JPH0648742B2 - Method for manufacturing semiconductor laser - Google Patents

Method for manufacturing semiconductor laser

Info

Publication number
JPH0648742B2
JPH0648742B2 JP62028541A JP2854187A JPH0648742B2 JP H0648742 B2 JPH0648742 B2 JP H0648742B2 JP 62028541 A JP62028541 A JP 62028541A JP 2854187 A JP2854187 A JP 2854187A JP H0648742 B2 JPH0648742 B2 JP H0648742B2
Authority
JP
Japan
Prior art keywords
layer
semiconductor
laser
conductivity type
superlattice
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62028541A
Other languages
Japanese (ja)
Other versions
JPS63196088A (en
Inventor
正明 仁道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62028541A priority Critical patent/JPH0648742B2/en
Publication of JPS63196088A publication Critical patent/JPS63196088A/en
Publication of JPH0648742B2 publication Critical patent/JPH0648742B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/16Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface
    • H01S5/162Window-type lasers, i.e. with a region of non-absorbing material between the active region and the reflecting surface with window regions made by diffusion or disordening of the active layer

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、高出力で効率の良い半導体レーザを高い量産
性で得ることができる半導体レーザの製造方法に関する
ものである。
Description: TECHNICAL FIELD The present invention relates to a semiconductor laser manufacturing method capable of obtaining a high-output and efficient semiconductor laser with high mass productivity.

〔従来の技術〕[Conventional technology]

ここでは、Metal−Organic Vapor
Phase Epitaxy法(以下、MOVPE法と
略記する)を用いたAlGaAs/GaAs半導体レー
ザを例にとって説明する。
Here, Metal-Organic Vapor
An AlGaAs / GaAs semiconductor laser using the Phase Epitaxy method (hereinafter abbreviated as MOVPE method) will be described as an example.

第3図は、従来技術による半導体レーザの構造(たとえ
ば予稿集(IEDM’83 Proceeding」2
92−295頁参照)を示す断面図、第4図はその製造
工程を示す断面図である。n型GaAs基板12上にM
OVE法によりn型Al0.45Ga0.55As層13、Al
0.15Ga0.55As活性層14、p型Al0.45Ga0.55
s層15、n型GaAs電流ブロック層16を順次積層
し(第4図(a))、n型GaAs電流ブロック層16
を貫通する溝17を選択エッチングにより形成する(第
4図(b))。その後、MOVPE法によりp型Al
0.45Ga0.55As層18、p型GaAs層19を形成し
(第4図(c))、最後にp電極20、n電極21を形
成して第3図の半導体レーザが完成する(第3図)。電
流ブロック層16により電流狭窄を行い、また溝17の
領域とその他の領域の実効的な屈折率および高吸収率の
差によってレーザ光の横モードを基本モードとしてい
る。
FIG. 3 shows the structure of a semiconductor laser according to the prior art (for example, Proceedings (IEDM'83 Proceeding) 2
92-295) and FIG. 4 is a sectional view showing the manufacturing process. M on the n-type GaAs substrate 12
N-type Al 0.45 Ga 0.55 As layer 13, Al by the OVE method
0.15 Ga 0.55 As active layer 14, p-type Al 0.45 Ga 0.55 A
The s layer 15 and the n-type GaAs current blocking layer 16 are sequentially stacked (FIG. 4A), and the n-type GaAs current blocking layer 16 is formed.
A groove 17 penetrating through is formed by selective etching (FIG. 4 (b)). After that, p-type Al is formed by MOVPE method.
A 0.45 Ga 0.55 As layer 18 and a p-type GaAs layer 19 are formed (FIG. 4 (c)), and finally a p-electrode 20 and an n-electrode 21 are formed to complete the semiconductor laser of FIG. 3 (FIG. 3). ). Current confinement is performed by the current blocking layer 16, and the transverse mode of the laser light is set as the fundamental mode due to the difference in effective refractive index and high absorptivity between the region of the groove 17 and other regions.

〔発明が解決しようとする問題点〕[Problems to be solved by the invention]

この半導体レーザは、溝17に接する領域においてレー
ザ光が大きな吸収を受けるため、高い光出力で横モード
は安定する。また、n型GaAs電流ブロック層16に
よって電流が溝17に狭窄され、横モードの導波される
領域と電流が注入される領域が一致するためレーザ動作
は安定である。
In this semiconductor laser, since the laser light is largely absorbed in the region in contact with the groove 17, the transverse mode is stable with a high optical output. Further, the current is confined in the groove 17 by the n-type GaAs current blocking layer 16, and the region where the transverse mode is guided and the region where the current is injected coincide with each other, so that the laser operation is stable.

このレーザを高い光出力で動作させる時、レーザ共振器
の端面において、レーザ光による端面破壊が起ったり、
長時間レーザ動作を行なっているとレーザ共振器端面か
ら劣化が進行する。このため、通常はレーザ共振器端面
にSiO,Alなどの保護膜を形成するが、レ
ーザ結晶と保護膜は異なる材料であるため、たとえば5
0mWのような非常に高い光出力のもとでは保護の効果
は充分でなく、端面破壊あるいは劣化が進行する。
When this laser is operated with a high optical output, the end face of the laser resonator may be broken by the laser beam,
If the laser is operated for a long time, the deterioration proceeds from the end face of the laser resonator. For this reason, a protective film such as SiO 2 or Al 2 O 3 is usually formed on the end face of the laser resonator. However, since the laser crystal and the protective film are different materials, for example, 5
Under a very high light output of 0 mW, the protection effect is not sufficient, and the end face destruction or deterioration progresses.

本発明の目的は、これらの問題を解決し、このような端
面破壊や劣化を防止した半導体レーザの製造方法を提供
することにある。
An object of the present invention is to solve these problems and provide a method for manufacturing a semiconductor laser in which such end face destruction and deterioration are prevented.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体レーザの製造方法の構成は、第1導電型
の半導体基板上に、第1導電型の第1半導体層と、層厚
200Å以下でかつ前記第1半導体層よりもバンドギャ
ップの小さい活性層と層厚200Å以下でかつ前記活性
層よりもバンドギャップの大きい第2半導体層とを交互
に積層して多層膜としかつこの多層膜を平均化した組成
の半導体層の屈折率が前記第1半導体層よりも大きい超
格子層と、この超格子層を平均化した組成の半導体より
屈折率が小さくかつ第2導電型の第3半導体層とを順次
結晶成長して半導体基板結晶を形成する第1の工程と、
前記半導体基板結晶の半導体レーザの共振器端面となる
領域に前記超格子層に達する深さまで第2導電型の不純
物の拡散またはイオン注入を行なって前記超格子層の組
成を平均化する第2の工程と、前記半導体レーザの共振
器に平行な方向のストライプ状の領域を残して前記第3
半導体層を貫通しない深さまで選択的にエッチングを行
なう第3の工程と、前記ストライプ状の領域以外の領域
に選択的に前記超格子層から放射される光を吸収する高
抵抗または第1導電型の半導体層を形成する第4の工程
とを含むことを特徴とする。
The structure of the method for manufacturing a semiconductor laser of the present invention is such that, on a semiconductor substrate of the first conductivity type, a first semiconductor layer of the first conductivity type, a layer thickness of 200 Å or less, and a band gap smaller than that of the first semiconductor layer. An active layer and a second semiconductor layer having a layer thickness of 200 Å or less and a bandgap larger than that of the active layer are alternately laminated to form a multilayer film, and the refractive index of the semiconductor layer having an averaged composition is the above-mentioned refractive index. A superlattice layer larger than one semiconductor layer and a third semiconductor layer of the second conductivity type having a smaller refractive index than the semiconductor having an averaged composition of the superlattice layer are sequentially grown to form a semiconductor substrate crystal. The first step,
A second conductivity type impurity is diffused or ion-implanted in a region of the semiconductor substrate crystal, which is to be a cavity end face of a semiconductor laser, to a depth reaching the superlattice layer, and the composition of the superlattice layer is averaged. Step, and leaving the stripe-shaped region parallel to the resonator of the semiconductor laser,
A third step of selectively etching to a depth not penetrating the semiconductor layer, and a high resistance or first conductivity type that selectively absorbs light emitted from the superlattice layer in a region other than the stripe-shaped region And a fourth step of forming the semiconductor layer.

〔作用〕[Action]

本発明の構成による活性領域となる超格子層は、レーザ
の共振器となる部分で、不純物拡散あるいはイオン注入
のプロセスによって組成が平均化されるが、この時の組
成が平均化された超格子層は超格子層から放射される光
に対して透明であるため、レーザ共振器端面にレーザ結
晶と同じ材料の保護膜が形成されたことになる。さら
に、レーザ共振器端面においても組成が平均化された超
格子層の垂直方向には屈折率のステップにより光導波さ
れ、水平方向には埋め込み層による損失導波されるた
め、レーザ端面とレーザ内部の光のカップリング効率は
高く、端面に構造を持たない通常のレーザと同様な効率
のレーザ動作が可能である。
The composition of the superlattice layer serving as the active region according to the present invention is a portion that becomes the resonator of the laser, and the composition is averaged by the process of impurity diffusion or ion implantation. Since the layer is transparent to the light emitted from the superlattice layer, the protective film made of the same material as the laser crystal is formed on the end facet of the laser resonator. Furthermore, even at the laser cavity end face, light is guided by the step of the refractive index in the vertical direction of the superlattice layer whose composition is averaged, and in the horizontal direction by loss guiding by the buried layer. The coupling efficiency of light is high, and the laser operation with the same efficiency as a normal laser having no structure on the end face is possible.

〔実施例〕〔Example〕

第1図は、本発明の一実施例の半導体レーザの製造方法
によって得られる半導体レーザの構造を示す断面図、第
2図(a)〜(d)は第1図の製法を工程順に示す素子
の断面図である。はじめに、第1のMOVPE成長を行
ってn型GaAs基板1上にn型Al0.45Ga0.55As
層2,層厚40ÅのAlAs層と層厚80ÅのGaAs
層を交互に積層した超格子層3,p型Al0.45Ga0.55
As層4,p型GaAs層5を順次形成する(第2図
(a))。つぎに、レーザの共振器端面となる部分に超
格子層に達する深さのZn拡散層6を形成し、超格子層
3の組成を平均化する(第2図(b))。この後、Si
膜10をマスクとして超格子層3に達しない深さま
で選択エッチングを行なってレーザ共振器方向に平行な
ストライプ状のメサ11を形成する(第2図(c))、
さらに第2のMOVPE成長を行ってn型GaAs7を
形成し(第2図(d))。最後にp電極8、n電極9を
形成して半導体レーザは完成する(第1図)。
FIG. 1 is a sectional view showing the structure of a semiconductor laser obtained by a method for manufacturing a semiconductor laser according to an embodiment of the present invention, and FIGS. 2 (a) to 2 (d) are elements showing the manufacturing method in FIG. 1 in the order of steps. FIG. First, the first MOVPE growth is performed to form n-type Al 0.45 Ga 0.55 As on the n-type GaAs substrate 1.
Layer 2, AlAs layer with 40 Å thickness and GaAs with 80 Å thickness
Superlattice layer with alternating layers 3, p-type Al 0.45 Ga 0.55
An As layer 4 and a p-type GaAs layer 5 are sequentially formed (FIG. 2 (a)). Next, a Zn diffusion layer 6 having a depth reaching the superlattice layer is formed in a portion which will be the end facet of the laser cavity, and the composition of the superlattice layer 3 is averaged (FIG. 2 (b)). After this, Si
Selective etching is performed to a depth that does not reach the superlattice layer 3 using the O 2 film 10 as a mask to form a stripe-shaped mesa 11 parallel to the laser cavity direction (FIG. 2 (c)).
Further, a second MOVPE growth is performed to form n-type GaAs 7 (FIG. 2 (d)). Finally, the p-electrode 8 and the n-electrode 9 are formed to complete the semiconductor laser (FIG. 1).

〔発明の効果〕〔The invention's effect〕

以上説明したように、本発明の半導体レーザにおいて
は、Zn拡散を行なって超格子層3の組成を平均化した
層が超格子層3から放射される光に対して透明であるこ
とを利用し、レーザ端面にレーザ光に対する窓領域を生
成する。したがって、高い光出力の動作においてもレー
ザ端面がレーザ光により破壊されることはなく、さらに
この窓領域はレーザ端面からの結晶劣化を防ぐ保護膜と
して働く。この場合、レーザ結晶と同じ結晶を保護膜と
して用いるためストレスが生じず、従来例におけるSi
,Al保護膜よりも優れている。
As described above, in the semiconductor laser of the present invention, it is utilized that the layer obtained by Zn diffusion and averaging the composition of the superlattice layer 3 is transparent to the light emitted from the superlattice layer 3. , Generate a window region for the laser light on the laser end face. Therefore, the laser end face is not destroyed by the laser light even in the operation of high light output, and this window region functions as a protective film for preventing crystal deterioration from the laser end face. In this case, since the same crystal as the laser crystal is used as the protective film, no stress is generated, and Si in the conventional example is not used.
It is superior to O 2 and Al 2 O 3 protective films.

さらに、窓領域においても、組成が平均化された超格子
層はそれに接する半導体層よりも屈折率が大きく、かつ
n型GaAs層6はレーザ光を吸収するため、レーザ端
面においてもレーザ内部においても超格子層3に垂直、
水平方向に光が導波され、レーザ内部と窓領域でのレー
ザ光のカップリング効率は窓領域がない場合と同等にで
きる。
Further, even in the window region, the superlattice layer having an averaged composition has a larger refractive index than the semiconductor layer in contact with it, and the n-type GaAs layer 6 absorbs the laser beam, so that the laser facet and the inside of the laser also have the same structure. Perpendicular to the superlattice layer 3,
The light is guided in the horizontal direction, and the coupling efficiency of the laser light inside the laser and in the window region can be made equal to that in the case without the window region.

また、n型Al0.45Ga0.55As層2,p型Al0.45
0.55As層4、n型GaAs7はN−P−Nサイリス
タを形成するため、電流ブロック層となる。
In addition, n-type Al 0.45 Ga 0.55 As layer 2, p-type Al 0.45 G
Since the a 0.55 As layer 4 and the n-type GaAs 7 form an NPN thyristor, they serve as a current blocking layer.

したがって、本発明により製造された半導体レーザにお
いては、キャリアと光の双方が効果的に活性領域に閉じ
込められ、発振閾値が低く、かつ高い光出力までレーザ
端面の破壊が起こる事無く、安定な基本横モード発振を
行なうことができる。また、高光出力動作での信頼性も
良好である。
Therefore, in the semiconductor laser manufactured according to the present invention, both the carrier and the light are effectively confined in the active region, the oscillation threshold is low, and the laser end face is not destroyed up to a high optical output, and a stable basic Transverse mode oscillation can be performed. Also, the reliability in high light output operation is good.

なお、本発明の説明において、MOVPE法を用いたA
lGaAs/GaAs半導体レーザを例にとって説明し
たが、MOVPE法以外の気相成長法あるいは分子ビー
ムエピタキシャル法を用いた、他の材料系の半導体レー
ザにも適用できることは明らかである。
In the description of the present invention, A using the MOVPE method is used.
Although the description has been made by taking the 1GaAs / GaAs semiconductor laser as an example, it is obvious that the present invention can be applied to semiconductor lasers of other materials based on the vapor phase growth method or the molecular beam epitaxial method other than the MOVPE method.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の製造方法により得られる半導体レーザ
の構造の一例を示す斜視図、第2図はその製造方法の一
例を示す工程図、第3図は従来技術による半導体レーザ
の構造の一例を示す断面図、4図はその製造方法を示す
工程図である。 1,12……n型GaAs基板、2,13……n型Al
Al0.45Ga0.55As層、3……超格子層、4,15,
18……p型Al0.45Ga0.55As層、5,19……p
型GaAs層、6……不純物拡散層、7,16……n型
GaAs層、8,20……p電極、9,21……n電
極、10……SiO膜、11……メサ、14……Al
0.15Ga0.55As活性層、17……溝。
FIG. 1 is a perspective view showing an example of the structure of a semiconductor laser obtained by the manufacturing method of the present invention, FIG. 2 is a process diagram showing an example of the manufacturing method thereof, and FIG. 3 is an example of the structure of a semiconductor laser according to the prior art. And FIG. 4 is a process drawing showing the manufacturing method. 1,12 ... n-type GaAs substrate, 2,13 ... n-type Al
Al 0.45 Ga 0.55 As layer, 3 ... Superlattice layer, 4, 15,
18 ... p-type Al 0.45 Ga 0.55 As layer, 5, 19 ... p
-Type GaAs layer, 6 ... Impurity diffusion layer, 7, 16 ... N-type GaAs layer, 8, 20 ... P-electrode, 9, 21 ... N-electrode, 10 ... SiO 2 film, 11 ... Mesa, 14 ...... Al
0.15 Ga 0.55 As active layer, 17 ... Groove.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の半導体基板上に、第1導電型
の第1半導体層と、層厚200Å以下でかつ前記第1半
導体層よりもバンドギャップの小さい活性層と層厚20
0Å以下でかつ前記活性層よりもバンドギャップの大き
い第2半導体層とを交互に積層して多層膜としかつこの
多層膜を平均化した組成の半導体層の屈折率が前記第1
半導体層よりも大きい超格子層と、この超格子層を平均
化した組成の半導体より屈折率が小さくかつ第2導電型
の第3半導体層とを順次結晶成長して半導体基板結晶を
形成する第1の工程と、前記半導体基板結晶の半導体レ
ーザの共振器端面となる領域に前記超格子層に達する深
さまで第2導電型の不純物の拡散またはイオン注入を行
なって前記超格子層の組成を平均化する第2の工程と、
前記半導体レーザの共振器に平行な方向のストライプ状
の領域を残して前記第3半導体層を貫通しない深さまで
選択的にエッチングを行なう第3の工程と、前記ストラ
イプ状の領域以外の領域に選択的に前記超格子層から放
射される光を吸収する高抵抗または第1導電型の半導体
層を形成する第4の工程とを含むことを特徴とする半導
体レーザの製造方法。
1. A first conductivity type first semiconductor layer, an active layer having a layer thickness of 200 Å or less and a band gap smaller than that of the first semiconductor layer, and a layer thickness 20 on a first conductivity type semiconductor substrate.
A second semiconductor layer having a thickness of 0 Å or less and a bandgap larger than that of the active layer is alternately laminated to form a multilayer film, and the refractive index of the semiconductor layer having a composition obtained by averaging the multilayer film is the first layer.
A superlattice layer larger than the semiconductor layer and a third semiconductor layer of the second conductivity type having a smaller refractive index than the semiconductor having a composition obtained by averaging the superlattice layer are sequentially crystal-grown to form a semiconductor substrate crystal. The first step, and the composition of the superlattice layer is averaged by diffusing or ion-implanting the second conductivity type impurity to a region of the semiconductor substrate crystal, which is to be a cavity end face of the semiconductor laser, to a depth reaching the superlattice layer. The second step of
A third step of selectively etching to a depth not penetrating the third semiconductor layer leaving a striped region parallel to the cavity of the semiconductor laser, and selecting a region other than the striped region And a fourth step of forming a high resistance or first conductivity type semiconductor layer that absorbs light emitted from the superlattice layer.
JP62028541A 1987-02-09 1987-02-09 Method for manufacturing semiconductor laser Expired - Lifetime JPH0648742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62028541A JPH0648742B2 (en) 1987-02-09 1987-02-09 Method for manufacturing semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62028541A JPH0648742B2 (en) 1987-02-09 1987-02-09 Method for manufacturing semiconductor laser

Publications (2)

Publication Number Publication Date
JPS63196088A JPS63196088A (en) 1988-08-15
JPH0648742B2 true JPH0648742B2 (en) 1994-06-22

Family

ID=12251524

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62028541A Expired - Lifetime JPH0648742B2 (en) 1987-02-09 1987-02-09 Method for manufacturing semiconductor laser

Country Status (1)

Country Link
JP (1) JPH0648742B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2686306B2 (en) * 1989-02-01 1997-12-08 三菱電機株式会社 Semiconductor laser device and manufacturing method thereof
JP3387076B2 (en) * 1997-01-07 2003-03-17 住友電気工業株式会社 Semiconductor laser and manufacturing method thereof
GB2371405B (en) * 2001-01-23 2003-10-15 Univ Glasgow Improvements in or relating to semiconductor lasers
JP2005286192A (en) 2004-03-30 2005-10-13 Sumitomo Electric Ind Ltd Optically integrated device
JPWO2009057254A1 (en) 2007-11-02 2011-03-10 パナソニック株式会社 Semiconductor laser device
JP5906445B2 (en) 2008-12-10 2016-04-20 パナソニックIpマネジメント株式会社 Semiconductor laser device and manufacturing method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61284985A (en) * 1985-06-12 1986-12-15 Hitachi Ltd Manufacture of semiconductor laser device

Also Published As

Publication number Publication date
JPS63196088A (en) 1988-08-15

Similar Documents

Publication Publication Date Title
JPH06302906A (en) Semiconductor laser and its manufacture
EP0579244B1 (en) A semiconductor laser and a method for producing the same
US5556804A (en) Method of manufacturing semiconductor laser
JPH10200190A (en) Semiconductor laser and fabrication thereof
JPH07101768B2 (en) Semiconductor laser device and manufacturing method thereof
US5825797A (en) Semiconductor laser device
JP2815769B2 (en) Manufacturing method of semiconductor laser
JPH0648742B2 (en) Method for manufacturing semiconductor laser
JPH06302908A (en) Semiconductor laser
US4759025A (en) Window structure semiconductor laser
JP2001057459A (en) Semiconductor laser
JP3763459B2 (en) Semiconductor laser device and manufacturing method thereof
JPH10261835A (en) Semiconductor laser device and its manufacture
JP3876023B2 (en) Semiconductor laser element
JP2819160B2 (en) Multi-wavelength semiconductor laser diode
JP2624881B2 (en) Semiconductor laser device and method of manufacturing the same
JP2927661B2 (en) Super luminescent diode element and method of manufacturing the same
JPH0846283A (en) Manufacture of semiconductor laser
JP2003198059A (en) Semiconductor laser element and method of manufacturing the same
JPS614291A (en) Surface light-emission laser
JPH03104292A (en) Semiconductor laser
JP2751699B2 (en) Semiconductor laser
JP2672872B2 (en) Semiconductor laser device and method of manufacturing the same
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JP2913652B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term