JP2527024B2 - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JP2527024B2
JP2527024B2 JP1034025A JP3402589A JP2527024B2 JP 2527024 B2 JP2527024 B2 JP 2527024B2 JP 1034025 A JP1034025 A JP 1034025A JP 3402589 A JP3402589 A JP 3402589A JP 2527024 B2 JP2527024 B2 JP 2527024B2
Authority
JP
Japan
Prior art keywords
plane
active layer
energy gap
layer
semiconductor laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1034025A
Other languages
Japanese (ja)
Other versions
JPH02213185A (en
Inventor
明子 五明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP1034025A priority Critical patent/JP2527024B2/en
Publication of JPH02213185A publication Critical patent/JPH02213185A/en
Application granted granted Critical
Publication of JP2527024B2 publication Critical patent/JP2527024B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は高信頼,高出力の半導体レーザに関する。The present invention relates to a highly reliable and high power semiconductor laser.

〔従来の技術〕[Conventional technology]

従来普通に用いられる半導体レーザは、電流注入型で
あり、活性層となる半導体を、それよりも大きなバンド
ギャップエネルギをもつ半導体をクラッド層として挟ん
だダブルヘテロ構造をもつ。さらに通常の半導体レーザ
は活性層の組成および不純物ドーピングによるキャリア
濃度は共振器内全域に亘って均一である。しかし、光の
反射或いは出射面となる端面の劣化や損傷を防ぐため
に、端面近傍の活性層を中央部の活性層よりもバンドギ
ャップの大きな材料で形成すると効果のあることが知ら
れている。その一例、ウィンド・ストライプレーザ(IE
EE ジャーナル・オブ・クァンタム・エレクトロニスク
ス 第QE−15巻、775ページ(1979年)の構造を第2図
に示す。Al0.06GA0.94As活性層103をAl0.3Ga0.7Asクラ
ッド層102,104で挟むことにより、GaAs基板101の上にダ
ブルヘテロ構造が形成されている。最初にすべてをn+
として形成し、次に、端面近傍以外の中央部に選択的に
亜鉛などのp型不純物を拡散し、表面から活性層までを
p+型とする。こうして、活性層103のうち中央部をp+
端面近傍をn+型とする。同じ材料の場合n+型の方がp+
よりも実効的エネルギギャップが大きいため、このよう
にして端面付近のみエネルギギャップを大きくすること
ができる。その結果端面109での光の吸収がへり、端面1
09の劣化や損傷を防ぐことができ、高信頼,高出力を実
現できる。この考え方はAlGaAs系に限らず、他の材料系
にも適用できる。
Conventionally used semiconductor lasers are of the current injection type and have a double hetero structure in which a semiconductor to be an active layer is sandwiched with a semiconductor having a bandgap energy larger than that as a cladding layer. Further, in a general semiconductor laser, the composition of the active layer and the carrier concentration due to impurity doping are uniform over the entire cavity. However, it is known that it is effective to form the active layer in the vicinity of the end face with a material having a bandgap larger than that of the central active layer in order to prevent deterioration or damage of the end face serving as a light reflecting or emitting face. One example is the wind stripe laser (IE
Figure 2 shows the structure of the EE Journal of Quantum Electronics, QE-15, page 775 (1979). A double hetero structure is formed on the GaAs substrate 101 by sandwiching the Al 0.06 GA 0.94 As active layer 103 between the Al 0.3 Ga 0.7 As clad layers 102 and 104. First, all are formed as n + -type, and then p-type impurities such as zinc are selectively diffused in the central portion other than the vicinity of the end faces to form the surface to the active layer.
p + type. Thus, the central part of the active layer 103 is p + ,
The vicinity of the end face is n + type. In the case of the same material, since the n + type has a larger effective energy gap than the p + type, the energy gap can be increased only in the vicinity of the end face in this way. As a result, light absorption at the end face 109 is reduced, and the end face 1
The deterioration and damage of 09 can be prevented, and high reliability and high output can be realized. This idea can be applied not only to the AlGaAs system but also to other material systems.

〔発明が解決しようとする課題〕[Problems to be Solved by the Invention]

前述の従来技術では、活性層の全域がp+またはn+にド
ープされている。このため、結晶品質の低下や、フリー
キャリアによる吸収係数の増大を招き、半導体レーザの
発振閾値の上昇や、効率の低下を招く。さらにpn接合
は、活性層とnクラッド層の間でとらねばならぬため、
その拡散の制御は難しい。また、レーザゲインを与える
領域が高不純物濃度となるので信頼性に問題がある。従
来構造は以上述べた如きいくつかの欠点を有していた。
In the above-mentioned prior art, the entire active layer is doped with p + or n + . For this reason, the crystal quality is deteriorated, the absorption coefficient is increased by free carriers, and the oscillation threshold of the semiconductor laser is increased and the efficiency is decreased. Furthermore, since the pn junction must be caught between the active layer and the n-clad layer,
It is difficult to control the diffusion. Further, there is a problem in reliability because the region where the laser gain is applied has a high impurity concentration. The conventional structure has some drawbacks as mentioned above.

そこで本発明の目的は、結晶成長の性質や材料の性質
を利用して上述の欠点を除き、高信頼,高性能の半導体
レーザを提供することにある。
Therefore, an object of the present invention is to provide a highly reliable and high-performance semiconductor laser that eliminates the above-mentioned drawbacks by utilizing the properties of crystal growth and the properties of materials.

〔課題を解決するための手段〕[Means for solving the problem]

この発明の要旨とするところは、結晶中でIII族原子
とV族原子間の結合長が互いに異なる3元以上のIII−
V化合物混晶で、かつ、同じ混晶組成のバルクのエネル
ギギャップ(正常値)よりも小さいエネルギギャップを
有する活性層を含む多層構造を(001)面上に形成し、
光の反射面或いは出射面となる(110)端面あるいは
(10)端面に、活性層よりエネルギギャップが大き
く、かつ、活性層と同じ組成をもつIII−V化合物混晶
の層を形成した構造にしたことである。(001)面上に
形成された活性層の両端の端面が、(110)面と等価な
面上への成長で活性層と同じ組成の結晶でおおわれてい
ることが重要である。結合長の異るIII−V化合物の例
としては、GaInP、AlGaInP、GaInPAs、GaAsSb、等多数
あり、いずれの場合にも適用される。
The gist of the present invention is that III-or more ternary elements having different bond lengths between the group III atom and the group V atom in the crystal are used.
A V compound mixed crystal is formed on the (001) plane to form a multilayer structure including an active layer having an energy gap smaller than the energy gap (normal value) of the bulk of the same mixed crystal composition,
A structure in which a layer of a III-V compound mixed crystal having a larger energy gap than the active layer and the same composition as that of the active layer is formed on the (110) end surface or the (10) end surface which is a light reflection surface or an emission surface. That is what I did. It is important that both end faces of the active layer formed on the (001) face are covered with crystals having the same composition as that of the active layer by growth on the face equivalent to the (110) face. There are many examples of III-V compounds having different bond lengths, such as GaInP, AlGaInP, GaInPAs, GaAsSb, etc., and they are applicable to any case.

〔作用〕[Action]

III−V化合物混晶のエネルギギャップは、従来その
組成により一義的に決まると考えられてきた。しかし、
倒えば有機金属熱分解気相成長法(MOVPE法)で(001)
面上に成長したGaInPやAlGaInPのように、成長温度、気
相中V族原料対III族原料比(V/III比)、不順ドーピン
グなどによって、その混晶組成が一定でもエネルギギャ
ップが異なり得ることが示されている(例えば1987年春
季第34回応用物理学関係連合講演会講演予稿集第1分
冊、講演番号28p−ZA−4および28p−ZA−5(1987
年))。つまり、ある成長温度とV/III比の値の組み合
せを用いると、GaInPやAlGaInPのエネルギギャップが、
通常混晶に対する値として知られているものよりも最大
50〜90meVと小さくなるということが示されている。
It has been conventionally considered that the energy gap of the III-V compound mixed crystal is uniquely determined by its composition. But,
If it falls down, it is (001) by metalorganic pyrolysis vapor phase growth method (MOVPE method)
Like GaInP and AlGaInP grown on the surface, the energy gap may be different even if the mixed crystal composition is constant, depending on the growth temperature, the ratio of the group V raw material to the group III raw material (V / III ratio) in the vapor phase, and the disordered doping. (For example, the 1987 Spring 34th Joint Lecture on Applied Physics, Proceedings of the 1st Volume, Lecture Nos. 28p-ZA-4 and 28p-ZA-5 (1987
Year)). That is, when a combination of a certain growth temperature and V / III ratio value is used, the energy gap of GaInP or AlGaInP becomes
Maximum than what is commonly known as the value for mixed crystals
It has been shown to be as small as 50 to 90 meV.

また、上述は(001)面に成長した場合((001)面と
等価な面でも同じ)であるが、(111)面上に成長した
場合にはMOVPE法での成長時の温度あるいはV/III比によ
らず、常に正常値1.9eVをとる。これは、GaInP中のGa−
PとIn−PあるいはAlGaInP中のAl−PとIn−PGa−Pと
In−Pのようにそれぞれの結合長が異なることにより非
混和領域に関連して生じている。従って、AlGaAs中のAl
−AsとGa−Asのように結合長がほぼ等しいものでは顕著
にみられなかった現象である。GaInAsやAlGaInAs、或い
はGaAsSbなどのように、結晶中III族−V族の結合長の
異なるものより構成されているものでは、同様の現象が
おきている。本発明で利用する作用をMOVPE法により成
長したGa0.5In0.5Pを例として説明する。この場合、成
長温度650℃、V/III比を400とすると、エネルギギャッ
プEgの値は1.85eVとなる。これはGa0.5In0.5P混晶の値
として知られている、1.90eVよりも50meV程小さい。こ
の1.85eVのGa0.5In0.5P層の成長と同じ温度、V/III比
で(110)面上に成長した場合、エネルギギャップは1.9
eVの正常値をとる。このことをGa0.5In0.5Pを活性層と
した半導体レーザに適用する。共振器中の中心部をEg〜
1.85eVのGa0.5In0.5Pで形成し、端面を(110)面に成
長したGa0.5In0.5Pでおおうことにより、レーザ光出射
面におけるEgを1.9eV程度とする。Egを大きくした領域
は、レーザゲインには寄与しないので、その領域は必要
最小限に留めることが望ましい。そこで発振閾値の上昇
を低く抑える目的で(110)面への成長層を端面から60
μm以下にとどめる。レーザ発振は1.85eVで決まる値で
おこるため、大きなEgをもつ端面近傍で光吸収が起ら
ず、光損傷や端面劣化を防ぐことができる。またレーザ
ゲインを与える領域は高不純物濃度とする必要がない。
このために、高信頼,高出力の半導体レーザを実現する
ことができる。また、次の実施例でも明らかなように従
来例よりも容易に本構造が実現できるものである。
Also, the above is the case of growing on the (001) plane (the same applies to the plane equivalent to the (001) plane), but when growing on the (111) plane, the temperature at the time of growth by the MOVPE method or V / Regardless of the III ratio, the normal value is always 1.9 eV. This is Ga− in GaInP
P and In-P or Al-P and In-PGa-P in AlGaInP
It occurs in relation to the immiscible region due to the different bond lengths like In-P. Therefore, Al in AlGaAs
This is a phenomenon that was not noticeable in the case where bond lengths are almost equal, such as −As and Ga−As. Similar phenomena occur in GaInAs, AlGaInAs, GaAsSb, and the like, which are composed of different group III-V bond lengths in the crystal. The action used in the present invention will be described by taking Ga 0.5 In 0.5 P grown by the MOVPE method as an example. In this case, when the growth temperature is 650 ° C. and the V / III ratio is 400, the value of energy gap Eg is 1.85 eV. This is about 50 meV smaller than 1.90 eV, which is known as the value of Ga 0.5 In 0.5 P mixed crystal. When grown on the (110) plane at the same temperature and V / III ratio as the growth of this 1.85 eV Ga 0.5 In 0.5 P layer, the energy gap is 1.9.
Take the normal value of eV. This is applied to a semiconductor laser using Ga 0.5 In 0.5 P as an active layer. Eg to the center of the resonator
Eg at the laser light emitting surface is set to about 1.9 eV by forming Ga 0.5 In 0.5 P of 1.85 eV and covering the end face with Ga 0.5 In 0.5 P grown on the (110) plane. Since the region where Eg is increased does not contribute to the laser gain, it is desirable to keep the region to the minimum necessary. Therefore, in order to suppress the rise of the oscillation threshold low, the growth layer on the (110) plane is
Keep below μm. Since laser oscillation occurs at a value determined by 1.85 eV, light absorption does not occur near the end face with large Eg, and it is possible to prevent optical damage and end face deterioration. Further, it is not necessary to make the region for giving the laser gain a high impurity concentration.
Therefore, a highly reliable and high power semiconductor laser can be realized. Further, as is apparent from the next embodiment, this structure can be realized more easily than the conventional example.

〔実施例〕〔Example〕

次に図面を参照して本発明の実施例を説明することに
より、本発明の構成を一層具体的に示す。
Next, the configuration of the present invention will be shown more specifically by explaining the embodiments of the present invention with reference to the drawings.

第1図は本発明の実施例を側面より見た図である。60
0nmで帯を発振するAlGaInP系可視光半導体レーザを例と
して示す。(001)面のn型GaAs基板1上に、MOVPE法に
より、n型(Al0.4Ga0.60.5In0.5Pクラッド層2、Ga
0.5In0.5P活性層3、p型(Al0.4Ga0.60.5In0.5Pク
ラッド層4、P+型GaAsキャップ層5を順次成長する。活
性層3の成長条件は、温度650℃、V/III比を400で、不
純物ドーピングなしで成長する。その後p型電極6はGa
Asコンタクト層5上に、n型電極7は基板1側に形成す
る。共振器全長が、200〜300μmとなる様、劈開し、劈
開面の(110)面あるいは(10)面上に少なくとも活
性層3をおおう様に、Ga0.5In0.5P層8を成長する。こ
の成長面を半導体レーザ光の出射端面9とする。こうし
て得られた半導体レーザは(110)面上に成長したGa0.5
In0.5P層のない半導体レーザと較べて閾値の上昇は5
%以下にとどまり、端面劣化が軽減されるため、信頼性
が飛躍的に向上した。また、端面の光学的破壊を妨げる
ため、最大光出力が数倍向上した。また、この構造をつ
くる場合、(110)面上への成長は、結晶の劈開面を利
用すればよく、(110)面を形成するためにエッチング
等で成形する必要がない。また、レーザゲインを与える
領域に高濃度不純物を導入しないため、その信頼性が高
い。
FIG. 1 is a side view of an embodiment of the present invention. 60
An AlGaInP-based visible light semiconductor laser that oscillates a band at 0 nm is shown as an example. The n-type (Al 0.4 Ga 0.6 ) 0.5 In 0.5 P cladding layer 2 and Ga were formed on the (001) -faced n-type GaAs substrate 1 by MOVPE method.
A 0.5 In 0.5 P active layer 3, a p-type (Al 0.4 Ga 0.6 ) 0.5 In 0.5 P clad layer 4, and a P + -type GaAs cap layer 5 are sequentially grown. The growth conditions of the active layer 3 are a temperature of 650 ° C., a V / III ratio of 400, and growth is performed without impurity doping. After that, the p-type electrode 6 is Ga
The n-type electrode 7 is formed on the substrate 1 side on the As contact layer 5. Cleavage is performed so that the total cavity length is 200 to 300 μm, and the Ga 0.5 In 0.5 P layer 8 is grown so as to cover at least the active layer 3 on the (110) plane or the (10) plane of the cleavage plane. This growth surface is referred to as a semiconductor laser light emitting end surface 9. The semiconductor laser thus obtained has Ga 0.5 grown on the (110) plane.
The threshold rise is 5 compared to a semiconductor laser without In 0.5 P layer
% Or less, and deterioration of the end face is reduced, so that the reliability is dramatically improved. In addition, the maximum optical output was improved several times because the optical destruction of the end face was prevented. Further, in the case of forming this structure, the growth on the (110) plane may utilize the cleavage plane of the crystal, and it is not necessary to form the (110) plane by etching or the like. Further, the high-concentration impurity is not introduced into the region which gives the laser gain, so that the reliability is high.

ここに示した実施例で、p型とn型と逆にしても同様
の効果は得られる。又、他の材料系でも条件を満たして
いれば適用できることはいうまでもない。なお、実施例
では活性層をクラッド層で挟んだ構造について説明した
が、他の積層構造、例えば活性層に隣接して光ガイド層
を設け、この外側にクラッド層を配した積層構造等でも
同様の効果が得られる。また、ファブリペロ共振器型の
レーザ(実施例)でなく、回折格子を備えたDFB,DBR型
のレーザでもよい。ストライプ構造は埋め込み型、プレ
ーナ型等どのようなストライプ構造でも適用できる。
Similar effects can be obtained by reversing the p-type and the n-type in the embodiment shown here. Needless to say, other material systems can be applied as long as the conditions are satisfied. In addition, although the structure in which the active layer is sandwiched by the clad layers is described in the examples, other laminated structures, for example, a laminated structure in which an optical guide layer is provided adjacent to the active layer and the clad layer is arranged outside the same are also the same. The effect of is obtained. Further, a DFB or DBR type laser provided with a diffraction grating may be used instead of the Fabry-Perot resonator type laser (embodiment). As the stripe structure, any stripe structure such as a buried type and a planar type can be applied.

〔発明の効果〕〔The invention's effect〕

この様に、本発明の構造をとることにより、端面の光
吸収による劣化や端面損傷を防ぐことができ、従来より
も高信頼,高出力の半導体レーザを安価で実現できる。
As described above, by adopting the structure of the present invention, it is possible to prevent deterioration and damage to the end surface due to light absorption on the end surface, and it is possible to realize a semiconductor laser with higher reliability and higher output than ever before at a low cost.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の実施例の模式的側面図、第2図は従来
例の模式的側面図である。 1,101……n−GaAs基板、2……n−(Al0.4Ga0.50.5
In0.5Pクラッド層、3……Ga0.5In0.5P活性層、4…
…p−(Al0.5Ga0.60.5In0.5Pクラッド層、5……p+
GaAsキャップ層、6……p型電極、7……n型電極、8
……(110)上Ga0.5In0.5P、9……端面、102,104……
n−Al0.3Ga0.7Asクラッド層、103……n+Al0.06Ga0.94A
s活性層、105……拡散領域。
FIG. 1 is a schematic side view of an embodiment of the present invention, and FIG. 2 is a schematic side view of a conventional example. 1,101 ... n-GaAs substrate, 2 ... n- (Al 0.4 Ga 0.5 ) 0.5
In 0.5 P clad layer, 3 ... Ga 0.5 In 0.5 P active layer, 4 ...
… P- (Al 0.5 Ga 0.6 ) 0.5 In 0.5 P clad layer, 5 …… p +
GaAs cap layer, 6 ... P-type electrode, 7 ... N-type electrode, 8
…… (110) Upper Ga 0.5 In 0.5 P, 9 …… End face, 102,104 ……
n-Al 0.3 Ga 0.7 As clad layer, 103 ... n + Al 0.06 Ga 0.94 A
s Active layer, 105 ... Diffusion region.

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】結晶中でIII族原子とV族原子間の結合長
が互いに異なる3元以上のIII−V化合物混晶で、か
つ、同じ混晶組成のバルクのエネルギギャップよりも小
さいエネルギギャップを有する活性層を含む多層構造
を、(001)面上又は(001)面と等価な面上に備え、光
の出射面となる(110)端面又は(110)面と等価な端面
を備え、前記端面に前記活性層よりもエネルギギャップ
が大きく、かつ、前記活性層と同一組成のIII−V化合
物混晶層を設けたことを特徴とする半導体レーザ。
1. An energy gap of a ternary or more III-V compound mixed crystal having different bond lengths between the group III atom and the group V atom in the crystal and having an energy gap smaller than the bulk energy gap of the same mixed crystal composition. A multi-layered structure including an active layer having a (001) plane or a plane equivalent to the (001) plane, and a (110) end plane or a (110) plane that is a light emission plane, A semiconductor laser, wherein a III-V compound mixed crystal layer having a larger energy gap than that of the active layer and the same composition as that of the active layer is provided on the end face.
JP1034025A 1989-02-13 1989-02-13 Semiconductor laser Expired - Fee Related JP2527024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1034025A JP2527024B2 (en) 1989-02-13 1989-02-13 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1034025A JP2527024B2 (en) 1989-02-13 1989-02-13 Semiconductor laser

Publications (2)

Publication Number Publication Date
JPH02213185A JPH02213185A (en) 1990-08-24
JP2527024B2 true JP2527024B2 (en) 1996-08-21

Family

ID=12402834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1034025A Expired - Fee Related JP2527024B2 (en) 1989-02-13 1989-02-13 Semiconductor laser

Country Status (1)

Country Link
JP (1) JP2527024B2 (en)

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5527474B2 (en) * 1971-12-17 1980-07-21

Also Published As

Publication number Publication date
JPH02213185A (en) 1990-08-24

Similar Documents

Publication Publication Date Title
US7638792B2 (en) Tunnel junction light emitting device
JP3129779B2 (en) Semiconductor laser device
US20010048111A1 (en) Distributed feedback semiconductor laser device
US5556804A (en) Method of manufacturing semiconductor laser
JPH0656906B2 (en) Semiconductor laser device
JPH0732285B2 (en) Semiconductor laser device
US5914496A (en) Radiation emitting semiconductor diode of buried hetero type having confinement region of limited Al content between active layer and at least one inp cladding layer, and method of manufacturing same
JP2758598B2 (en) Semiconductor laser
JP2778454B2 (en) Semiconductor laser
JP2937156B2 (en) Manufacturing method of semiconductor laser
JPH11340559A (en) Semiconductor light-emitting element
JP2527024B2 (en) Semiconductor laser
JPH0654821B2 (en) Semiconductor light emitting element
JP2812273B2 (en) Semiconductor laser
JP2003017813A (en) Semiconductor laser
JP3801410B2 (en) Semiconductor laser device and manufacturing method thereof
JP2001077465A (en) Semiconductor laser and manufacture thereof
JPH1022586A (en) Semiconductor light emitting device
JP2913652B2 (en) Semiconductor laser
JP2624881B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0648742B2 (en) Method for manufacturing semiconductor laser
JP3033333B2 (en) Semiconductor laser device
JP4087020B2 (en) Semiconductor optical device
WO2024105723A1 (en) Multi quantum well structure, semiconductor laser, and method for manufacturing multi quantum well structure
JPH10107369A (en) Semiconductor laser device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees