JPH10107369A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPH10107369A
JPH10107369A JP25788196A JP25788196A JPH10107369A JP H10107369 A JPH10107369 A JP H10107369A JP 25788196 A JP25788196 A JP 25788196A JP 25788196 A JP25788196 A JP 25788196A JP H10107369 A JPH10107369 A JP H10107369A
Authority
JP
Japan
Prior art keywords
layer
active layer
semiconductor laser
laser device
band width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25788196A
Other languages
Japanese (ja)
Other versions
JP3876023B2 (en
Inventor
Akihiro Matsumoto
晃広 松本
Takeshi Obayashi
健 大林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP25788196A priority Critical patent/JP3876023B2/en
Publication of JPH10107369A publication Critical patent/JPH10107369A/en
Application granted granted Critical
Publication of JP3876023B2 publication Critical patent/JP3876023B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a useful semiconductor laser device which has a clad layer that is sufficiently enhanced in forbidden band width, so as to restraind useless current induced by carrier leakage from an active layer into the clad layer and lessen in operating current by a method wherein the clad layer is made to contain Al. SOLUTION: A semiconductor laser device is equipped with a first conductivity-type first clad layer 2, an active layer 5, and a second conductivity- type second clad layer 7 formed on a first conductivity-type GaAs substrate 1, a mesa stripe 9 formed in a region which comprises the active layer 5 and the second clad layer 7, and a first, a second, and a third current stop layer, 10, 11, and 12, provided outside the mesa stripe 9, wherein the active layer 5 is formed of Al-free InGaAsP, and the clad layers 2 and 7 contain Al. A first guide layer 4 and a second guide layer 6 which are smaller than the clad layers 2 and 7 in forbidden band width or a protecting layer 3 smaller than the first clad layer 2 in forbidden band width is provided.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、光ディスク、レー
ザビームプリンタ、光伝送等に用いられる半導体レーザ
素子に関する。
[0001] 1. Field of the Invention [0002] The present invention relates to a semiconductor laser device used for an optical disk, a laser beam printer, an optical transmission and the like.

【0002】[0002]

【従来の技術】光ディスクに用いられる半導体レーザ素
子では、レンズで微小スポットに集光可能なように近赤
外の波長帯(λ=0.75〜0.88μm)が一般的に
用いられる。そのために、GaAs基板上にダブルヘテ
ロ構造から成るAlxGa1-xAs活性層(x=0.01
〜0.20)を形成し、電流及び光閉じ込めのためにス
トライプ構造を用いる。さらに、光ディスク用の半導体
レーザの動作電流を低減するために、活性層を含む領域
にメサストライプを形成し、半導体層で埋め込み成長を
行ってヘテロ接合を形成した、埋め込みヘテロ構造のレ
ーザがこれまでに提案されている。
2. Description of the Related Art In a semiconductor laser device used for an optical disk, a near-infrared wavelength band (.lambda. = 0.75 to 0.88 .mu.m) is generally used so that a light can be focused on a minute spot by a lens. For this purpose, an Al x Ga 1 -x As active layer (x = 0.01) having a double heterostructure is formed on a GaAs substrate.
.0.20), and a stripe structure is used for confining current and light. Furthermore, in order to reduce the operating current of semiconductor lasers for optical discs, buried heterostructure lasers have been used, in which a mesa stripe is formed in the region including the active layer and buried growth is performed in the semiconductor layer to form a heterojunction. Has been proposed.

【0003】図6に埋め込みヘテロ構造のレーザの従来
例を示す。n−GaAs基板1上に、n−AlxGa1-x
As(x=0.3〜0.35)第1クラッド層2、n−
AlxgGa1-xgAs(xg=0.25〜0.3)ガイド
層4、Alx1Ga1-x1As(x1=0.01〜0.0
6)活性層5、p−Alx2Ga1-x2As(x2=0.3
5〜0.4)第2クラッド層7を成長し、活性層5を含
む成長層に基板1まで到達するメサストライプ9を形成
し、メサストライプ9の外部にp−Alx3Ga1-x3As
(x3=0.27〜0.32)第1電流阻止層10、n
−Alx3Ga1-x3As(x3=0.27〜0.32)
第2電流阻止層11の成長を行い、メサストライプ9表
面に選択的にZn拡散層31及びメサストライプ表面以
外にSiO2膜32を形成し、基板1側と成長層表面に
電極14、15を形成する。
FIG. 6 shows a conventional example of a buried heterostructure laser. On an n-GaAs substrate 1, n-Al x Ga 1-x
As (x = 0.3 to 0.35) First cladding layer 2, n−
Al xg Ga 1-xg As (xg = 0.25 to 0.3) guide layer 4, Al x1 Ga 1-x1 As (x1 = 0.01 to 0.0)
6) Active layer 5, p- Alx2Ga1 -x2As (x2 = 0.3
5 to 0.4) is grown a second cladding layer 7, to form a mesa stripe 9 reaching the substrate 1 in the growth layer including an active layer 5, the outside p-Al x3 Ga 1-x3 As the mesa stripe 9
(X3 = 0.27 to 0.32) First current blocking layer 10, n
-Al x3 Ga 1-x 3As (x3 = 0.27 to 0.32)
The second current blocking layer 11 is grown, a Zn diffusion layer 31 is selectively formed on the surface of the mesa stripe 9 and a SiO 2 film 32 is formed on the surface other than the mesa stripe, and electrodes 14 and 15 are formed on the substrate 1 side and the growth layer surface. Form.

【0004】本従来例では発振閾値電流20mAが報告
されている。
In this conventional example, an oscillation threshold current of 20 mA is reported.

【0005】本従来例では、メサ状のストライプ9から
成る活性層5とその外部の埋め込み層10、11のヘテ
ロ接合により、活性層5内部に効率的にキャリヤを閉じ
込めることができる。従って、活性層5の内部に注入さ
れたキャリヤが発光領域外へ拡散することによる、動作
電流の増大を防止することができ、動作電流の低減が可
能となる。
In this conventional example, a carrier can be efficiently confined inside the active layer 5 by the heterojunction of the active layer 5 composed of the mesa-shaped stripe 9 and the buried layers 10 and 11 outside the active layer 5. Therefore, it is possible to prevent an increase in operating current due to diffusion of carriers injected into the active layer 5 to the outside of the light emitting region, and to reduce operating current.

【0006】[0006]

【発明が解決しようとする課題】従来例の半導体レーザ
素子では、GaAs基板1上にAlGaAs活性層5を
含むダブルヘテロ構造を成長し、大気中で活性層5を含
む領域にメサストライプ9を形成する。活性層5にはA
lを含むので、メサ側面の活性層が酸化される。メサス
トライプ9の外部を半導体層で埋めこみ、ダブルへテロ
接合の形成を行なう場合、メサストライプ9側面の活性
層5の酸素の除去が困難であるので、接合界面付近の活
性層5に酸化に起因する非発光再結合準位が形成され
る。この状態で、活性層5にキャリヤ注入を行なってレ
ーザ発振を生じさせると、メサストライプ9側面の活性
層5において、キャリヤが非発光再結合するために、レ
ーザ発振に寄与しない無効電流が発生する。さらに、通
電中にメサストライプ9側面の活性層5に形成された非
発光再結合準位を基点に、結晶欠陥が発生し、無効電流
のさらなる増大が生じる。
In the conventional semiconductor laser device, a double heterostructure including an AlGaAs active layer 5 is grown on a GaAs substrate 1, and a mesa stripe 9 is formed in a region including the active layer 5 in the atmosphere. I do. The active layer 5 has A
The active layer on the side of the mesa is oxidized. When the outside of the mesa stripe 9 is buried with a semiconductor layer to form a double heterojunction, it is difficult to remove oxygen from the active layer 5 on the side surface of the mesa stripe 9. Non-radiative recombination levels are formed. In this state, when carriers are injected into the active layer 5 to cause laser oscillation, the active layer 5 on the side surface of the mesa stripe 9 causes non-radiative recombination of the carriers, thereby generating a reactive current that does not contribute to laser oscillation. . Further, a crystal defect occurs based on the non-radiative recombination level formed in the active layer 5 on the side surface of the mesa stripe 9 during energization, and the reactive current further increases.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
に、本発明の半導体レーザ素子は、第1導電型のGaA
s基板上に、少なくとも第1導電型の第1クラッド層
と、活性層と、第2導電型の第2クラッド層とを有し、
少なくとも前記活性層と第2クラッド層を含む領域がメ
サ状領域からなり、該メサ状領域の外部には電流阻止領
域を備えてなる半導体レーザ素子において、前記活性層
はAlを含まないInGaAsPから成り、前記第1、
第2クラッド層は少なくともAlを含有してなることを
特徴とする。
In order to solve the above-mentioned problems, a semiconductor laser device according to the present invention comprises a first conductivity type GaAs.
On the s substrate, at least a first cladding layer of the first conductivity type, an active layer, and a second cladding layer of the second conductivity type,
At least a region including the active layer and the second cladding layer is formed of a mesa region, and a current blocking region is provided outside the mesa region. In the semiconductor laser device, the active layer is formed of InGaAsP containing no Al. , The first,
The second cladding layer is characterized by containing at least Al.

【0008】また、上記において、前記活性層の両側
に、それぞれ第1、第2クラッド層よりも禁制帯幅の小
さい第1、第2ガイド層を、あるいはさらに、第1クラ
ッド層の上に、第1クラッド層よりも禁制帯幅の小さい
保護層を設けてもよい。
In the above, the first and second guide layers each having a smaller forbidden band width than the first and second cladding layers on both sides of the active layer, or further, on the first cladding layer, A protective layer having a smaller band gap than the first cladding layer may be provided.

【0009】さらに、前記保護層の禁制帯幅は前記活性
層の禁制帯幅に略等しいことが望ましく、また、メサ状
領域の外部の電流阻止領域は少なくも第1電流阻止層
と、該第1電流阻止層の外側に形成される第2電流阻止
層を有してなり、前記第1電流阻止層の禁制帯幅は前記
活性層の禁制帯幅より大きく、前記第2電流阻止層の禁
制帯幅は前記活性層の禁制帯幅より小さいことが望まし
い。
Further, it is desirable that the forbidden band width of the protective layer is substantially equal to the forbidden band width of the active layer, and the current blocking region outside the mesa region is at least the first current blocking layer and the second current blocking layer. A second current blocking layer formed outside the first current blocking layer, wherein the forbidden band width of the first current blocking layer is larger than the forbidden band width of the active layer; The band width is preferably smaller than the forbidden band width of the active layer.

【0010】本発明の半導体レーザ素子は、上記のよう
にGaAs基板上にAlを含有しないInGaAsPか
ら成る活性層を設けることにより、メサストライプ側面
の活性層表面のAlの酸化に起因する無効電流の発生を
抑制でき、動作電流の低減が図れる。同時に、クラッド
層にAlを含有する層とすることにより、クラッド層の
禁制帯幅を充分大きくして、活性層からクラッド層への
漏れ出しに起因する無効電流の発生を抑制できる。
In the semiconductor laser device of the present invention, by providing an active layer made of InGaAsP containing no Al on the GaAs substrate as described above, the reactive current caused by the oxidation of Al on the active layer surface on the side of the mesa stripe is reduced. Generation can be suppressed, and the operating current can be reduced. At the same time, by making the cladding layer a layer containing Al, the forbidden band width of the cladding layer can be made sufficiently large and the generation of reactive current due to leakage from the active layer to the cladding layer can be suppressed.

【0011】さらに、活性層に隣接して、第1、第2ク
ラッド層よりもAl組成比の小さな層、もしくはAlを
含有しない層、すなわちそれぞれのクラッド層より禁制
帯幅の小さなガイド層を設けることにより、メサストラ
イプ側面のガイド層表面のAlの酸化に起因する無効電
流の発生を抑制して、動作電流の低減が図れる。
Further, a layer having a smaller Al composition ratio than the first and second cladding layers or a layer containing no Al, that is, a guide layer having a smaller forbidden band width than the respective cladding layers is provided adjacent to the active layer. Thus, the generation of reactive current due to the oxidation of Al on the surface of the guide layer on the side surface of the mesa stripe is suppressed, and the operating current can be reduced.

【0012】さらに、第1クラッド層よりもAl組成比
の小さな保護層、もしくはAlを含有しない保護層、す
なわち第1クラッド層の上に、第1クラッド層よりも禁
制帯幅の小さい保護層をメサストライプの底面に設ける
と、Alの酸化に起因する無効電流の発生を抑制でき、
動作電流の低減が図れる。
Further, a protective layer having a smaller Al composition ratio than the first clad layer or a protective layer containing no Al, that is, a protective layer having a smaller forbidden band width than the first clad layer is formed on the first clad layer. When provided on the bottom surface of the mesa stripe, generation of reactive current due to oxidation of Al can be suppressed,
The operating current can be reduced.

【0013】また、この保護層はメサストライプの形成
時のエッチング停止層の機能を持たせることができ、メ
サストライプ外部の埋め込み成長層の層厚を精密に制御
でき有用である。
The protective layer can function as an etching stop layer at the time of forming the mesa stripe, and is useful because the thickness of the buried growth layer outside the mesa stripe can be precisely controlled.

【0014】さらに、本発明の半導体レーザ素子におい
て、保護層の禁制帯幅を活性層の禁制帯幅に略等しく設
定することにより、保護層に可飽和吸収層の効果を持た
せることができ、自励発振による戻り光雑音の低減が図
れる。
Further, in the semiconductor laser device of the present invention, by setting the forbidden band width of the protective layer to be substantially equal to the forbidden band width of the active layer, the protective layer can have the effect of the saturable absorbing layer. Return light noise due to self-excited oscillation can be reduced.

【0015】なお、可飽和吸収効果を有する保護層がス
トライプ内部にのみ存在する場合には、光吸収で生成さ
れたキャリヤの飽和により、可飽和吸収効果が低減し
て、自励発振が起こりにくくなる。これに対して、上記
のように可飽和吸収効果を有する保護層をストライプ内
部および外部に存在させると、さらにストライプ内部の
光吸収で生成されたキャリヤが効率よく、ストライプ外
部に拡散することができる。このため、キャリヤの吸収
飽和が生じにくく、自励発振が起こりやすい。また、可
飽和吸収効果を有する保護層がストライプ内部にのみ存
在する場合には、基本横モードの光吸収が増大して、高
次横モードの混在発振が起こる。これに対して、同様
に、上記の可飽和吸収効果を有する保護層をストライプ
内部と外部に存在させると、基本横モードと高次横モー
ドが同時に光吸収の影響を受けるが、ストライプ内部の
活性層の利得が大きいために、基本横モードの選択発振
を起こさせることができる。
When a protective layer having a saturable absorption effect exists only inside the stripe, the saturable absorption effect is reduced due to the saturation of carriers generated by light absorption, and self-excited oscillation is less likely to occur. Become. On the other hand, when the protective layer having the saturable absorption effect is provided inside and outside the stripe as described above, carriers generated by light absorption inside the stripe can be efficiently diffused outside the stripe. . For this reason, carrier absorption saturation is unlikely to occur, and self-sustained pulsation is likely to occur. Further, when the protective layer having the saturable absorption effect exists only inside the stripe, the light absorption of the fundamental transverse mode increases, and mixed oscillation of higher-order transverse modes occurs. On the other hand, when the protective layer having the saturable absorption effect is provided inside and outside the stripe, the fundamental transverse mode and the high-order transverse mode are simultaneously affected by light absorption. Since the gain of the layer is large, selective oscillation of the fundamental transverse mode can be caused.

【0016】さらに、本発明の半導体レーザ素子におい
て、メサストライプの外部の電流阻止領域の第1電流阻
止層の禁制帯幅が活性層の禁制帯幅より大きく、第1電
流阻止層の外部の第2電流阻止層の禁制帯幅が活性層の
禁制帯幅より小さくするとよい。すなわち、一般に基本
横モードと高次横モードを比べると、高次横モードの方
がストライプ外部の拡がりが大きい。そこで、上記のよ
うに構成することによって、高次横モードは基本横モー
ドに比べて、第2電流阻止層における光吸収の影響を受
けやすくなり、したがって、光吸収の少ない基本横モー
ド発振が起こり、実用上重要な基本横モード発振が実現
できる。
Further, in the semiconductor laser device of the present invention, the forbidden band width of the first current blocking layer in the current blocking region outside the mesa stripe is larger than the forbidden band width of the active layer, and (2) The forbidden band width of the current blocking layer is preferably smaller than the forbidden band width of the active layer. That is, in general, when the basic lateral mode is compared with the higher-order lateral mode, the higher-order lateral mode has a larger spread outside the stripe. Therefore, by configuring as described above, the higher-order transverse mode is more susceptible to light absorption in the second current blocking layer than the fundamental transverse mode, and therefore, fundamental transverse mode oscillation with less light absorption occurs. Thus, fundamental transverse mode oscillation which is practically important can be realized.

【0017】[0017]

【発明の実施の態様】以下、本発明の実施例を説明す
る。
Embodiments of the present invention will be described below.

【0018】実施例1 図1に実施例1の半導体レーザ素子の断面図を示す。Embodiment 1 FIG. 1 shows a sectional view of a semiconductor laser device of Embodiment 1.

【0019】p−GaAs基板1上に、p−Al0.6
0.4As第1クラッド層2(層厚1.2μm)、p−G
aAs保護層3(層厚0.007μm)、アンドープI
0.48Ga0.52P第1ガイド層4(層厚0.01μ
m)、アンドープIn0.35Ga0.65As0.400.60歪量
子井戸活性層5(層厚0.005μm)、アンドープI
0.48Ga0.52P第2ガイド層6(層厚0.01μ
m)、n−Al0.6Ga0.4As第2クラッド層7(層厚
1.2μm)、n−GaAsキャップ層8(層厚0.1
μm)、を順次有機金属気相成長法(MOCVD法)に
より成長し、選択エッチングによりp−GaAs保護層
3表面でエッチングを停止させて、メサストライプ9
(底幅1μm)を形成する。
On a p-GaAs substrate 1, p-Al 0.6 G
a 0.4 As first clad layer 2 (layer thickness 1.2 μm), p-G
aAs protective layer 3 (layer thickness 0.007 μm), undoped I
n 0.48 Ga 0.52 P first guide layer 4 (layer thickness 0.01 μm)
m), undoped In 0.35 Ga 0.65 As 0.40 P 0.60 strained quantum well active layer 5 (layer thickness 0.005 μm), undoped I
n 0.48 Ga 0.52 P second guide layer 6 (layer thickness 0.01 μm)
m), n-Al 0.6 Ga 0.4 As second cladding layer 7 (layer thickness 1.2 μm), n-GaAs cap layer 8 (layer thickness 0.1
.mu.m) are sequentially grown by metal organic chemical vapor deposition (MOCVD), and the etching is stopped on the surface of the p-GaAs protective layer 3 by selective etching.
(1 μm bottom width).

【0020】メサストライプ9の外側を埋め込むよう
に、n−Al0.6Ga0.4As第1電流阻止層10(層厚
0.2μm)、p−GaAs第2電流阻止層11(層厚
0.6μm)、n−GaAs第3電流阻止層12(層厚
0.5μm)を順次、MOCVD法により成長する。
The n-Al 0.6 Ga 0.4 As first current blocking layer 10 (layer thickness: 0.2 μm) and the p-GaAs second current blocking layer 11 (layer thickness: 0.6 μm) are buried outside the mesa stripe 9. , N-GaAs third current blocking layer 12 (layer thickness 0.5 μm) is sequentially grown by MOCVD.

【0021】n−GaAsキャップ層8、n−GaAs
第3電流阻止層12を埋め込むように、n−GaAsコ
ンタクト層13(層厚2μm)をMOCVD法により成
長する。
N-GaAs cap layer 8, n-GaAs
An n-GaAs contact layer 13 (2 μm thick) is grown by MOCVD so as to bury the third current blocking layer 12.

【0022】p−GaAs基板1表面とn−GaAsコ
ンタクト層13表面にp型電極14とn型電極15を形
成する。共振器長を100μmに調整し、共振器端面の
光出射側端面の反射率が30%、後側の反射率が65%
となるようにAl23膜とSi膜を形成する。
On the surface of the p-GaAs substrate 1 and the surface of the n-GaAs contact layer 13, a p-type electrode 14 and an n-type electrode 15 are formed. The cavity length was adjusted to 100 μm, the reflectivity at the end face of the cavity on the light emission side was 30%, and the reflectivity at the rear side was 65%.
An Al 2 O 3 film and a Si film are formed so that

【0023】本実施例の素子で、p型電極14とn型電
極15の間に順方向電圧を印加した場合、発振波長0.
78μm、閾値電流0.5mA、電流−光出力特性のス
ロープ効率1.0W/A、光出力3mWの動作電流は
3.5mAである。雰囲気温度70℃、一定光出力3m
Wにおける動作電流の変化を調べると、動作電流が初期
の20%増大する走行時間は10000時間以上であ
る。また、本実施例の素子の放射光は、pn接合に平行
方向の放射角25度、垂直方向の放射角25度の単峰の
円形ビームであり、基本横モード動作が実現できてい
る。さらに、本実施例の素子の戻り光雑音は光ディスク
装置に必要とされる基準、すなわち−130dB/Hz
以下であり、光ディスク装置に十分適用可能である。
In the device of this embodiment, when a forward voltage is applied between the p-type electrode 14 and the n-type electrode 15, the oscillation wavelength is 0.1 mm.
The operating current of 78 μm, the threshold current of 0.5 mA, the slope efficiency of the current-light output characteristics of 1.0 W / A, and the light output of 3 mW is 3.5 mA. Ambient temperature 70 ° C, constant light output 3m
Examining the change in the operating current at W, the running time at which the operating current increases by 20% in the initial stage is 10,000 hours or more. The emitted light of the element of this embodiment is a single-peak circular beam having a radiation angle of 25 degrees in the direction parallel to the pn junction and a radiation angle of 25 degrees in the vertical direction, and the fundamental transverse mode operation can be realized. Further, the return light noise of the element of this embodiment is a reference required for the optical disk device, that is, -130 dB / Hz.
The following is sufficiently applicable to an optical disk device.

【0024】以上のような構成からなり、本実施例の素
子において、p−GaAs基板1上にGaAsと格子整
合するInGaAsP活性層5を形成し、活性層5の組
成比を調整することにより、発振波長0.78μmを得
る。また、クラッド層2、7に少なくともAlを含有す
る活性層5より禁制帯幅が300meV以上大きなAl
GaAsを用いるために、活性層5からクラッド層2、
7へのキャリヤリークによる無効電流の発生を抑制でき
る。
In the device according to the present embodiment, the InGaAsP active layer 5 lattice-matched to GaAs is formed on the p-GaAs substrate 1 and the composition ratio of the active layer 5 is adjusted. An oscillation wavelength of 0.78 μm is obtained. Further, the cladding layers 2 and 7 have an Al band gap that is at least 300 meV or more larger than that of the active layer 5 containing Al.
In order to use GaAs, the active layer 5 to the cladding layer 2,
7 can be suppressed from generating a reactive current due to carrier leakage.

【0025】本実施例の素子では、メサストライプ9の
側面のInGaAsP活性層5、InGaP第1ガイド
層4、InGaP第2ガイド層6、さらにメサストライ
プ9の底面のp−GaAs保護層3は全てAlを含有し
ない半導体層により形成されている。そこで、大気中で
メサストライプ9の形成を行う場合、Alに起因した酸
化、即ちAlと酸素との結合を抑制することができる。
各層のAl以外の構成元素はGa、As、In、Pであ
り、大気中の酸素と結合が起こるが、その結合はAlに
比べて格段に弱く実際上全く影響がない。
In the device of this embodiment, the InGaAsP active layer 5, the InGaP first guide layer 4, the InGaP second guide layer 6, and the p-GaAs protective layer 3 on the bottom of the mesa stripe 9 are all on the side of the mesa stripe 9. It is formed of a semiconductor layer containing no Al. Therefore, when the mesa stripe 9 is formed in the atmosphere, the oxidation caused by Al, that is, the bond between Al and oxygen can be suppressed.
The constituent elements other than Al in each layer are Ga, As, In, and P, and bond with oxygen in the atmosphere occurs. However, the bond is much weaker than Al and has no practical effect.

【0026】また、本実施例のInGaAsP活性層5
の場合、従来のAlGaAs活性層に比べて、メサスト
ライプ側面の再成長界面あるいは端面反射膜との界面に
おけるInGaAsP活性層内部のフェルミ準位のピン
ニングが生じにくいために、キャリヤの表面再結合が抑
制され、無効電流抑制に伴う動作電流の低減及び信頼性
の向上が可能となる。
Further, the InGaAsP active layer 5 of this embodiment
In this case, pinning of the Fermi level inside the InGaAsP active layer at the regrowth interface on the side of the mesa stripe or at the interface with the end face reflection film is less likely to occur than in the conventional AlGaAs active layer, so that carrier recombination is suppressed. As a result, it is possible to reduce the operating current and improve the reliability accompanying the suppression of the reactive current.

【0027】さらに、本実施例の素子では、保護層3の
禁制帯幅が活性層5の禁制帯幅と略等しく設定してい
る。したがって、本実施例では、保護層3が可飽和吸収
効果を有するために、自励発振が起こり、戻り光雑音を
低減できる。また、保護層3がストライプ9内部および
外部に存在するため、ストライプ9内部の光吸収で生成
されたキャリヤが効率よくストライプ9の外部に拡散す
る。このため、保護層3においてキャリヤの吸収飽和が
生じにくく、光出力の増大に対して自励発振が起こりや
すくなり、低雑音特性が実現できる。さらに、本実施例
の素子では、可飽和吸収効果を有する保護層3がメサス
トライプ9の内部と外部に存在するために、基本横モー
ドと高次横モードが同時に光吸収の影響を受けるが、ス
トライプ内部の活性層の利得が大きいために、基本横モ
ードの選択発振が可能となる。
Further, in the device of this embodiment, the forbidden band width of the protective layer 3 is set substantially equal to the forbidden band width of the active layer 5. Therefore, in the present embodiment, since the protective layer 3 has a saturable absorption effect, self-pulsation occurs and return light noise can be reduced. In addition, since the protective layer 3 exists inside and outside the stripe 9, carriers generated by light absorption inside the stripe 9 are efficiently diffused outside the stripe 9. For this reason, carrier absorption saturation is unlikely to occur in the protective layer 3, self-sustained pulsation is likely to occur with an increase in optical output, and low noise characteristics can be realized. Furthermore, in the device of the present embodiment, since the protective layer 3 having the saturable absorption effect exists inside and outside the mesa stripe 9, the fundamental transverse mode and the higher-order transverse mode are simultaneously affected by light absorption. Since the gain of the active layer inside the stripe is large, selective oscillation in the fundamental transverse mode is possible.

【0028】さらに、本実施例の素子では、メサストラ
イプ9の外部の電流阻止領域の第1電流阻止層10の禁
制帯幅が活性層5の禁制帯幅より大きく、第1電流阻止
層10の外部の第2電流阻止層11の禁制帯幅が活性層
5の禁制帯幅より小さい。基本横モードと高次横モード
を比べると、高次横モードの方がストライプ9外部への
拡がりが大きく、高次横モードは基本横モードに比べて
第2電流阻止層11における光吸収の影響を受けやすく
なる。したがって、光吸収の少ない基本横モード発振が
起き、実用上重要な基本横モード発振が実現できる。
Further, in the device according to the present embodiment, the forbidden band width of the first current blocking layer 10 in the current blocking region outside the mesa stripe 9 is larger than the forbidden band width of the active layer 5. The forbidden band width of the external second current blocking layer 11 is smaller than the forbidden band width of active layer 5. Comparing the basic transverse mode and the higher-order transverse mode, the higher-order transverse mode has a larger spread to the outside of the stripe 9, and the higher-order transverse mode is more affected by light absorption in the second current blocking layer 11 than the fundamental transverse mode. More easily. Therefore, the fundamental transverse mode oscillation with little light absorption occurs, and the fundamental transverse mode oscillation that is practically important can be realized.

【0029】実施例2 図2に実施例2の半導体レーザ素子の断面図を示す。Embodiment 2 FIG. 2 shows a sectional view of a semiconductor laser device of Embodiment 2.

【0030】n−GaAs基板1上に、n−(Al0.5
Ga0.50.5In0.5P第1クラッド層2(層厚1.2
μm)、アンドープIn0.23Ga0.77As0.570.43
性層5(層厚0.07μm)、p−(Al0.5Ga0.5
0.5In0.5P第2クラッド層7(層厚1.2μm)、p
−GaAsキャップ層8(層厚0.7μm)を順次、分
子線エピタキシャル成長法(MBE法)により成長し、
選択エッチングによりInGaAsP活性層5表面でエ
ッチングを停止させて、幅2μmのメサストライプ9を
形成する。
On an n-GaAs substrate 1, n- (Al 0.5
Ga 0.5 ) 0.5 In 0.5 P first cladding layer 2 (layer thickness 1.2
μm), undoped In 0.23 Ga 0.77 As 0.57 P 0.43 active layer 5 (layer thickness 0.07 μm), p- (Al 0.5 Ga 0.5 )
0.5 In 0.5 P second cladding layer 7 (layer thickness 1.2 μm), p
A GaAs cap layer 8 (layer thickness 0.7 μm) is sequentially grown by molecular beam epitaxy (MBE),
The etching is stopped on the surface of the InGaAsP active layer 5 by the selective etching, and a mesa stripe 9 having a width of 2 μm is formed.

【0031】メサストライプ9の外側を埋め込むよう
に、p−(Al0.4Ga0.60.5In0 .5P第1電流阻止
層10(層厚0.6μm)、n−GaAs第2電流阻止
層11(層厚0.6μm)、p−GaAs第3電流阻止
層12(層厚0.7μm)を順次、MOCVD法により
成長する。p−GaAsキャップ層8とp−GaAs第
3電流阻止層12の表面にp−GaAsコンタクト層1
3をMOCVD法により成長する。n−GaAs基板1
表面とp−GaAsコンタクト層13表面にn型電極1
4とp型電極15を形成する。へき開法により共振器長
を200μmに調整し、共振器端面の反射率が30%と
なるようにAl23膜を形成する。
[0031] so as to bury the outer mesa stripe 9, p- (Al 0.4 Ga 0.6 ) 0.5 In 0 .5 P first current blocking layer 10 (thickness 0.6μm), n-GaAs second current blocking layer 11 (Thickness: 0.6 μm) and a p-GaAs third current blocking layer 12 (thickness: 0.7 μm) are sequentially grown by MOCVD. The p-GaAs contact layer 1 is formed on the surfaces of the p-GaAs cap layer 8 and the p-GaAs third current blocking layer 12.
3 is grown by MOCVD. n-GaAs substrate 1
N-type electrode 1 on the surface and p-GaAs contact layer 13
4 and a p-type electrode 15 are formed. The cavity length is adjusted to 200 μm by a cleavage method, and an Al 2 O 3 film is formed so that the reflectance of the cavity end face becomes 30%.

【0032】本実施例の素子で、n型電極14とp型電
極15の間に順方向電圧を印加した場合、発振波長0.
78μm、閾値電流2mA、電流−光出力特性のスロー
プ効率0.6W/A、光出力3mWの動作電流は6.5
mAである。雰囲気温度80℃、一定光出力3mWにお
ける動作電流の変化を調べると、動作電流が初期の20
%増大する走行時間は10000時間以上である。ま
た、本実施例の素子の放射光は、pn接合に平行方向の
放射角15度、垂直方向の放射角25度である。本実施
例の素子では、メサストライプ9の側面のInGaAs
P活性層5はAlを含有しない半導体層により形成され
ている。そこで、メサストライプ9の形成を行う場合、
Alに起因した大気中の酸化、即ちAlと酸素との結合
を抑制することができる。活性層のAl以外の構成元素
はGa、As、In、Pであり、前記と同様の理由によ
り、メサストライプ9側面のInGaAsP活性層5の
再成長界面には、酸化による非発光再結合準位が非常に
少なくできる。
In the device of this embodiment, when a forward voltage is applied between the n-type electrode 14 and the p-type electrode 15, the oscillation wavelength is 0.1 μm.
The operating current is 78 μm, the threshold current is 2 mA, the slope efficiency of the current-light output characteristic is 0.6 W / A, and the light output is 3 mW.
mA. Examining the change in operating current at an ambient temperature of 80 ° C. and a constant light output of 3 mW,
The increase in running time by more than 10000 hours. The emitted light of the device of this embodiment has a radiation angle of 15 degrees in the direction parallel to the pn junction and a radiation angle of 25 degrees in the vertical direction. In the device of this embodiment, InGaAs on the side of the mesa stripe 9 is used.
The P active layer 5 is formed of a semiconductor layer containing no Al. Therefore, when forming the mesa stripe 9,
Oxidation in the air due to Al, that is, bonding between Al and oxygen can be suppressed. The constituent elements other than Al of the active layer are Ga, As, In, and P. For the same reason as described above, the non-radiative recombination level due to oxidation is provided at the regrowth interface of the InGaAsP active layer 5 on the side surface of the mesa stripe 9. Can be very small.

【0033】また、第1、第2クラッド層2、7は(A
0.5Ga0.50.5In0.5PでAlを含有し、活性層5
とのバンドギャップの差が非常に大きく、活性層5から
クラッド層2、7へのキャリヤリークの漏れ出しを十分
にを抑制し、メサストライプ9側面の活性層5における
キャリヤの非発光再結合による無効電流および結晶欠陥
発生による信頼性の悪化を抑制することができ、低電流
特性が得られる。
The first and second cladding layers 2 and 7 are (A
l 0.5 Ga 0.5 ) 0.5 In 0.5 P containing Al and the active layer 5
The band gap between the active layer 5 and the cladding layers 2 and 7 is sufficiently suppressed to prevent carrier leakage from the active layer 5, and non-radiative recombination of carriers in the active layer 5 on the side of the mesa stripe 9. Deterioration of reliability due to reactive current and generation of crystal defects can be suppressed, and low current characteristics can be obtained.

【0034】実施例3 図3に実施例3の半導体レーザ素子の断面図を示す。Third Embodiment FIG. 3 is a sectional view of a semiconductor laser device according to a third embodiment.

【0035】p−GaAs基板1上に、p−Al0.5
0.5As第1クラッド層2(層厚2.0μm)、n−I
0.60Ga0.40As0.180.82保護層3(層厚0.02
μm)、アンドープAl0.25Ga0.75As第1ガイド層
4(層厚0.01μm)、アンドープIn0.35Ga0.65
As0.400.60ウエル層(層厚0.01μm、3層)と
アンドープIn0.48Ga0.52Pバリア層(層厚0.00
7μm、2層)を交互に配置してなる歪多重量子井戸活
性層5、アンドープAl0.25Ga0.75As第2ガイド層
6、n−Al0.5Ga0.5As第2クラッド層7(層厚
1.5μm)、p−GaAsコンタクト層13(層厚
0.1μm)、を順次MOCVD法により成長し、選択
エッチングによりn−InGaAsP保護層3表面でエ
ッチングを停止させて、幅3μmのメサストライプ9
(底幅1μm)を形成する。
On a p-GaAs substrate 1, p-Al 0.5 G
a 0.5 As first cladding layer 2 (layer thickness 2.0 μm), n−I
n 0.60 Ga 0.40 As 0.18 P 0.82 protective layer 3 (layer thickness 0.02
μm), undoped Al 0.25 Ga 0.75 As first guide layer 4 (layer thickness 0.01 μm), undoped In 0.35 Ga 0.65
As 0.40 P 0.60 well layer (thickness 0.01 μm, 3 layers) and undoped In 0.48 Ga 0.52 P barrier layer (thickness 0.00
7 μm, two layers) are alternately arranged, the strained multiple quantum well active layer 5, the undoped Al 0.25 Ga 0.75 As second guide layer 6, and the n-Al 0.5 Ga 0.5 As second clad layer 7 (layer thickness 1.5 μm) ), A p-GaAs contact layer 13 (layer thickness 0.1 μm) is sequentially grown by MOCVD, and the etching is stopped on the surface of the n-InGaAsP protective layer 3 by selective etching to form a mesa stripe 9 having a width of 3 μm.
(1 μm bottom width).

【0036】メサストライプ9の外側に酸素ドープの高
抵抗AlInP層21及びp−GaAs平坦化層22を
選択的埋め込み成長する。p−GaAs基板1表面とn
−GaAsコンタクト層13表面及びp-GaAs平坦
化層22表面にp型電極14とn型電極15を形成す
る。へき開法により共振器長を375μmに調整し、光
出射側の共振器端面の反射率を12%、反対側の反射率
を75%となるようにAl23膜及びSi膜を形成す
る。
An oxygen-doped high-resistance AlInP layer 21 and a p-GaAs planarization layer 22 are selectively buried and grown outside the mesa stripe 9. p-GaAs substrate 1 surface and n
Forming a p-type electrode 14 and an n-type electrode 15 on the surface of the GaAs contact layer 13 and the surface of the p-GaAs planarization layer 22; The cavity length is adjusted to 375 μm by the cleavage method, and the Al 2 O 3 film and the Si film are formed so that the reflectance of the cavity end face on the light emission side is 12% and the reflectance on the opposite side is 75%.

【0037】本実施例の素子で、p型電極14とn型電
極15の間に順方向電圧を印加した場合、発振波長0.
78μm、閾値電流5mA、電流−光出力特性のスロー
プ効率1.0W/A、光出力35mWの動作電流は40
mAである。雰囲気温度70℃、一定光出力35mWに
おける動作電流の変化を調べると、動作電流が初期の2
0%増大する走行時間は5000時間以上である。ま
た、本実施例の素子の放射光は、pn接合に平行方向の
放射角12度、垂直方向の放射角24度である。本実施
例は電流阻領域を酸素ドープの高抵抗AlInP層21
及びp−GaAs平坦化層22により構成している点で
特色があるものであるが、本実施例の素子でも、実施例
1と全く同様の作用および効果を得ることができる。
In the device of this embodiment, when a forward voltage is applied between the p-type electrode 14 and the n-type electrode 15, the oscillation wavelength is 0.1 μm.
78 μm, threshold current 5 mA, slope efficiency of current-light output characteristics of 1.0 W / A, light output 35 mW, operating current is 40
mA. Examination of the change in operating current at an ambient temperature of 70 ° C. and a constant light output of 35 mW reveals that the operating current is the initial 2
The 0% increase in running time is more than 5000 hours. The emitted light of the device of this embodiment has a radiation angle of 12 degrees in the direction parallel to the pn junction and a radiation angle of 24 degrees in the vertical direction. In this embodiment, the current blocking region is formed of an oxygen-doped high-resistance AlInP layer 21.
Although it has a feature in that it is constituted by the p-GaAs flattening layer 22, the same operation and effect as in the first embodiment can be obtained also in the device of the present embodiment.

【0038】実施例4 図4に実施例4の半導体レーザ素子の断面図を示す。Fourth Embodiment FIG. 4 is a sectional view of a semiconductor laser device according to a fourth embodiment.

【0039】n-GaAs基板1上に、n−Al0.5Ga
0.5As第1クラッド層2(層厚1.2μm)、n−I
nGaP保護層3(層厚0.01μm)、アンドープI
0.60Ga0.40As0.180.82第1ガイド層4(層厚
0.02μm)、アンドープIn0.52Ga0.48As0.22
0.78歪量子井戸活性層5、アンドープIn0.60Ga
0.4As0.180.82第2ガイド層6(層厚0.02μ
m)、n−Al0.5Ga0.5As第2クラッド層7(層厚
1.2μm)、p−GaAsキャップ層8(層厚0.1
μm)、を順次、ガスソースMBE法により成長し、選
択エッチングによりn−InGaP保護層3表面でエッ
チングを停止させて、幅2μmのメサストライプ9を形
成する。
On an n-GaAs substrate 1, n-Al 0.5 Ga
0.5 As first cladding layer 2 (layer thickness 1.2 μm), n-I
nGaP protective layer 3 (layer thickness 0.01 μm), undoped I
n 0.60 Ga 0.40 As 0.18 P 0.82 First guide layer 4 (layer thickness 0.02 μm), undoped In 0.52 Ga 0.48 As 0.22
P 0.78 strained quantum well active layer 5, undoped In 0.60 Ga
0.4 As 0.18 P 0.82 Second guide layer 6 (layer thickness 0.02μ)
m), n-Al 0.5 Ga 0.5 As second cladding layer 7 (layer thickness 1.2 μm), p-GaAs cap layer 8 (layer thickness 0.1
) are sequentially grown by the gas source MBE method, and the etching is stopped on the surface of the n-InGaP protective layer 3 by selective etching, thereby forming a 2 μm-wide mesa stripe 9.

【0040】メサストライプ9の外側に電流阻止のため
にSiN誘電体23、表面平坦化のためのポリイミド埋
め込み層24を形成する。
Outside the mesa stripe 9, a SiN dielectric 23 for blocking current and a polyimide burying layer 24 for flattening the surface are formed.

【0041】n−GaAs基板1表面とp−GaAsキ
ャップ層8表面にn型電極14とp型電極15を形成す
る。共振器長を150μmに調整し、共振器端面の反射
率が30%となるようにAl23膜を形成する。
An n-type electrode 14 and a p-type electrode 15 are formed on the surface of the n-GaAs substrate 1 and the surface of the p-GaAs cap layer 8. The resonator length is adjusted to 150 μm, and an Al 2 O 3 film is formed so that the reflectance of the resonator end face becomes 30%.

【0042】本実施例の素子で、n型電極14とp型電
極15の間に順方向電圧を印加した場合、発振波長0.
78μm、閾値電流1.0mA、電流−光出力特性のス
ロープ効率0.6W/A、光出力3mWの動作電流は
6.0mAである。雰囲気温度70℃、一定光出力3m
Wにおける動作電流の変化を調べると、動作電流が初期
の20%増大する走行時間は10000時間以上であ
る。また、本実施例の素子の放射光は、pn接合に平行
方向の放射角15度、垂直方向の放射角25度である。
In the device of this embodiment, when a forward voltage is applied between the n-type electrode 14 and the p-type electrode 15, the oscillation wavelength is 0.1 μm.
The operating current at 78 μm, threshold current of 1.0 mA, slope efficiency of current-light output characteristics of 0.6 W / A, and light output of 3 mW is 6.0 mA. Ambient temperature 70 ° C, constant light output 3m
Examining the change in the operating current at W, the running time at which the operating current increases by 20% in the initial stage is 10,000 hours or more. The emitted light of the device of this embodiment has a radiation angle of 15 degrees in the direction parallel to the pn junction and a radiation angle of 25 degrees in the vertical direction.

【0043】本実施例の素子は、電流阻止領域部分での
作用、効果が異なるだけで、他は実施例1と同様であ
る。なお、本実施例の素子は1回の結晶成長により作製
できる利点がある。従って、電流阻止層形成のために結
晶成長を行うことに起因するドーパントの再拡散を抑制
でき、再拡散に起因した無効電流の発生を抑制すること
ができる。
The element of this embodiment is the same as that of the first embodiment except for the operation and effect in the current blocking region. The element of this embodiment has an advantage that it can be manufactured by one crystal growth. Therefore, re-diffusion of the dopant due to crystal growth for forming the current blocking layer can be suppressed, and generation of reactive current due to the re-diffusion can be suppressed.

【0044】実施例5 図5に実施例5の半導体レーザ素子の断面図を示す。Fifth Embodiment FIG. 5 shows a sectional view of a semiconductor laser device of a fifth embodiment.

【0045】p−GaAs基板1上に、p−Al0.5
0.5As第1クラッド層2(層厚0.6μm)、p−
Al0.14Ga0.86As保護層3(層厚0.2μm)、p
−In0.5Ga0.5P第1ガイド層4(層厚0.6μ
m)、アンドープIn0.25Ga0.75As0.50P0.50
性層5(層厚0.05μm)、n−Al0.5Ga0.5As
第2クラッド層7(層厚1.2μm)、p−GaAsキ
ャップ層8(層厚0.2μm)、を順次、MOCVD法
により成長し、選択エッチングによりp−AlGaAs
保護層3表面でエッチングを停止させて、メサストライ
プ9(底幅1μm)を形成する。
On a p-GaAs substrate 1, p-Al 0.5 G
a 0.5 As first cladding layer 2 (layer thickness 0.6 μm), p-
Al 0.14 Ga 0.86 As protective layer 3 (layer thickness 0.2 μm), p
-In 0.5 Ga 0.5 P first guide layer 4 (layer thickness 0.6 μm)
m), an undoped In 0.25 Ga 0.75 As 0.5 0P 0.50 active layer 5 (thickness 0.05μm), n-Al 0.5 Ga 0.5 As
A second cladding layer 7 (layer thickness 1.2 μm) and a p-GaAs cap layer 8 (layer thickness 0.2 μm) are sequentially grown by MOCVD, and p-AlGaAs is selectively etched.
The etching is stopped on the surface of the protective layer 3 to form a mesa stripe 9 (bottom width 1 μm).

【0046】メサストライプ9の外側を埋め込むよう
に、n−Al0.6Ga0.4As第1電流阻止層10(層厚
0.2μm)、p−GaAs第2電流阻止層11(層厚
0.6μm)、n−GaAs第3電流阻止層12(層厚
0.5μm)を順次、MOCVD法により成長する。n
−GaAsキャップ層8、n−GaAs第3電流阻止層
12を埋め込むように、n−GaAsコンタクト層13
(層厚2μm)をMOCVD法により成長する。p−G
aAs基板1表面とn−GaAsコンタクト層13表面
にn型電極14とp型電極15を形成する。共振器長を
200μmに調整し、共振器端面の反射率が65%とな
るようにAl23膜とSiを形成する。
The n-Al 0.6 Ga 0.4 As first current blocking layer 10 (layer thickness 0.2 μm) and the p-GaAs second current blocking layer 11 (layer thickness 0.6 μm) are buried outside the mesa stripe 9. , N-GaAs third current blocking layer 12 (layer thickness 0.5 μm) is sequentially grown by MOCVD. n
N-GaAs contact layer 13 so as to bury GaAs cap layer 8 and n-GaAs third current blocking layer 12
(Layer thickness 2 μm) is grown by MOCVD. p-G
An n-type electrode 14 and a p-type electrode 15 are formed on the surface of the aAs substrate 1 and the surface of the n-GaAs contact layer 13. The resonator length is adjusted to 200 μm, and an Al 2 O 3 film and Si are formed so that the reflectance of the resonator end face becomes 65%.

【0047】本実施例の素子は、n型電極14とp型電
極15の間に順方向電圧を印加した場合、発振波長0.
78μm、閾値電流1.0mA、電流−光出力特性のス
ロープ効率0.8W/A、光出力3mWの動作電流は
4.8mAである。雰囲気温度70℃、一定光出力3m
Wにおける動作電流の変化を調べると、動作電流が初期
の20%増大する走行時間は10000時間以上であ
る。また、本実施例の素子の放射光は、pn接合に平行
方向の放射角15度、垂直方向の放射角25度である。
In the device of this embodiment, when a forward voltage is applied between the n-type electrode 14 and the p-type electrode 15, the oscillation wavelength is 0.1 mm.
The operating current at 78 μm, threshold current of 1.0 mA, slope efficiency of current-light output characteristics of 0.8 W / A, and light output of 3 mW is 4.8 mA. Ambient temperature 70 ° C, constant light output 3m
Examining the change in the operating current at W, the running time at which the operating current increases by 20% in the initial stage is 10,000 hours or more. The emitted light of the device of this embodiment has a radiation angle of 15 degrees in the direction parallel to the pn junction and a radiation angle of 25 degrees in the vertical direction.

【0048】本実施例の素子では、保護層3にAlを含
有する場合であるが、Al組成比が0.12〜0.16
であれば、大気中の酸素の度合いが少ないので、無効電
流の発生を抑制できるという効果になんら支障はない。
In the device of this embodiment, the protective layer 3 contains Al, but the Al composition ratio is 0.12 to 0.16.
Then, since the degree of oxygen in the atmosphere is small, there is no hindrance to the effect that the generation of the reactive current can be suppressed.

【0049】なお、本実施例の素子では、保護層3の禁
制帯幅が活性層の禁制帯幅5と略等しく、実施例1と同
様に、保護層3が過飽和吸収効果を有するために、自励
発振が起こり、戻り光雑音を低減できる。
In the device according to the present embodiment, the forbidden band width of the protective layer 3 is substantially equal to the forbidden band width 5 of the active layer, and similarly to the first embodiment, the protective layer 3 has a saturable absorption effect. Self-sustained pulsation occurs and return optical noise can be reduced.

【0050】なお、本発明は、以上述べた実施例に限定
されるものではなく、実施例以外の層厚、Al組成比、
キャリア濃度においても、本発明の効果を有する限り適
用可能である。また、成長法については、MOCVD法
及びMBE法、ガスソースMBE法以外に、LPE法、
ALE(原子線エピタキシー)法においても、本発明の
効果を有する限り適用可能である。また、本発明はメサ
ストライプの場合について述べたが、それ以外に円形の
メサ状領域を有し、表面からレーザ光を出射する面発光
レーザの場合にも適用可能である。
It should be noted that the present invention is not limited to the embodiments described above, but includes layer thicknesses, Al composition ratios,
The present invention can be applied to the carrier concentration as long as the effects of the present invention are obtained. As for the growth method, in addition to the MOCVD method, the MBE method, and the gas source MBE method, the LPE method,
The ALE (atomic beam epitaxy) method is also applicable as long as the effects of the present invention are obtained. Although the present invention has been described with reference to a mesa stripe, the present invention is also applicable to a surface emitting laser having a circular mesa-shaped region and emitting laser light from the surface.

【0051】[0051]

【発明の効果】本発明の半導体レーザ素子は、GaAs
基板上にAlを含有しないInGaAsPから成る活性
層を設けることにより、メサストライプ側面の活性層表
面のAlの酸化に起因する無効電流発生を抑制でき、動
作電流の低減が図れる。同時に、本発明の半導体レーザ
素子では、クラッド層にAlを含有することにより、ク
ラッド層の禁制帯幅を十分大きくして、活性層からクラ
ッド層へのキャリヤの漏れだしに起因する無効電流発生
を抑制でき、動作電流の低減が図れる有用な半導体レー
ザ素子が提供できる。
According to the present invention, the semiconductor laser device is made of GaAs.
By providing an active layer made of InGaAsP that does not contain Al on the substrate, generation of reactive current due to oxidation of Al on the surface of the active layer on the side surface of the mesa stripe can be suppressed, and the operating current can be reduced. At the same time, in the semiconductor laser device of the present invention, by containing Al in the cladding layer, the forbidden band width of the cladding layer is made sufficiently large, and reactive current generation due to leakage of carriers from the active layer to the cladding layer is reduced. It is possible to provide a useful semiconductor laser device capable of suppressing the operation current and reducing the operating current.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1に係る半導体レーザ素子の断
面図である。
FIG. 1 is a sectional view of a semiconductor laser device according to Example 1 of the present invention.

【図2】本発明の実施例2に係る半導体レーザ素子の断
面図である。
FIG. 2 is a sectional view of a semiconductor laser device according to a second embodiment of the present invention.

【図3】本発明の実施例3に係る半導体レーザ素子の断
面図である。
FIG. 3 is a sectional view of a semiconductor laser device according to a third embodiment of the present invention.

【図4】本発明の実施例4に係る半導体レーザ素子の断
面図である。
FIG. 4 is a sectional view of a semiconductor laser device according to Example 4 of the present invention.

【図5】本発明の実施例5に係る半導体レーザ素子の断
面図である。
FIG. 5 is a sectional view of a semiconductor laser device according to Example 5 of the present invention.

【図6】従来の半導体レーザ素子の断面図である。FIG. 6 is a sectional view of a conventional semiconductor laser device.

【符号の説明】[Explanation of symbols]

1 GaAs基板 2 第1クラッド層 3 保護層 4 第1ガイド層 5 InGaAsP活性層 6 第2ガイド層 7 第2クラッド層 10 第1電流阻止層 11 第2電流阻止層 12 第3電流阻止層 21 高抵抗層 23 誘電体膜 DESCRIPTION OF SYMBOLS 1 GaAs substrate 2 1st cladding layer 3 protective layer 4 1st guide layer 5 InGaAsP active layer 6 2nd guide layer 7 2nd cladding layer 10 1st current blocking layer 11 2nd current blocking layer 12 3rd current blocking layer 21 height Resistance layer 23 Dielectric film

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 第1導電型のGaAs基板上に、少なく
とも第1導電型の第1クラッド層と、活性層と、第2導
電型の第2クラッド層とを有し、少なくとも前記活性層
と第2クラッド層を含む領域がメサ状領域からなり、該
メサ状領域の外部には電流阻止領域を備えてなる半導体
レーザ素子において、 前記活性層はAlを含まないInGaAsPから成り、
前記第1、第2クラッド層は少なくともAlを含有して
なることを特徴とする半導体レーザ素子。
1. A semiconductor device comprising: a first conductivity type GaAs substrate having at least a first conductivity type first cladding layer, an active layer, and a second conductivity type second cladding layer; A semiconductor laser device having a region including the second cladding layer formed of a mesa region and a current blocking region outside the mesa region, wherein the active layer is formed of InGaAsP containing no Al;
A semiconductor laser device according to claim 1, wherein said first and second cladding layers contain at least Al.
【請求項2】 請求項1に記載の半導体レーザ素子にお
いて、 前記活性層の両側に、それぞれ第1、第2クラッド層よ
りも禁制帯幅の小さい第1、第2ガイド層を設けてなる
ことを特徴とする半導体レーザ素子。
2. The semiconductor laser device according to claim 1, wherein first and second guide layers each having a smaller forbidden band width than the first and second cladding layers are provided on both sides of the active layer. A semiconductor laser device characterized by the above-mentioned.
【請求項3】 請求項1または2に記載の半導体レーザ
素子において、 第1クラッド層の上に、第1クラッド層よりも禁制帯幅
の小さい保護層を設けてなることを特徴とする半導体レ
ーザ素子。
3. The semiconductor laser device according to claim 1, wherein a protective layer having a smaller bandgap than the first cladding layer is provided on the first cladding layer. element.
【請求項4】 請求項3に記載の半導体レーザ素子にお
いて、 前記保護層の禁制帯幅が前記活性層の禁制帯幅に略等し
いことを特徴とする半導体レーザ素子。
4. The semiconductor laser device according to claim 3, wherein a forbidden band width of said protective layer is substantially equal to a forbidden band width of said active layer.
【請求項5】 請求項1、2、3または4に記載の半導
体レーザ素子において、 前記メサ状領域の外部の電流阻止領域は少なくも第1電
流阻止層と、該第1電流阻止層の外側に形成される第2
電流阻止層を有してなり、前記第1電流阻止層の禁制帯
幅は前記活性層の禁制帯幅より大きく、前記第2電流阻
止層の禁制帯幅は前記活性層の禁制帯幅より小さいこと
を特徴とする半導体レーザ素子。
5. The semiconductor laser device according to claim 1, wherein the current blocking region outside the mesa-shaped region is at least a first current blocking layer and outside the first current blocking layer. The second formed on
A current blocking layer, wherein the forbidden band width of the first current blocking layer is larger than the forbidden band width of the active layer, and the forbidden band width of the second current blocking layer is smaller than the forbidden band width of the active layer. A semiconductor laser device characterized by the above-mentioned.
JP25788196A 1996-09-30 1996-09-30 Semiconductor laser element Expired - Fee Related JP3876023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25788196A JP3876023B2 (en) 1996-09-30 1996-09-30 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25788196A JP3876023B2 (en) 1996-09-30 1996-09-30 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPH10107369A true JPH10107369A (en) 1998-04-24
JP3876023B2 JP3876023B2 (en) 2007-01-31

Family

ID=17312488

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25788196A Expired - Fee Related JP3876023B2 (en) 1996-09-30 1996-09-30 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JP3876023B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324948A (en) * 2001-04-25 2002-11-08 Furukawa Electric Co Ltd:The Semiconductor laser and laser module
WO2003043151A1 (en) * 2001-11-15 2003-05-22 Sharp Kabushiki Kaisha Semiconductor laser device and optical disc drive
JP2008227154A (en) * 2007-03-13 2008-09-25 Fujitsu Ltd Manufacturing method for optical semiconductor element
JP2009038410A (en) * 2002-01-28 2009-02-19 Sharp Corp Semiconductor laser device
US7801194B2 (en) 2002-07-01 2010-09-21 Sharp Kabushiki Kaisha Semiconductor laser device and optical disk unit using the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002324948A (en) * 2001-04-25 2002-11-08 Furukawa Electric Co Ltd:The Semiconductor laser and laser module
WO2003043151A1 (en) * 2001-11-15 2003-05-22 Sharp Kabushiki Kaisha Semiconductor laser device and optical disc drive
US7197056B2 (en) 2001-11-15 2007-03-27 Sharp Kabushiki Kaisha Semiconductor laser device and optical disc drive
JP2009038410A (en) * 2002-01-28 2009-02-19 Sharp Corp Semiconductor laser device
US7801194B2 (en) 2002-07-01 2010-09-21 Sharp Kabushiki Kaisha Semiconductor laser device and optical disk unit using the same
JP2008227154A (en) * 2007-03-13 2008-09-25 Fujitsu Ltd Manufacturing method for optical semiconductor element

Also Published As

Publication number Publication date
JP3876023B2 (en) 2007-01-31

Similar Documents

Publication Publication Date Title
US5523256A (en) Method for producing a semiconductor laser
US5556804A (en) Method of manufacturing semiconductor laser
US5832018A (en) Semiconductor laser device
JP3585817B2 (en) Laser diode and manufacturing method thereof
JP3555727B2 (en) Semiconductor laser device
KR100895056B1 (en) Semiconductor laser device
JPH05291686A (en) Semiconductor laser
JP3876023B2 (en) Semiconductor laser element
JP2522021B2 (en) Semiconductor laser
JPH09331098A (en) Semiconductor laser
JPH07245447A (en) Semiconductor laser
JP2001057459A (en) Semiconductor laser
JP3572157B2 (en) Semiconductor laser device
JP2679974B2 (en) Semiconductor laser device
JP2003198059A (en) Semiconductor laser element and method of manufacturing the same
JPH0945986A (en) Semiconductor laser element
JPH0648742B2 (en) Method for manufacturing semiconductor laser
US7016385B2 (en) Semiconductor laser device and method for producing the same
JP2002033553A (en) Semiconductor laser device and its manufacturing method
JP3115006B2 (en) Semiconductor laser device
JPH06188508A (en) Semiconductor laser element
JPH08125280A (en) Semiconductor laser and manufacture thereof
JPH11186655A (en) Semiconductor laser
JP3427649B2 (en) Self-oscillation type semiconductor laser
JP3078553B2 (en) Semiconductor laser device and method of manufacturing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060418

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060619

A02 Decision of refusal

Effective date: 20060711

Free format text: JAPANESE INTERMEDIATE CODE: A02

A521 Written amendment

Effective date: 20060906

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20060914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061030

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20091102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20101102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20111102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20111102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20121102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20121102

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20131102

LAPS Cancellation because of no payment of annual fees