JPH0654821B2 - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element

Info

Publication number
JPH0654821B2
JPH0654821B2 JP12221885A JP12221885A JPH0654821B2 JP H0654821 B2 JPH0654821 B2 JP H0654821B2 JP 12221885 A JP12221885 A JP 12221885A JP 12221885 A JP12221885 A JP 12221885A JP H0654821 B2 JPH0654821 B2 JP H0654821B2
Authority
JP
Japan
Prior art keywords
layer
active layer
thickness
light emitting
energy gap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP12221885A
Other languages
Japanese (ja)
Other versions
JPS61280694A (en
Inventor
功 日野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP12221885A priority Critical patent/JPH0654821B2/en
Publication of JPS61280694A publication Critical patent/JPS61280694A/en
Publication of JPH0654821B2 publication Critical patent/JPH0654821B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は発光あるいはレーザ発振する半導体発光素子に
関する。
The present invention relates to a semiconductor light emitting device that emits light or oscillates a laser.

(従来技術とその問題点) 一般に、多元混晶化合物半導体はその構成元素の組み合
わせにより、広い範囲でエネルギギャップおよび屈折率
を変えられる。所望のエネルギギャップをもつ直接遷移
型の化合物半導体を活性層とし、この活性層よりもエネ
ルギギャップが大きくかつ屈折率の小さい化合物半導体
をクラッド層としたダブルヘテロ構造を用いて高効率の
発光ダイオードや半導体レーザが構成される。従来、こ
の活性層としてGaAs、あるいはAlxGa1-xAs、クラッド層
としてAlx′Ga1−x′As(0<x<x′<1)
を用いたダブルヘテロ構造(AlGaAs系dhと呼ぶ)や、Ga
yIn1-yPzAs1-z(0<y<1,0<z<1)を活性層、I
nPをクラッド層としたダブルヘテロ構造(InP系dhと呼
ぶ)が、広く用いられている代表例である。
(Prior Art and Problems Thereof) In general, a multi-element mixed crystal compound semiconductor can change the energy gap and the refractive index in a wide range by a combination of its constituent elements. A direct transition type compound semiconductor having a desired energy gap is used as an active layer, and a compound semiconductor having a larger energy gap and a smaller refractive index than the active layer is used as a cladding layer. A semiconductor laser is constructed. Conventionally, GaAs as the active layer or Al x Ga 1-x As, , Al x 'Ga 1-x' As a cladding layer (0 <x <x '< 1)
Double heterostructure using Al (called AlGaAs dh), Ga
y In 1-y P z As 1-z (0 <y <1, 0 <z <1) is the active layer, I
A double heterostructure with nP as a cladding layer (called InP-based dh) is a typical example widely used.

このダブルヘテロ構造を形成するための基板としてAlGa
As系はGaAsを、InP系はInPを使用している。前者は化合
物の組成によらず基板と格子整合され、後者は、活性層
となるGayIn1-yPzAs1-zが組成により格子不整合を生ず
るが、活性層が薄くまた厚みの大部分を占めるInPが基
板と格子整合するため、格子整合性を保つ問題は比較的
容易に解決される。これらの例では格子不整合に関する
素子信頼性の問題は軽微である。
As a substrate for forming this double heterostructure, AlGa
As system uses GaAs and InP system uses InP. The former is lattice-matched with the substrate regardless of the composition of the compound, and the latter has a lattice mismatch in the active layer Ga y In 1-y P z As 1-z, but the active layer is thin and thick. Since the majority of InP is lattice-matched with the substrate, the problem of maintaining lattice matching is solved relatively easily. In these examples, the problem of device reliability related to lattice mismatch is minor.

また、素子として動作させる場合、電極側への熱放散の
良否が素子特性に大きな影響を与える。つまり、電極側
のクラッド層の熱抵抗が高いと素子特性や素子の信頼性
を損う。前述のAlGaAs系やInP系の例では、クラッド層
としてAlGaAsやInPを用いているため、熱抵抗はそれ程
高くなく、素子への影響も小さい。
Further, when operating as an element, the quality of the heat dissipation to the electrode side greatly affects the element characteristics. That is, if the thermal resistance of the clad layer on the electrode side is high, the device characteristics and device reliability will be impaired. In the above-mentioned AlGaAs-based and InP-based examples, since AlGaAs and InP are used as the cladding layer, the thermal resistance is not so high and the effect on the element is small.

ところが発光波長域を拡大するため、他の組成の化合物
が近年用いられるようになった。例えば、波長0.58μm
〜0.68μmの可視光半導体発光素子として、活性層にGa
0.5In0.5Pまたは(AlxGa1-x)0.5In0.5P、クラッド層に
(Alx′Ga1−x′0.5In0.5P(0<x
<x′1)を用いたダブルヘテロ構造があり、波長0.
92μm〜1.6μmの赤外光半導体発光素子として活性層
にGa0.47In0.53Asまたは(AlxGa1-x)0.47In0.53As、クラ
ッド層に(Alx′Ga1-x′)0.47In0.53As(0<x<x′
1)を用いたdh構造などがあり、前者はGaAsを、後者は
InPをそれぞれ基板としている。これらの構成でAlGaInP
やAlGaInAsはその組成により格子定数が大きく異なり、
基板と格子整合させるには、その組成を精密に制御しな
ければならない。さらに、ダブルヘテロ構造の場合、ク
ラッド層も厳密に組成を制御して格子整合性を保たねば
ならない化合物であるために、AlGaAs系やInP系と較べ
て格子不整合の影響が甚大である。また、電極側のクラ
ッド層も4元化合物となっているため、2元、3元化合
物と較べてその熱抵抗は著しく高い。
However, in order to expand the emission wavelength range, compounds having other compositions have been used in recent years. For example, wavelength 0.58μm
As a visible light semiconductor light emitting device of ~ 0.68 μm, Ga
0.5 an In 0.5 P or (Al x Ga 1-x) 0.5 In 0.5 P, the cladding layer (Al x 'Ga 1-x ') 0.5 In 0.5 P (0 <x
There is a double heterostructure using <x'1), which has a wavelength of 0.
Ga 0.47 In 0.53 As or active layer as the infrared light semiconductor light emitting device 92μm~1.6μm (Al x Ga 1-x ) 0.47 In 0.53 As, the cladding layer (Al x 'Ga 1-x ') 0.47 In 0.53 As (0 <x <x '
There is a dh structure using 1), the former is GaAs and the latter is
InP is used as the substrate. AlGaInP with these configurations
The lattice constant of AlGaInAs and AlGaInAs vary greatly,
In order to be lattice-matched with the substrate, its composition must be precisely controlled. Furthermore, in the case of the double hetero structure, the cladding layer is a compound whose composition must be strictly controlled to maintain the lattice matching property, and therefore the influence of the lattice mismatch is greater than that of the AlGaAs system or the InP system. Further, since the clad layer on the electrode side is also a quaternary compound, its thermal resistance is significantly higher than that of a binary or ternary compound.

従来のAlGaInP系から成るダブルヘテロ構造半導体レー
ザの構造は、第4図の断面図に示される(雑誌「アプラ
イド・フィジクス・レターズ(Appl.Phys.Lett.)」第4
3巻(1983)987〜989頁)。この構成は、n型基板GaAs1
上に順次厚さ1.0μmn型GaAsバッファ層12、厚さ1.0
μmn型(Al0.3Ga0.7)0.5In0.5Pクラッド層13、厚さ
0.2μmアンドーブGa0.5In0.5P活性層14、厚さ1.0μ
mp型(Al0.3Ga0.7)0.5In0.5Pクラッド層15、厚さ1.0
μmp型GaAsキャップ層7が形成されている。活性層1
4へのキャリアおよび光の閉じ込めの条件からクラッド
層13、15のエネルギギャップ、屈折率、厚さ、およ
び素子パラメタが決定されている。この従来例ではクラ
ッド層の厚さを、素子特性を損わずにこれ以上薄くする
ことはできない。このクラッド層の厚さのために格子不
整合の影響、高い熱抵抗の影響があり、そのため高性
能、高信頼の素子を再現性よく得ることができないとい
う欠点があった。この他の組成の組み合わせでも同様の
状態であった。
The structure of a conventional double heterostructure semiconductor laser made of AlGaInP is shown in the sectional view of FIG. 4 (Magazine “Appl. Phys. Lett.” No. 4).
3 (1983) 987-989). This configuration is for n-type substrate GaAs1
1.0 μm thick n-type GaAs buffer layer 12 with a thickness of 1.0
μmn type (Al 0.3 Ga 0.7 ) 0.5 In 0.5 P clad layer 13, thickness
0.2 μm Andove Ga 0.5 In 0.5 P Active layer 14, thickness 1.0 μ
mp type (Al 0.3 Ga 0.7 ) 0.5 In 0.5 P clad layer 15, thickness 1.0
A μmp type GaAs cap layer 7 is formed. Active layer 1
The energy gap, the refractive index, the thickness, and the device parameter of the cladding layers 13 and 15 are determined from the conditions of carrier and light confinement in the layer 4. In this conventional example, the thickness of the cladding layer cannot be made thinner without impairing the device characteristics. Due to the thickness of the clad layer, there is the effect of lattice mismatch and the effect of high thermal resistance. Therefore, there is a drawback that a high-performance and highly reliable device cannot be obtained with good reproducibility. The same was true for other combinations of compositions.

(発明の目的) 本発明の目的は、このような従来の欠点を除去し、高性
能、高信頼性で再現性のよい半導体発光素子を提供する
ことにある。
(Object of the Invention) An object of the present invention is to eliminate such drawbacks of the prior art and to provide a semiconductor light emitting device having high performance, high reliability and good reproducibility.

(発明の構成) 本発明の半導体発光素子の構成は、GaInPまたはA
lGaInPからなる活性層と、この活性層を挟みこの
活性層よりも大きなエネルギギャップをもちAlInP
またはAlGaInPからなるクラッド層とを有するダ
ブルヘテロ構造と、このダブルヘテロ構造の一面あるい
は両面で前記クラッド層の前記活性層と接しない側の面
に設けられこの活性層よりもエネルギギャップが大きく
屈折率の小さなAlAsまたはAlGaAsからなる備
え、前記活性層およびクラッド層を含む層の厚さが熱抵
抗を充分低く抑えられる程度に薄く形成されたことを特
徴とする。
(Structure of the Invention) The structure of the semiconductor light emitting device of the present invention is GaInP or A.
AlGaInP active layer and AlInP having an energy gap larger than that of the active layer sandwiching the active layer.
Alternatively, a double hetero structure having a cladding layer made of AlGaInP and one or both surfaces of the double hetero structure provided on the surface of the cladding layer on the side not in contact with the active layer have a larger energy gap than that of the active layer and a refractive index. Of AlAs or AlGaAs having a small size, and the thickness of the layer including the active layer and the clad layer is thin enough to suppress thermal resistance to a sufficiently low level.

(実施例) 以下図面を用いて本発明を詳細に説明する。(Example) The present invention will be described in detail below with reference to the drawings.

第1図は本発明の一実施例の断面図、第2図(a),(b)は
本実施例のエネルギバンドダイヤグラムおよび屈折率ダ
イヤグラムであり、波長605nmで発振する赤色可視半導
体レーザの構造を示す。本実施例は、n型GaAs基板1上
にエピタキシャル成長法により、厚さ1.0μmのn型Al
0.8Ga0.2As層2、薄い厚さ0.1μmのn型(Al0.7Ga0.3)
0.5In0.5P層3、厚さ0.2μmのアンドーブ(Al0.2Ga0.8)
0.5In0.5P層4、薄い厚さ0.1μmのp型(Al0.7Ga0.3)
0.5In0.5P層5、厚さ1.0μmのp型Al0.8Ga0.2As層6、
厚さ1.0μmのp型GaAsキヤップ層7を順次成長する。
エピタキシャル成長法としては気相成長法(有機金属分
解法〔MOCVD〕、ハロゲン輸送法〔HT・VPE〕)、分子ビ
ーム法(MBE)、液相法(LPE)のいずれを用いてもよい。各
層のうちレーザ活性層は、アンドープ(Al0.2Ga0.8)0.5I
n0.5P層4で、ここに注入キャリアおよび発光された光
が閉じこめられて、レーザ発振を生ずる。
FIG. 1 is a sectional view of an embodiment of the present invention, and FIGS. 2 (a) and 2 (b) are an energy band diagram and a refractive index diagram of the present embodiment. The structure of a red visible semiconductor laser oscillating at a wavelength of 605 nm. Indicates. In this embodiment, an n-type Al having a thickness of 1.0 μm is formed on the n-type GaAs substrate 1 by an epitaxial growth method.
0.8 Ga 0.2 As layer 2, thin 0.1 μm n-type (Al 0.7 Ga 0.3 )
0.5 In 0.5 P layer 3, 0.2 μm thick Andove (Al 0.2 Ga 0.8 ).
0.5 In 0.5 P layer 4, thin 0.1 μm p-type (Al 0.7 Ga 0.3 )
0.5 In 0.5 P layer 5, 1.0 μm thick p-type Al 0.8 Ga 0.2 As layer 6,
A p-type GaAs cap layer 7 having a thickness of 1.0 μm is sequentially grown.
As the epitaxial growth method, any of the vapor phase growth method (organometallic decomposition method [MOCVD], halogen transport method [HT / VPE]), molecular beam method (MBE), and liquid phase method (LPE) may be used. The laser active layer of each layer was undoped (Al 0.2 Ga 0.8 ) 0.5 I.
Injected carriers and emitted light are confined in the n 0.5 P layer 4 to cause laser oscillation.

エピタキシャル法により各層が形成されたのち、ストラ
イプ状窓11をもつSiO2膜8、Au/Zn合金によるp電極
9、Au/Ge合金によるn電極10を形成し、アンドープ
(Al0.2Ga0.8)0.5In0.5P活性層4のストライプ状部分に
電流注入励起して効率よい発振が可能となるようにす
る。
After each layer is formed by the epitaxial method, a SiO 2 film 8 having a stripe-shaped window 11, a p-electrode 9 made of an Au / Zn alloy, and an n-electrode 10 made of an Au / Ge alloy are formed and undoped.
(Al 0.2 Ga 0.8 ) 0.5 In 0.5 P Current injection is excited in the stripe-shaped portion of the active layer 4 to enable efficient oscillation.

第2図(a)の成長層方向の距離に対するエネルギバンド
ダイヤグラムにおいて、(Al0.2Ga0.8)0.5In0.5P活性層
4よりもエネルギギャップの大きな(Al0.7Ga0.3)0.5In
0.5Pによるクラッド層3,5から注入された電子21お
よびホール22は、活性層4に閉じこめられる。(Al0.7
Ga0.3)0.5In0.5P3,5と(Al0.2Ga0.8)0.5In0.5P(4)
は、図のように十分なエネルギギャップ差をもち、かつ
(Al0.7Ga0.3)0.5In0.5Pクラッド層3,5は厚さ0.1μm
と電子のドブロイ波長よりも十分大きいため、電子およ
び正孔がほぼ完全に活性層4に閉じこめられる。
In the energy band diagram with respect to the distance in the growth layer direction in FIG. 2 (a), (Al 0.2 Ga 0.8 ) 0.5 In 0.5 P has a larger energy gap than the active layer 4 (Al 0.7 Ga 0.3 ) 0.5 In
The electrons 21 and holes 22 injected from the cladding layers 3 and 5 of 0.5 P are confined in the active layer 4. (Al 0.7
Ga 0.3 ) 0.5 In 0.5 P 3,5 and (Al 0.2 Ga 0.8 ) 0.5 In 0.5 P (4)
Has a sufficient energy gap difference as shown in the figure, and
(Al 0.7 Ga 0.3 ) 0.5 In 0.5 P Clad layers 3 and 5 have a thickness of 0.1 μm
Since it is sufficiently larger than the de Broglie wavelength of electrons, electrons and holes are almost completely confined in the active layer 4.

また、屈折率nの分布は、第2図(b)に示すように、(Al
0.7Ga0.3)0.5In0.5P層3,5或いはそれと隣接するAl
0.8Ga0.2As層2,6のいずれよりも活性層4の屈折率の
方が大きい。このためクラッド層3,5の厚さ0.1μm
は活性層4への光閉じ込めに十分な値ではないが、Al
0.8Ga0.2As層2,6の存在により、通常のダブルヘテロ
構造と同様の光閉じ込め効果が得られる。
Also, as shown in FIG. 2 (b), the distribution of the refractive index n is (Al
0.7 Ga 0.3 ) 0.5 In 0.5 P layers 3, 5 or Al adjacent to it
The refractive index of the active layer 4 is higher than that of the 0.8 Ga 0.2 As layers 2 and 6. Therefore, the thickness of the cladding layers 3 and 5 is 0.1 μm
Is not a sufficient value for confining light in the active layer 4, but Al
Due to the presence of the 0.8 Ga 0.2 As layers 2 and 6, an optical confinement effect similar to that of a normal double hetero structure can be obtained.

また、第2図(a)のように、Al0.8Ga0.2As層2,6のエ
ネルギギャップは活性層4のそれよりも大きいので、ク
ラッド層3,5を越してAl0.8Ga0.2As層2,6にしみ出
した光がここで吸収されることはない。
Further, as shown in FIG. 2 (a), the energy gap of the Al 0.8 Ga 0.2 As layers 2 and 6 is larger than that of the active layer 4, so that the Al 0.8 Ga 0.2 As layer 2 passes over the cladding layers 3 and 5. The light oozing out into 6 is not absorbed here.

このように本実施例の構造は、光および注入キャリアの
閉じこめに対して通常のダブルヘテロ構造の機能を全く
損うものではなく、さらに次に説明するように従来技術
の問題点を克服している。
As described above, the structure of the present embodiment does not impair the function of the normal double hetero structure with respect to the confinement of light and injected carriers, and overcomes the problems of the prior art as described below. There is.

(AlxGa1-x)0.5In0.5Pは、〔(Alのモル比)+(Gaのモ
ル比)〕:(Inのモル比)=0.5:0.5の時、基板のGaAs
と格子整合するが、この値からずれると格子不整合を生
じ、エピタキシャル結晶に格子欠陥を生ずるため、結晶
の品質が劣化し素子特性の劣化を招く。このため良質な
結晶を得るには結晶の組成を厳しく制御せねばならず、
苛酷な制御条件を結晶成長に課することとなり、良質な
結晶を得る歩留り率が著しく低くなる。ところが、多少
の格子不整合が生じてもその層の長さが薄ければその結
晶品質劣化を小さくすることができる。
(Al x Ga 1-x ) 0.5 In 0.5 P is the GaAs of the substrate when [(molar ratio of Al) + (molar ratio of Ga)]: (molar ratio of In) = 0.5: 0.5
However, if it deviates from this value, a lattice mismatch will occur and a lattice defect will occur in the epitaxial crystal, so that the crystal quality will deteriorate and the element characteristics will deteriorate. Therefore, in order to obtain good quality crystals, the composition of the crystals must be strictly controlled,
Strict control conditions are imposed on the crystal growth, and the yield rate for obtaining good quality crystals is significantly reduced. However, even if some lattice mismatch occurs, the crystal quality deterioration can be reduced if the layer is thin.

例えば、(AlxGa1-x)0.5In0.5Pの格子定数が、GaAsのそ
れに対して約3×10-3異なっていても、(AlxGa1-x)
0.5In0.5P層の厚さの総和(つまりクラッド層3,5お
よび活性層4の厚さの総和)が本実施例のように0.4μ
m程度で、その他の層がGaAs基板1と格子整合するGaAs
或いはAlxGa1-xAs(0x1)あれば、素子特性に影
響を及ぼす品質劣化が生じなかった。
For example, even if the lattice constant of (Al x Ga 1-x ) 0.5 In 0.5 P differs from that of GaAs by about 3 × 10 -3 , (Al x Ga 1-x )
The total thickness of the 0.5 In 0.5 P layers (that is, the total thickness of the cladding layers 3, 5 and the active layer 4) is 0.4 μ as in this embodiment.
GaAs whose other layers are lattice-matched to the GaAs substrate 1 at about m
Alternatively, with Al x Ga 1-x As (0x1), quality deterioration that affects the device characteristics did not occur.

第3図(a),(b)は本実施例を構成する材料(AlxGa1-x)
0.5In0.5PおよびAlxGa1-xAs(0x1)についての
熱抵抗率のAl組成比xに対する特性図を示す。第3図
(b)は、雑誌「ジャーナル・オブ・アプライド・フィジ
クス(J.Appl.Phys.)」第44巻,1973年の1292頁に示さ
れたもので、その熱抵抗率は二元化合物GaAsおよびAlAs
で小さく、三元混晶AlGaAsで大きくなっている。また、
第3図(a)の(AlxGa1-x)0.5In0.5Pの熱抵抗率は、本発明
者らが測定したもので、四元化合物AlGaInPは三元化合
物Al0.5In0.5P Ga0.5In0.5Pよりもその熱抵抗率が大き
く、AlxGa1-xAs系の二元或いは三元化合物よりも熱抵抗
率が大きくなっている。この事実によると、本実施例に
おいて厚さ0.1μmと薄いp側四元クラッド層(Al0.7Ga
0.3)0.5In0.5P5を厚さ1.0μmのp−Al0.8Ga0.2As層6
と隣接することによって、1.0μm程度の厚さが要求さ
れる従来のダブルヘテロ構造の場合と較べて、熱抵抗を
3分の1以下に減らすことができる。このため素子の熱
放散に対して大きな効果をもち、素子の発振閾値低減お
よび素子寿命の向上に効果があった。
3 (a) and 3 (b) are the materials (Al x Ga 1-x ) constituting the present embodiment.
Shows a characteristic diagram for 0.5 an In 0.5 P and Al x Ga 1-x As ( 0x1) Al composition ratio x of the thermal resistance of about. Fig. 3
(b) is shown in the magazine "Journal of Applied Physics", Vol. 44, p. 1292, 1973, and its thermal resistivity is binary compounds GaAs and AlAs.
Is small, and is large in ternary mixed crystal AlGaAs. Also,
The thermal resistivity of (Al x Ga 1-x ) 0.5 In 0.5 P in FIG. 3 (a) was measured by the present inventors. The quaternary compound AlGaInP is a ternary compound Al 0.5 In 0.5 P Ga 0.5 Its thermal resistivity is higher than that of In 0.5 P, and that of Al x Ga 1-x As based binary or ternary compounds is higher. According to this fact, in this embodiment, the p-side quaternary cladding layer (Al 0.7 Ga) having a thin thickness of 0.1 μm is used.
0.3 ) 0.5 In 0.5 P5 with a thickness of 1.0 μm p-Al 0.8 Ga 0.2 As layer 6
By adjoining, the thermal resistance can be reduced to one third or less as compared with the case of the conventional double hetero structure requiring a thickness of about 1.0 μm. Therefore, it has a great effect on heat dissipation of the element, and has an effect of reducing the oscillation threshold of the element and improving the life of the element.

このように本実施例では、光およびキャリアの閉じこめ
については従来のダブルヘテロ構造の機能を全く損わ
ず、格子不整合が結晶の品質に及ぼす悪影響を大きく軽
減し、さらに熱抵抗を従来の3分の1以下にすることが
できた。このため素子の生産性を改善し、高性能・高信
頼性の素子を得ることができた。
As described above, in this embodiment, the confinement of light and carriers does not impair the function of the conventional double hetero structure, the lattice mismatch greatly reduces the adverse effect on the crystal quality, and the thermal resistance of the conventional double hetero structure is reduced. We were able to reduce it to less than one-third. Therefore, it was possible to improve the productivity of the device and obtain a high-performance and highly reliable device.

なお、本実施例の化合物組成、層厚などのパラメタは、
ここで述べた値に限定されるものでなく、請求の範囲を
満たすものであれば、本発明の効果は得られる。また、
本実施例においてp型クラッド層5に隣接する半導体層
6を二元のAlAs層とすると、その熱抵抗はさらに約5分
の1に減ずることができた。また、本発明は他の化合物
の組み合わせにも適用でき、例えばn型InP基板に1μ
m厚さのn型InP、0.1μm厚さのn型Al0.47In0.53Asク
ラッド層、0.2μm厚さのアンドープ(Al0.7Ga0.3)0.47I
n0.53As活性層、0.1μm厚さのp型Al0.47In0.53Asクラ
ッド層2μm厚さのp型InPを順に形成した多層構造の波
長950nmの近赤外発光の半導体レーザに適用できる。
The parameters such as the compound composition and layer thickness of this example are as follows.
The values of the present invention are not limited to the values described here, and the effects of the present invention can be obtained as long as they satisfy the claims. Also,
If the semiconductor layer 6 adjacent to the p-type cladding layer 5 in this example is a binary AlAs layer, the thermal resistance thereof can be further reduced to about 1/5. The present invention can also be applied to combinations of other compounds, for example, 1 μm for an n-type InP substrate.
m-thick n-type InP, 0.1 μm-thick n-type Al 0.47 In 0.53 As clad layer, 0.2 μm-thick undoped (Al 0.7 Ga 0.3 ) 0.47 I
It can be applied to a near-infrared emitting semiconductor laser with a wavelength of 950 nm having a multilayer structure in which an n 0.53 As active layer and a p-type Al 0.47 In 0.53 As clad layer having a thickness of 0.1 μm are sequentially formed.

(発明の効果) 以上述べたように、本発明によれば光およびキャリアの
閉じこめについては通常のダブルヘテロ構造の機能を全
く損わず、格子不整合が結晶の品質に及ぼす悪影響を大
きく軽減し、さら熱抵抗を低くすることにより、素子の
生産性および特性を向上させた半導体発光素子が得られ
る。。
(Effects of the Invention) As described above, according to the present invention, the confinement of light and carriers does not impair the function of the ordinary double hetero structure at all, and significantly reduces the adverse effect of lattice mismatch on the crystal quality. Further, by lowering the heat resistance, a semiconductor light emitting device with improved device productivity and characteristics can be obtained. .

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の一実施例を示す断面図、第2図(a),
(b)は本実施例のエネルギバンドダイヤグラムおよびそ
の屈折率ダイヤグラム、第3図(a),(b)は本実施例に用
いた(AlxGa1-x)0.5In0.5PおよびAlxGa1-xAsの熱抵抗率
のAl組成に対応する特性図、第4図は従来の半導体発光
素子の一例の断面図である。図において 1……n−GaAs基板、2……n−Al0.8Ga0.2As層、3,
13……n−(Al0.7Ga0.3)0.5In0.5Pクラッド層、4…
…アンドープ(Al0.2Ga0.8)0.5In0.5P活性層、5,15
……p−(Al0.7Ga0.3)0.5In0.5Pクラッド層、6……p
−Al0.8Ga0.2As層、7……p−GaAs層、8……SiO2膜、
9……p電極、10……n電極、11……ストライプ状
窓、12……n−GaAsバッファ層、14……アンドープ
Ga0.5In0.5P活性層、21……注入電子、22……注入
正孔、23……伝導帯、24……価電帯 である。
FIG. 1 is a sectional view showing an embodiment of the present invention, FIG. 2 (a),
(b) is an energy band diagram of this embodiment and its refractive index diagram. FIGS. 3 (a) and 3 (b) are (Al x Ga 1-x ) 0.5 In 0.5 P and Al x Ga used in this embodiment. FIG. 4 is a sectional view of an example of a conventional semiconductor light emitting device, which is a characteristic diagram corresponding to an Al composition having a thermal resistivity of 1-x As. In the figure, 1 ... n-GaAs substrate, 2 ... n-Al 0.8 Ga 0.2 As layer, 3,
13 ... n- (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer, 4 ...
... Undoped (Al 0.2 Ga 0.8 ) 0.5 In 0.5 P active layer, 5, 15
…… p− (Al 0.7 Ga 0.3 ) 0.5 In 0.5 P clad layer, 6 …… p
-Al 0.8 Ga 0.2 As layer, 7 ... p-GaAs layer, 8 ... SiO 2 film,
9 ... p electrode, 10 ... n electrode, 11 ... stripe window, 12 ... n-GaAs buffer layer, 14 ... undoped
Ga 0.5 In 0.5 P active layer, 21 ... injection electron, 22 ... injection hole, 23 ... conduction band, 24 ... valence band.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】GaInPまたはAlGaInPからなる
活性層と、この活性層を挟みこの活性層よりも大きなエ
ネルギギャップをもちAlInPまたはAlGaInP
からなるクラッド層とを有するダブルヘテロ構造と、こ
のダブルヘテロ構造の一面あるいは両面で前記クラッド
層の前記活性層と接しない側の面に設けられこの活性層
よりもエネルギギャップが大きく屈折率の小さなAlA
sまたはAlGaAsからなる半導体層とを備え、前記
活性層およびクラッド層を含む層の厚さが熱抵抗を充分
低く抑えられる程度に薄く形成されたことを特徴とする
半導体発光素子。
1. An active layer made of GaInP or AlGaInP and AlInP or AlGaInP having an energy gap larger than that of the active layer sandwiching the active layer.
And a double hetero structure having a cladding layer made of, and provided on one surface or both surfaces of the double hetero structure on a surface not in contact with the active layer and having a larger energy gap and a smaller refractive index than the active layer. AlA
and a semiconductor layer made of AlGaAs, and the thickness of the layer including the active layer and the clad layer is formed thin enough to suppress thermal resistance to a sufficiently low level.
JP12221885A 1985-06-05 1985-06-05 Semiconductor light emitting element Expired - Fee Related JPH0654821B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12221885A JPH0654821B2 (en) 1985-06-05 1985-06-05 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP12221885A JPH0654821B2 (en) 1985-06-05 1985-06-05 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS61280694A JPS61280694A (en) 1986-12-11
JPH0654821B2 true JPH0654821B2 (en) 1994-07-20

Family

ID=14830472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12221885A Expired - Fee Related JPH0654821B2 (en) 1985-06-05 1985-06-05 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPH0654821B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0728084B2 (en) * 1985-07-26 1995-03-29 ソニー株式会社 Semiconductor laser
US5048035A (en) * 1989-05-31 1991-09-10 Kabushiki Kaisha Toshiba Semiconductor light emitting device
JPH06103759B2 (en) * 1989-11-29 1994-12-14 株式会社東芝 Semiconductor light emitting device
JPH03127891A (en) * 1989-10-13 1991-05-30 Mitsubishi Electric Corp Semiconductor laser
US5190891A (en) * 1990-06-05 1993-03-02 Matsushita Electric Industrial Co., Ltd. Method for fabricating a semiconductor laser device in which the p-type clad layer and the active layer are grown at different rates
JP2900754B2 (en) * 1993-05-31 1999-06-02 信越半導体株式会社 AlGaInP light emitting device
US5811839A (en) 1994-09-01 1998-09-22 Mitsubishi Chemical Corporation Semiconductor light-emitting devices
JP2008235442A (en) 2007-03-19 2008-10-02 Fujitsu Ltd Semiconductor light-emitting element and its manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5595386A (en) * 1978-12-11 1980-07-19 Fujitsu Ltd Manufacture of semiconductor light emitting device

Also Published As

Publication number Publication date
JPS61280694A (en) 1986-12-11

Similar Documents

Publication Publication Date Title
US8537870B2 (en) Laser diode and semiconductor light-emitting device producing visible-wavelength radiation
JP3242967B2 (en) Semiconductor light emitting device
JP3129779B2 (en) Semiconductor laser device
US5583878A (en) Semiconductor optical device
JPH11274635A (en) Semiconductor light emitting device
JP4219010B2 (en) Semiconductor laser device
US5556804A (en) Method of manufacturing semiconductor laser
JPH05283791A (en) Surface emission type semiconductor laser
JPH0732285B2 (en) Semiconductor laser device
JP2002076514A (en) Laser diode and production method therefor
JPH0654821B2 (en) Semiconductor light emitting element
JP4136272B2 (en) Semiconductor light emitting device
JP3892637B2 (en) Semiconductor optical device equipment
JPH0783138B2 (en) Semiconductor light emitting element
JP2003017813A (en) Semiconductor laser
JP3033333B2 (en) Semiconductor laser device
JP4163321B2 (en) Semiconductor light emitting device
JPH05218565A (en) Semiconductor light emitting device
JP3135250B2 (en) Semiconductor laser device
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JP3820826B2 (en) Semiconductor light emitting device and method for manufacturing semiconductor device
JP3078553B2 (en) Semiconductor laser device and method of manufacturing the same
JPH0440872B2 (en)
JPH09135055A (en) Semiconductor laser
JP2527024B2 (en) Semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees