown by MOVPE using the function of the present invention.
A description will be given using 0.5 P as an example. In this case, the growth temperature is 650 ° C,
If the V / III ratio is 400, the value of the energy gap is 1.85 eV. This is obtained, for example, when growing at a growth temperature of 700 ° C. and a V / III ratio of 58. It is smaller by about 50 meV than 1.90 eV, which is known as a value of a normal Ga 0.5 In 0.5 P mixed crystal. This 1.85eV
When impurities are introduced into Ga 0.5 In 0.5 P of (5 to 10) × 10 17 cm −3 or more, the energy gap (Eg) recovers the value of 1.90 eV. This is applied to a semiconductor laser using Ga 0.5 In 0.5 P as an active layer. Eg to 1.85 eV in the center of the resonator
Of Ga 0.5 In 0.5 P, and an impurity (5
10) Introduce 10 17 cm -3 or more, and make Eg 1.90 eV or more.
Since the region where Eg is increased does not contribute to the laser gain, it is desirable that the region be kept to the minimum necessary. Therefore, the impurity introduction region is limited to 60 μm or less from the end face for the purpose of suppressing a rise in the oscillation threshold. Laser oscillation
Since it occurs at a value determined by 1.85 eV, light absorption does not occur near the end face having a large Eg, so that optical damage and end face deterioration can be prevented. Further, it is not necessary to make the region for giving the laser gain a high impurity concentration. For this reason, a highly reliable and high output semiconductor laser can be realized. Further, as will be apparent from the next embodiment, the present structure can be realized more easily than the conventional example. Embodiment Next, an embodiment of the present invention will be described with reference to the drawings, so that the configuration of the present invention will be more specifically shown. FIG. 1 is a side view of an embodiment of the present invention. An AlGaInP-based visible light semiconductor laser oscillating in a band at 600 nm will be described as an example. n
N-type (Al 0.4 G
a 0.6 ) 0.5 In 0.5 P clad layer 2, Ga 0.5 In 0.5 P active layer 3, p-type (Al 0.4 Ga 0.6 ) 0.5 In 0.5 P clad layer 4, P + type
A GaAs cap layer 9 is sequentially grown. The active layer 3 is grown at a temperature of 650 ° C., a V / III ratio of 400, and no impurity doping. Only in the vicinity of the end face 8 is diffused zinc, which is p-type impurity, so that at least the active layer portion near the end face is 1.5 × 10
Have a concentration of 18 cm -3 . The diffusion front is n- (Al
0.4 Ga 0.6 ) 0.5 In 0.5 The P layer 2 may slightly enter. The total resonator length is 200-300 μm, and the Zn diffusion region 5 near the end face is
It was set to about 20 μm inside from the end face. The end face 8 is formed by cleavage. The n-type electrode 7 is on the substrate 1 side, and the p-type electrode 6 is p + GaAs
It is formed on the contact layer 9. The semiconductor laser obtained in this way has a threshold value rise of 5% or less as compared with a semiconductor laser having no impurity diffusion region, and the end face deterioration is reduced, so that the reliability is dramatically improved. In addition, the maximum light output was improved several times to prevent optical destruction of the end face.
When this structure is formed, the manufacturing process is easy because the control of the diffusion depth is not strict and the diffusion region is not required to be insulated. Therefore, the manufacturing yield is good and the cost is low. However, if the p-type electrode corresponding to the region where Eg is increased is insulated by a SiO 2 film or the like, the current component that does not contribute to the laser gain is reduced, so that the efficiency is improved and the threshold value hardly increases. Since high-concentration impurities are not introduced into the region where the laser gain is given, the reliability is high. In the example shown here,
The same effect can be obtained even if the p-type and n-type are reversed. It goes without saying that other material systems can be applied as long as the conditions are satisfied. In the embodiment, the structure in which the active layer is sandwiched by the clad layers has been described. However, the same applies to other laminated structures, for example, a laminated structure in which an optical guide layer is provided adjacent to the active layer and the clad layer is arranged outside the optical guide layer. The effect of is obtained. Also, instead of the Fabry-Perot cavity type laser (Example),
A DFB or DBR type laser having a diffraction grating may be used. The stripe structure can be applied to any type such as a buried type or a planar type. The essential effect of the method of introducing impurities is not changed even by a method other than diffusion, for example, ion implantation. [Effect of the Invention] As described above, by adopting the structure of the present invention, it is possible to prevent deterioration and damage to the end face due to light absorption of the end face, and to realize a semiconductor laser with higher reliability and higher output than the conventional one at low cost.

【図面の簡単な説明】 第1図は本発明の実施例の模式的側面図、第2図は従来
例の模式的側面図である。 1……n−GaAs基板、2……n−(Al0.4Ga0.50.5In
0.5Pクラッド層、3……Ga0.50.5P活性層、4……
p−(Al0.5Ga0.60.5In0.5Pクラッド層、5……Zn拡
散領域、6,106……p型電極、7……n型電極、8,109…
…端面、9……p+GaAsキャップ層、102,104……n−Al
0.3Ga0.7Asクラッド層、103……n+Al0.06Ga0.94As活性
層。
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a schematic side view of an embodiment of the present invention, and FIG. 2 is a schematic side view of a conventional example. 1... N-GaAs substrate, 2... N- (Al 0.4 Ga 0.5 ) 0.5 In
0.5 P cladding layer, 3 ... Ga 0.5 I 0.5 P active layer, 4 ...
p- (Al 0.5 Ga 0.6 ) 0.5 In 0.5 P clad layer, 5... Zn diffusion region, 6,106 p-type electrode, 7... n-type electrode, 8,109.
... end face, 9 ... p + GaAs cap layer, 102, 104 ... n-Al
0.3 Ga 0.7 As clad layer, 103 ... n + Al 0.06 Ga 0.94 As active layer.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.6,DB名) H01S 3/00 - 3/19──────────────────────────────────────────────────続 き Continued on front page (58) Field surveyed (Int.Cl. 6 , DB name) H01S 3/00-3/19

Claims (1)

(57)【特許請求の範囲】 1.活性層を含む多層構造を備え、結晶中でIII族原子
とV族原子間の結合長が互いに異なり、同一混晶組成に
おいて通常の混晶状態よりもエネルギーギャップが小さ
い混晶状態となる3元以上のIII−V化合物混晶を活性
層とし、光の反射面あるいは出射面となる端面近傍の少
なくとも活性層の不純物濃度を約5〜15×1017cm-3程度
とすることを特徴とする半導体レーザ。 2.活性層を含む多層構造を備え、結晶中でIII族原子
とV族原子間の結合長が互いに異なり、同一混晶組成に
おいて通常の混晶状態よりもエネルギーギャップが小さ
い混晶状態となる3元以上のIII−V化合物混晶を活性
層とし、光の反射面あるいは出射面となる端面近傍の少
なくとも活性層の不純物濃度を約5×1017cm-3以上とす
ることを特徴とする半導体レーザ。
(57) [Claims] A ternary element that has a multilayer structure including an active layer, has different bond lengths between Group III atoms and Group V atoms in the crystal, and has a mixed crystal state with the same mixed crystal composition and a smaller energy gap than a normal mixed crystal state. The above III-V compound mixed crystal is used as an active layer, and the impurity concentration of at least the active layer in the vicinity of an end face that is a light reflection surface or an emission surface is set to about 5 to 15 × 10 17 cm −3. Semiconductor laser. 2. A ternary element that has a multilayer structure including an active layer, has different bond lengths between Group III atoms and Group V atoms in the crystal, and has a mixed crystal state with the same mixed crystal composition and a smaller energy gap than a normal mixed crystal state. A semiconductor laser characterized in that the above III-V compound mixed crystal is used as an active layer, and the impurity concentration of at least the active layer in the vicinity of an end face serving as a light reflection surface or an emission surface is about 5 × 10 17 cm −3 or more. .
JP62171525A 1987-07-08 1987-07-08 Semiconductor laser Expired - Lifetime JP2758598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62171525A JP2758598B2 (en) 1987-07-08 1987-07-08 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62171525A JP2758598B2 (en) 1987-07-08 1987-07-08 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPS6414986A JPS6414986A (en) 1989-01-19
JP2758598B2 true JP2758598B2 (en) 1998-05-28

Family

ID=15924734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62171525A Expired - Lifetime JP2758598B2 (en) 1987-07-08 1987-07-08 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2758598B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066957A (en) * 2005-08-29 2007-03-15 Victor Co Of Japan Ltd Semiconductor laser element

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2913652B2 (en) * 1989-02-13 1999-06-28 日本電気株式会社 Semiconductor laser
JPH03208388A (en) * 1990-01-09 1991-09-11 Nec Corp Semiconductor laser, manufacture thereof and diffusion of impurity
JP2771318B2 (en) * 1990-09-05 1998-07-02 日本電気株式会社 Semiconductor laser
JP3098371B2 (en) * 1993-12-27 2000-10-16 日本電気株式会社 Semiconductor crystal growth method
JP3501676B2 (en) 1999-05-07 2004-03-02 松下電器産業株式会社 Method for manufacturing semiconductor laser device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5459149A (en) * 1977-10-20 1979-05-12 Ricoh Co Ltd Thermal fixing device for copying machine
JPS5616160U (en) * 1979-07-13 1981-02-12
JPS5814868A (en) * 1981-07-20 1983-01-27 Fuji Xerox Co Ltd Heating lamp supporting device of fixing device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
昭和62年春季第34回応用物理学会連合講演会予稿集 28p−2A−4 (昭和62年3月28日発行)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066957A (en) * 2005-08-29 2007-03-15 Victor Co Of Japan Ltd Semiconductor laser element

Also Published As

Publication number Publication date
JPS6414986A (en) 1989-01-19

Similar Documents

Publication Publication Date Title
US7522647B2 (en) Semiconductor laser and method of fabricating the same
EP0430691B1 (en) Semiconductor heterostructures
JP2545188B2 (en) Embedded heterostructure laser
JP3189791B2 (en) Semiconductor laser
JPH07101768B2 (en) Semiconductor laser device and manufacturing method thereof
JPH05102604A (en) Semiconductor laser device
JP2758598B2 (en) Semiconductor laser
US5204870A (en) Method of implementation of surface-emission semiconductor lasers, and lasers obtained by the method
US5914496A (en) Radiation emitting semiconductor diode of buried hetero type having confinement region of limited Al content between active layer and at least one inp cladding layer, and method of manufacturing same
JP4134366B2 (en) Surface emitting laser
JP3128788B2 (en) Semiconductor laser
JP2937156B2 (en) Manufacturing method of semiconductor laser
JP2812273B2 (en) Semiconductor laser
JP3254812B2 (en) Semiconductor laser and manufacturing method thereof
JP2527024B2 (en) Semiconductor laser
JP2913652B2 (en) Semiconductor laser
Kishimo et al. Fabrication and lasing characteristics of 0. 67. mu. m GaInAsP/AlGaAs visible lasers prepared by liquid phase epitaxy on (100) GaAs substrates
JP2771318B2 (en) Semiconductor laser
JPH0478036B2 (en)
JP3403915B2 (en) Semiconductor laser
JP3046454B2 (en) Quantum well semiconductor light emitting device
JPH09331105A (en) Semiconductor light emitting device and manufacture thereof
JP3143105B2 (en) Method for manufacturing semiconductor laser device
JP3255244B2 (en) Semiconductor laser
JP3217461B2 (en) Method for manufacturing semiconductor laser device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080313

Year of fee payment: 10