JPH0440872B2 - - Google Patents

Info

Publication number
JPH0440872B2
JPH0440872B2 JP19701385A JP19701385A JPH0440872B2 JP H0440872 B2 JPH0440872 B2 JP H0440872B2 JP 19701385 A JP19701385 A JP 19701385A JP 19701385 A JP19701385 A JP 19701385A JP H0440872 B2 JPH0440872 B2 JP H0440872B2
Authority
JP
Japan
Prior art keywords
layer
active layer
semiconductor
refractive index
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP19701385A
Other languages
Japanese (ja)
Other versions
JPS6255985A (en
Inventor
Isao Hino
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP60197013A priority Critical patent/JPS6255985A/en
Publication of JPS6255985A publication Critical patent/JPS6255985A/en
Publication of JPH0440872B2 publication Critical patent/JPH0440872B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、発光あるいはレーザ発振する半導体
発光素子に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a semiconductor light emitting device that emits light or oscillates as a laser.

(従来技術とその問題点) 多元混晶化合物半導体はその構成元素の組み合
わせにより広い範囲でエネルギーギヤツプおよび
屈折率を変えられる。この性質を利用して多元混
晶化合物の半導体層を複数層積層してダブルヘテ
ロ構造を形成し、高効率の発光ダイオードやレー
ザダイオードが製作されている。しかるに特性が
優れ、信頼性の高いこれらの半導体発光素子を得
るためには各半導体層の格子定数を基板の値と一
致させるか極めて近い値にさせる必要がある。従
来広く用いられているAlxGa1-xAs(0x1)
系化合物半導体は、アルミニウム組成xに依らず
格子定数はほぼ一定である。このため、Alx
Ga1-xAs系では前述のダブルヘテロ構造を構成す
る場合、格子定数一致の条件を常に満足したまま
各層のアルミニウム組成を設定することができ
る。また、半導体発光素子のクラツド層と活性層
との間に光導波のための層(光導波層とよぶ)を
挟んだり、或いは光導波層内のアルミニウム組成
を層面と垂直方向に連続的に変えても格子定数不
一致の問題は生じない。さらに一般に族がアル
ミニウムとガリウムから成りV族の元素の種類及
びV族元素の組成比が一定であれば、その化合物
の格子定数は族のアルミニウム組成に依存しな
いので、格子定数不一致の問題は生じない。
(Prior art and its problems) Multi-component mixed crystal compound semiconductors can change their energy gap and refractive index over a wide range depending on the combination of their constituent elements. Taking advantage of this property, high-efficiency light emitting diodes and laser diodes are manufactured by laminating multiple semiconductor layers of multi-component mixed crystal compounds to form a double heterostructure. However, in order to obtain these semiconductor light emitting devices with excellent characteristics and high reliability, it is necessary to make the lattice constant of each semiconductor layer match or be extremely close to the value of the substrate. Conventionally widely used Al x Ga 1-x As (0x1)
The lattice constant of the compound semiconductor is almost constant regardless of the aluminum composition x. For this reason, Al x
In the Ga 1-x As system, when forming the double heterostructure described above, the aluminum composition of each layer can be set while always satisfying the condition of lattice constant matching. In addition, a layer for optical waveguide (called an optical waveguide layer) is sandwiched between the cladding layer and the active layer of a semiconductor light emitting device, or the aluminum composition within the optical waveguide layer is continuously changed in the direction perpendicular to the layer surface. However, the problem of lattice constant mismatch does not occur. Furthermore, in general, if the group consists of aluminum and gallium and the types of group V elements and the composition ratio of group V elements are constant, the lattice constant of the compound does not depend on the aluminum composition of the group, so the problem of lattice constant mismatch occurs. do not have.

ところが近年、AlxGa1-xAs系で得られるより
も広い波長範囲(可視光或から赤外或)の発光或
いはレーザ発振が要求され、他の構成元素から成
る化合物半導体は発光素子を製作するのに用いら
れるようになつた。可視光域では(AlxGa1-x0.5
In0.5P系、GaXIn1-xPyAs1-y系などの化合物半導
体が、また赤外域ではGaxIn1-xAsySb1-y系、Gax
In1-xPyAs1-y系などの化合物半導体(いずれの
x,yま0x1,0y1の値をとる)が
用いられている。基板用半導体としてはGaAs,
GaSb,InPなどが用いられ、これら基板上に気
相成長法(有機金属熱分解法(MOVPE)、ハロ
ゲン輸送法(HTVPE))、液相成長法(LPE)、
或いは分子線法(MBE)等により、ダブルヘテ
ロ構造が形成されている。一般にこれらの多元混
晶は構成元素に組成に依存して格子定数は異なつ
た値をとる。したがつて基板の格子定数と同じ格
子定数値をとる、つまり格子整合させるには多元
混晶の各組成を精密に制御しなければならない。
However, in recent years, there has been a demand for light emission or laser oscillation in a wider wavelength range (from visible light to infrared light) than can be obtained with the Al x Ga 1-x As system, and compound semiconductors made of other constituent elements are being used to fabricate light-emitting devices. It came to be used to In the visible light range (Al x Ga 1-x ) 0.5
Compound semiconductors such as In 0.5 P system, Ga X In 1-x P y As 1-y system, and Ga x In 1-x As y Sb 1-y system, Ga x
A compound semiconductor such as an In 1-x P y As 1-y system (both x and y take values of 0x1 and 0y1) is used. GaAs,
GaSb, InP, etc. are used, and vapor phase epitaxy (metal organic pyrolysis (MOVPE), halogen transport method (HTVPE)), liquid phase epitaxy (LPE),
Alternatively, a double heterostructure is formed by molecular beam method (MBE) or the like. In general, these multi-component mixed crystals have different lattice constants depending on the composition of their constituent elements. Therefore, in order to obtain the same lattice constant value as that of the substrate, that is, to achieve lattice matching, each composition of the multi-component mixed crystal must be precisely controlled.

第3図に(AlxGa1-x0.5In0.5P系を用いGa0.5
In0.5Pを活性層とするダブルヘテロ構造レーザダ
イオードの従来例を示す(アプライド・フイジク
ス・レターズ(Appl−Phys−Lett−)第43巻
pp987−989(1983)。n型GaAs基板501上に例
えばMOCVD法により、n型Al0.3Ga0.70.5In0.5
クラツド層502、アンドープGa0.5In0.5P活性
層503、p型(Al0.3Ga0.70.5In0.5Pクラツド層
504、オーミツクコンタクト用p型GaAs層5
05を順次形成し、さらにストライプ状開口50
9をもつSiO2膜506上にAu/Znなどのp型用
電極507を、基板501の裏面にAuGeなどの
n型用電極508をそれぞれ形成したものであ
る。これは、通常のダブルヘテロ構造であるが、
このような比較的簡単な構造のものでも
AlGaInP系で実現することはAlGaAs系に比べて
非常に困難である。その理由を以下に述べる。
AlGaAs系ではアルミニウム(Al)とガリウム
(Ga)の組成比によらずいずれの組成でもGaAs
基板とほぼ格子整合するが、AlGaInP系ではAl
とGaのモル分率の和とインジウム(In)のモル
分率の比を約1:1に保たないと大きな格子不整
合を生じる。格子不整合が生じると結晶性が劣化
し、従つて素子特性が劣化することになる。この
ようにAlGaInP系では多層構造にした場合、さ
らには組成を成長時に連続的に変化させる場合に
は、格子整合条件を保つたまま組成を変化させる
ことは非常に困難となる。
Figure 3 shows (Al x Ga 1-x ) 0.5 In 0.5 P system and Ga 0.5
A conventional example of a double heterostructure laser diode with In 0.5 P as the active layer (Applied Physics Letters, Vol. 43)
pp987−989 (1983). An n-type Al 0.3 Ga 0.7 ) 0.5 In 0.5 P is deposited on an n-type GaAs substrate 501 by, for example, MOCVD.
Clad layer 502, undoped Ga 0.5 In 0.5 P active layer 503, p-type (Al 0.3 Ga 0.7 ) 0.5 In 0.5 P clad layer 504, p-type GaAs layer 5 for ohmic contact
05 are sequentially formed, and further striped openings 50 are formed.
A p-type electrode 507 made of Au/Zn or the like is formed on a SiO 2 film 506 having a silicon oxide film 506, and an n-type electrode 508 made of AuGe or the like is formed on the back surface of the substrate 501. This is a normal double heterostructure, but
Even with a relatively simple structure like this
It is much more difficult to achieve this with AlGaInP systems than with AlGaAs systems. The reason for this is explained below.
In the AlGaAs system, GaAs can be used regardless of the composition ratio of aluminum (Al) and gallium (Ga).
It is almost lattice matched with the substrate, but in AlGaInP system, Al
Unless the ratio of the sum of the mole fractions of Ga and Ga to the mole fraction of Indium (In) is kept at about 1:1, a large lattice mismatch will occur. When lattice mismatch occurs, crystallinity deteriorates, and therefore device characteristics deteriorate. As described above, when AlGaInP systems are formed into a multilayer structure, and furthermore when the composition is continuously changed during growth, it is extremely difficult to change the composition while maintaining lattice matching conditions.

第4図aは、AlGaAs系で実現された傾斜屈折
率分離光導波ヘテロ構造(GRIN−SCH)レーザ
(アプライド・フイジクス・レターズ(Appl−
Phys−Lett−)第40巻pp217−219(1982))の断
面図である。基板面に垂直方向のエネルギーバン
ド、および屈折率のダイヤグラムを第4図b,c
に併せて示す。n型GaAs基板521上にn型
Al0.5Ga0.5Asクラツド層522、クラツド層52
2から活性層524に向かつてAl組成を0.4から
連続的に0.2まで減らしたn型AlGaAsグレーデイ
ツド層523、アンドープ活性層524、活性層
524からクラツド層526に向かつてAl組成
を0.2から連続的に0.4まで増やしたp型AlGaAs
グレーデイツド層525、p型Al0.5Ga0.5Asクラ
ツド層526、オーミツクコンタクト用p型
GaAs層527を順次形成したのち、ストライプ
状開口531をもつSiO2膜528上にAu/Znな
どのp型用電極529を、基板521の裏面に
AuGeなどのn型用電極530をそれぞれ形成し
たものである。活性層524の厚みを500Å以下
にすることと、Al組成の傾斜をもつグレーデイ
ツド層523および525をもつことにより、従
来のダブルヘテロ構造と較べて、そのレーザ発振
閾値を大幅に低減することができるが、発振可能
な波長範囲が0.7〜0.87μmに限られるという欠点
がある。これ以外の可視域、赤外域の波長範囲の
発振を得るにはAlGaAs系を用いたのではだめで
AlGaInP系、GaInAsSb系などAlGaAs系以外の
材料を用いなければならない。ところがこれらの
材料は基板と格子整合するためには組成の厳しい
制御が必要となり、高機能、高性能化のための複
雑な多層構造をとることが非常に困難であつた。
Figure 4a shows a graded index separated optical waveguide heterostructure (GRIN-SCH) laser realized in AlGaAs system (Applied Physics Letters).
40, pp. 217-219 (1982)). Diagrams of the energy band perpendicular to the substrate surface and the refractive index are shown in Figure 4 b and c.
It is also shown in . n-type GaAs substrate 521
Al 0.5 Ga 0.5 As cladding layer 522, cladding layer 52
An n-type AlGaAs graded layer 523 in which the Al composition is successively reduced from 0.4 to 0.2 from 2 to the active layer 524; an undoped active layer 524; p-type AlGaAs increased to 0.4
Graded layer 525, p-type Al 0.5 Ga 0.5 As cladding layer 526, p-type for ohmic contact
After sequentially forming the GaAs layer 527, a p-type electrode 529 such as Au/Zn is formed on the back surface of the substrate 521 on the SiO 2 film 528 having the striped openings 531.
An n-type electrode 530 made of AuGe or the like is formed respectively. By setting the thickness of the active layer 524 to 500 Å or less and having graded layers 523 and 525 with gradient Al compositions, the laser oscillation threshold can be significantly reduced compared to the conventional double heterostructure. However, it has the disadvantage that the wavelength range in which it can oscillate is limited to 0.7 to 0.87 μm. In order to obtain oscillation in the visible and infrared wavelength ranges other than this, it is not possible to use AlGaAs.
Materials other than AlGaAs-based, such as AlGaInP-based and GaInAsSb-based, must be used. However, these materials require strict control of their composition in order to achieve lattice matching with the substrate, and it has been extremely difficult to form complex multilayer structures for high functionality and performance.

(発生の目的) 本発明の目的は、このような従来の欠点を除去
し、広い波長範囲にわたつて発光し、高性能、高
機能、高信頼性を有する半導体発光素子を提供す
ることにある。
(Purpose of Generation) The purpose of the present invention is to eliminate such conventional drawbacks, to provide a semiconductor light emitting device that emits light over a wide wavelength range, and has high performance, high functionality, and high reliability. .

(発明の構成) 本発明によれば、ガリウムおよびアルミニウム
のうち一方或いはその両方を族元素としてもつ
二元或いは三元−V化合物半導体基板上に、多
元化合物半導体より成る活性層と、この活性層の
上下両面に設けられた活性層よりも大きなエネル
ギーギヤツプと小さな屈折率をもつ多元化合物半
導体より成るクラツド層とを有する半導体発光素
子において、活性層と一方のクラツド層或いは両
方のクラツド層との間にガリウムおよびアルミニ
ウムのうち一方或いはその両方を族元素とし、
前記半導体基板のV族元素と同じ種類でかつ同じ
組成のものをV族元素として有し、かつ前記活性
層よりも大きなエネルギーギヤツプと小さな屈折
率をもつ二元或いは三元化合物半導体層をもつ構
造をそなえた半導体発光素子が得られる。さらに
活性層とクラツド層との間に形成された化合物半
導体層のアルミニウム組成が、活性層に接する側
からクラツド層に接する側に向かつて大きくなる
前述の半導体発光素子が得られる。
(Structure of the Invention) According to the present invention, on a binary or ternary-V compound semiconductor substrate having one or both of gallium and aluminum as a group element, an active layer made of a multi-component compound semiconductor, and this active layer are formed. In a semiconductor light-emitting device, the active layer and one or both of the cladding layers have a cladding layer made of a multi-component compound semiconductor having a larger energy gap and a smaller refractive index than the active layer. between which one or both of gallium and aluminum are group elements;
A binary or ternary compound semiconductor layer having a group V element of the same type and composition as the group V element of the semiconductor substrate, and having a larger energy gap and a smaller refractive index than the active layer. A semiconductor light-emitting device having a structure having the following properties can be obtained. Furthermore, the aforementioned semiconductor light emitting device is obtained in which the aluminum composition of the compound semiconductor layer formed between the active layer and the cladding layer increases from the side in contact with the active layer to the side in contact with the cladding layer.

(実施例) 以下、図面を用いて本発明を詳細に説明する。
本発明の第1の実施例を第1図に示す。第1図a
は第1の実施例の模式図、第1図bは第1の実施
例のエネルギーバンドダイヤグラム、第1図cは
第1の実施例の屈折率ダイヤグラムをそれぞれ示
す。第1図a,b,cで共通する部分は同じ番号
を附した。本実施例は波長0.65μmで発振する赤
色可視光半導体レーザの構造を示しており、その
形成法は次のとおりである。n型GaAs基板10
1上にエピタキシヤル成長法により厚さ1.0μmの
n型(Al0.3Ga0.70.5In0.5Pクラツド層102、厚
さ0.4μmのn型Al0.5Ga0.5Asガイド層103、厚
さ0.03μmのアンドープGa0.5In0.5P活性層104、
厚さ0.4μmのp型Al0.5Ga0.5Asガイド層105、
厚さ0.1μmのp型(Al0.3Ga0.70.5In0.5Pクラツド
層106、厚さ1.0μmのp型GaAs層107を順
次成長する。エピタキシヤル成長法としては
MOVPE法、MBE法等のいずれでもよい。さら
にストライプ状開口(幅10μm)111をもつ
SiO2絶縁膜108を設け、その上にAu/Zn合金
によるp電極109を形成し、n−GaAs基板1
01上にAu/Ge合金によるn電極110を形成
て完成する。活性層104にはストライプ状に電
流が注入され励起されて効率よい発振が可能とな
る。成長層方向の距離xに対するエネルギバンド
ダイヤグラムおよび屈折率ダイヤグラムを第1図
b,cにそれぞれ示す。注入されたキヤリアは第
1図bに示されているように、最もエネルギーギ
ヤツプの小さなGa0.5In0.5P活性層104に閉じ
こめられレーザ発振に寄与する。本実施例は、活
性層でのキヤリア密度を高め、レーザ発振閾電流
値を下げるために活性層104の厚さは0.03μm
と薄くしてあるので、光は活性層104のみに閉
じこめられず光のガイド量103,105中にも
拡がる。屈折率のダイヤグラム第1図cでわかる
ように、ガイド層103,105および活性層1
04の屈折率はクラツド層102,106のそれ
よりも大きいので、レーザ発振光は活性層104
および光のガイド層103,105に閉じ込めら
れる。光および注入キヤリアの閉じ込めを十分に
行なうには、そのために必要な屈折率差、エネル
ギーギヤツプ差をもつクラツド層で活性層を挾ま
ねばならない。その役割を担うのが(Al0.3Ga0.7
0.5In0.5Pクラツド層102および106である。
第1図bおよびcに示されているように、エネル
ギーギヤツプは活性層104,ガイド層103お
よび105、クラツド層102および106の順
に大きくなり、屈折率はこの順番で小さくなつて
いる。AlGaAs系では、GaInPに対して、充分な
エネルギーギヤツプ差および屈折率差をとること
ができないので、クラツド層としてはAlGaInP
を用いる必要がある。ところがガイド層に対して
はAlGaAs系でも、本実施例の如く適当なAl組成
のものを用いれば、その効果を十分果たすことが
できる。ガイド層として適当な組成の(Alx
Ga1-xyIn1-yP(0≦x≦1、0≦y≦1)を用
いることもできるが、この場合yの値(即ち、In
の組成比1−y)により格子定数が異なるため、
基板と格子整合させるにはyの値を精密に制御す
る必要があり、結晶成長の際の困難度、素子にし
た場合の信頼性維持の困難さが増すことになり、
素子歩留りも低下する。そこで本実施例の如く、
組成の如何に拘わらず基板と格子整合する
AlGaAsを用いることによりこれらの不都合は解
消され、しかも所望の素子特性を得ることができ
る。
(Example) Hereinafter, the present invention will be explained in detail using the drawings.
A first embodiment of the invention is shown in FIG. Figure 1a
is a schematic diagram of the first embodiment, FIG. 1b is an energy band diagram of the first embodiment, and FIG. 1c is a refractive index diagram of the first embodiment. Common parts in FIGS. 1a, b, and c are given the same numbers. This example shows the structure of a red visible light semiconductor laser that oscillates at a wavelength of 0.65 μm, and its formation method is as follows. n-type GaAs substrate 10
1, an n-type (Al 0.3 Ga 0.7 ) 0.5 In 0.5 P cladding layer 102 with a thickness of 1.0 μm, an n-type Al 0.5 Ga 0.5 As guide layer 103 with a thickness of 0.4 μm, and a 0.03 μm-thick n-type (Al 0.5 Ga 0.5 As guide layer 103 with a thickness of 0.03 μm) are formed on the top layer 1 by epitaxial growth. undoped Ga 0.5 In 0.5 P active layer 104,
p-type Al 0.5 Ga 0.5 As guide layer 105 with a thickness of 0.4 μm,
A p-type (Al 0.3 Ga 0.7 ) 0.5 In 0.5 P cladding layer 106 with a thickness of 0.1 μm and a p-type GaAs layer 107 with a thickness of 1.0 μm are successively grown. As an epitaxial growth method
Either MOVPE method, MBE method, etc. may be used. Furthermore, it has a striped opening (width 10 μm) 111.
A SiO 2 insulating film 108 is provided, a p-electrode 109 made of Au/Zn alloy is formed thereon, and the n-GaAs substrate 1
An n-electrode 110 made of Au/Ge alloy is formed on 01 to complete the process. Current is injected into the active layer 104 in a stripe pattern and excited, allowing efficient oscillation. An energy band diagram and a refractive index diagram with respect to distance x in the growth layer direction are shown in FIGS. 1b and 1c, respectively. As shown in FIG. 1b, the injected carriers are confined in the Ga 0.5 In 0.5 P active layer 104 with the smallest energy gap and contribute to laser oscillation. In this example, the thickness of the active layer 104 is 0.03 μm in order to increase the carrier density in the active layer and lower the laser oscillation threshold current value.
Since the active layer 104 is made thin, the light is not confined only in the active layer 104 but also spreads into the light guide amounts 103 and 105. As can be seen in the refractive index diagram FIG. 1c, the guide layers 103, 105 and the active layer 1
Since the refractive index of the active layer 104 is larger than that of the cladding layers 102 and 106, the laser oscillation light is transmitted to the active layer 104.
and is confined in the light guide layers 103 and 105. In order to achieve sufficient confinement of light and injected carriers, the active layer must be sandwiched between cladding layers having the necessary refractive index difference and energy gap difference. (Al 0.3 Ga 0.7 ) plays this role.
0.5 In 0.5 P cladding layers 102 and 106.
As shown in FIGS. 1b and 1c, the energy gap increases in the order of active layer 104, guide layers 103 and 105, and cladding layers 102 and 106, and the refractive index decreases in this order. In the AlGaAs system, it is not possible to have a sufficient energy gap difference and refractive index difference with respect to GaInP, so AlGaInP is used as the cladding layer.
It is necessary to use However, if the guide layer is made of AlGaAs, but has an appropriate Al composition as in this embodiment, the effect can be sufficiently achieved. (Al x
Ga 1-x ) y In 1-y P (0≦x≦1, 0≦y≦1) can also be used, but in this case, the value of y (i.e., In
Since the lattice constant differs depending on the composition ratio 1-y),
In order to achieve lattice matching with the substrate, it is necessary to precisely control the value of y, which increases the difficulty of crystal growth and the difficulty of maintaining reliability when used as a device.
Device yield also decreases. Therefore, as in this example,
Lattice matched to the substrate regardless of composition
By using AlGaAs, these disadvantages can be resolved and desired device characteristics can be obtained.

本発明の第2の実施例を第2図に示す。第2図
aは第2の実施例の模式図、第2図bは第2の実
施例のエネルギーバンドダイヤグラム、第2図c
は第2の実施例の屈折率ダイヤグラムをそれぞれ
示す。第2図a,b,cで共通する部分は同じ番
号を附した。本実施例は波長0.636nmで発振する
低発振閾値赤色可視光半導体レーザの構造を示し
ており、その形成法を次に説明する。エピタキシ
ヤル結晶成長法としては、MBE法又はMOVPE
法を用いる。まずn型GaAs基板201上に厚さ
1.0μmのn型(Al0.6Ga0.40.5In0.5Pクラツド層2
02を成長する。この上に成長方向に連続的に
Al組成が0.7から0.5に減少するAlxGa1-xAsグレ
ーデイツド層203を0.4μm成長する。続いて厚
さ0.01μmのアンドープ(Al0.1Ga0.90.5In0.5P活性
層204を成長し、その上に成長方向に連続的に
Al組成が0.5から0.7に増加するAlxGa1-xAsグレ
ーデイツド205を0.4μm成長する。さらにその
上に厚さ1.0μmのp型(Al0.6Ga0.40.5In0.5Pクラ
ツド層206、厚さ1.0μmのp型GaAs層207
を順次成長する。続いてストライプ状開口(幅
10μm)211をもつSiO2絶縁膜208上にAu/
Zn合金によるp電極209およびn−GaAs基板
201上にAu/Ge合金によるn電極210を形
成する。成長層方向の距離xに対するエネルギー
バンドダイヤグラムおよび屈折率ダイヤグラムを
第2図b,cにそれぞれ示す。注入されたキヤリ
アは第2図bで示されているように最もエネルギ
ーギヤツプの小さい(Al0.1Ga0.90.5In0.5P活性層
204に閉じ込められレーザ発振に寄与する。本
実施例では、活性層を厚さ0.01μmとごく薄くし、
前記第1の実施例よりもキヤリア密度を高め、ま
た量子井戸効果を生ぜしめて発振閾値の低下をは
かつてある。このとき、注入キヤリアを効率よく
活性層204に集め、かつ光をクラツド層20
2,206、の間に閉じ込めるためにグレーデイ
ツド層203,205を設けてある。第2図bに
示したように注入キヤリアはグレツデイツド層2
03,205につくられた電界により活性層20
4に集められ、第2図cに示したような屈折率分
布により光は活性層204を中心にしてグレーデ
イツド層203,205に亘つて閉じ込められ
る。この場合、グレーデイツド層203,205
には、組成を連続的に変化させることが要求され
る。屈折率、エネルギーギヤツプの値の観点から
は、AlGaInP系でも満足されるのであるが、レ
ーザ素子とする場合には、基板と格子整合を保つ
必要がある。AlGaInPのように一般に組成を変
えると格子定数の変わる材料で、格子定数を一定
に保ちながら組成を変えることは非常に困難であ
る。ところが本実施例のようにAlGaAs系の材料
をグレーデイツド層として用いると、連続的に形
成を変えても格子定数はGaAsのそれとほぼ一致
している。またAlGaAsは、AlGaInP系のレーザ
に対しても、本実施例のようにエネルギーギヤツ
プの値や屈折率に対しての要請を満足する組成を
得ることができる。このようにして製作した素子
は従来のダブルヘテロ構造素子と較べて発振閾値
を大幅に低減することができた。これは従来
AlGaAs系で得られているGRIN−SCHレーザと
同様の効果が本実施例の構造を以てしても得られ
ていることを意味している。第1および第2の実
施例で挙げた化合物組成、層厚 導伝型などのパ
ラメータは、ここで述べた値に限定されるもので
はない。また本発明は他の化合物の組み合わせに
も適用できる。一例としてn型GaSb基板上に
1μm厚さのn型Al0.5Ga0.5Sb,0.4μm厚さのn型
AlxGa1-xSbグレーデイツド層(x:0.4→0.2)、
0.01μm厚さのアンドープGa0.4In0.6As0.5Sb0.5
0.4μm厚さのp型AlxGa1-xSbグレーデイツド層
(x:0.2→0.4)、1μm厚さのp型Al0.5Ga0.5Sbグラ
ツド層を順に形成した多層構造により波長2.5μm
の赤外発光の半導体レーザが得られる。
A second embodiment of the invention is shown in FIG. Fig. 2a is a schematic diagram of the second embodiment, Fig. 2b is an energy band diagram of the second embodiment, Fig. 2c
respectively show refractive index diagrams of the second example. Common parts in FIGS. 2a, b, and c are given the same numbers. This example shows the structure of a low oscillation threshold red visible light semiconductor laser that oscillates at a wavelength of 0.636 nm, and its formation method will be described next. Epitaxial crystal growth methods include MBE method or MOVPE.
Use the law. First, on the n-type GaAs substrate 201,
1.0μm n-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P cladding layer 2
Grow 02. Continuously in the growth direction on top of this
An Al x Ga 1-x As graded layer 203 whose Al composition is reduced from 0.7 to 0.5 is grown to a thickness of 0.4 μm. Subsequently, an undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P active layer 204 with a thickness of 0.01 μm is grown, and a layer is continuously grown on it in the growth direction.
Al x Ga 1-x As graded 205 with an Al composition increasing from 0.5 to 0.7 is grown to a thickness of 0.4 μm. Furthermore, a p-type (Al 0.6 Ga 0.4 ) 0.5 In 0.5 P cladding layer 206 with a thickness of 1.0 μm and a p-type GaAs layer 207 with a thickness of 1.0 μm are further formed on it.
grow sequentially. Next, striped openings (width
Au /
An n-electrode 210 made of an Au/Ge alloy is formed on a p-electrode 209 made of a Zn alloy and an n-electrode 210 made of an n-GaAs substrate 201 . An energy band diagram and a refractive index diagram with respect to distance x in the growth layer direction are shown in FIGS. 2b and 2c, respectively. The injected carriers are confined in the (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P active layer 204 with the smallest energy gap, as shown in FIG. 2b, and contribute to laser oscillation. In this example, the active layer is made extremely thin with a thickness of 0.01 μm,
The carrier density is higher than that of the first embodiment, and a quantum well effect is produced, thereby lowering the oscillation threshold. At this time, the injected carriers are efficiently collected in the active layer 204 and the light is transferred to the cladding layer 204.
Graded layers 203 and 205 are provided to confine the light between 2 and 206. As shown in Figure 2b, the injection carrier is in the grated layer 2.
The active layer 20 due to the electric field created at 03,205
4, and the light is confined across the graded layers 203 and 205 with the active layer 204 as the center due to the refractive index distribution as shown in FIG. 2c. In this case, the gray dated layers 203, 205
requires continuous changes in composition. In terms of refractive index and energy gap values, AlGaInP systems are also satisfactory, but when used as a laser device, it is necessary to maintain lattice matching with the substrate. AlGaInP is a material whose lattice constant generally changes when its composition is changed, and it is extremely difficult to change its composition while keeping the lattice constant constant. However, when an AlGaAs-based material is used as the graded layer as in this embodiment, the lattice constant almost matches that of GaAs even if the formation is continuously changed. Furthermore, AlGaAs can be used to obtain a composition that satisfies the requirements for the energy gap value and refractive index, as in this embodiment, even for AlGaInP-based lasers. The device manufactured in this way was able to significantly reduce the oscillation threshold compared to the conventional double heterostructure device. This is conventional
This means that the same effect as the GRIN-SCH laser obtained with the AlGaAs system can be obtained with the structure of this example. The parameters such as compound composition, layer thickness, conductivity type, etc. mentioned in the first and second examples are not limited to the values described here. The present invention is also applicable to combinations of other compounds. As an example, on an n-type GaSb substrate
1μm thick n-type Al 0.5 Ga 0.5 Sb, 0.4μm thick n-type
Al x Ga 1-x Sb graded layer (x: 0.4→0.2),
0.01μm thick undoped Ga 0.4 In 0.6 As 0.5 Sb 0.5 ,
A multilayer structure consisting of a 0.4 μm thick p-type Al x Ga 1-x Sb graded layer (x: 0.2→0.4) and a 1 μm thick p-type Al 0.5 Ga 0.5 Sb graded layer produces a wavelength of 2.5 μm.
An infrared-emitting semiconductor laser is obtained.

(発明の効果) 以上述べたように、本発明によれば、光および
キヤリアの閉じ込めについては従来ある光ガイド
層つきレーザ或いは傾斜屈折率分離光導波ヘテロ
構造(GRIN−SCH)などの低閾値化レーザの機
能を全く損わず、格子不整合が結晶の品質に及ぼ
す悪影響を大きく軽減し、製作を容易とした半導
体発光素子を提供することができる。
(Effects of the Invention) As described above, according to the present invention, light and carrier confinement can be achieved by reducing the threshold of conventional lasers with optical guide layers or graded refractive index separated optical waveguide heterostructures (GRIN-SCH). It is possible to provide a semiconductor light emitting device that does not impair the functionality of the laser at all, greatly reduces the adverse effects of lattice mismatch on crystal quality, and is easy to manufacture.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a,b,cはそれぞれ本発明の第1の実
施例の構造、エネルギーバンドダイヤグラム、屈
折率ダイヤグラムを示す図、第2図a,b,cは
それぞれ第2の実施例の構造、エネルギダイヤグ
ラム、屈折率ダイヤグラムを示す図、第3図は従
来例を示す概略構造図、第4図a,b,cはそれ
ぞれ他の従来例の断面図、エネルギダイヤグラ
ム、屈折率ダイクグラムを示す。 101,201,501,521……n−
GaAs基板、102,502……n−(Al0.3Ga0.7
0.5In0.5Pクラツド層、103……n−Al0.5Ga0.5
Asガイド層、104,503……アンドープ
Ga0.5In0.5P活性層、105……p−Al0.5Ga0.5As
ガイド層、106,504……p−(Al0.3Ga0.70.
In0.5Pクラツド層、202……n−(Al0.6Ga0.4
0.5In0.5Pクラツド層、203,523……n−
AlxGa1-xAsグレーデイツド層、204……アン
ドープ(Al0.1Ga0.90.5In0.5P活性層、205,5
25……p−AlxGa1-xAsグレーデイツド層、2
06……p−(Al0.6Ga0.40.5In0.5Pクラツド層、
522……n−Al0.5Ga0.5Asクラツド層、524
……アンドープGaAs活性層、526……p−
Al0.5Ga0.5Asクラツド層、107,207,50
5,527……p−GaAs層、108,208,
506,528……SiO2膜、109,209,
507,529……p電極、110,210,5
08,530……n電極、111,211,50
9,531……ストライプ状開口。
Figures 1a, b, and c are diagrams showing the structure, energy band diagram, and refractive index diagram of the first embodiment of the present invention, respectively; Figures 2a, b, and c are diagrams showing the structure of the second embodiment, respectively; FIG. 3 is a schematic structural diagram showing a conventional example, and FIGS. 4 a, b, and c are sectional views, energy diagrams, and refractive index dichograms of other conventional examples. 101, 201, 501, 521...n-
GaAs substrate, 102,502...n-(Al 0.3 Ga 0.7 )
0.5 In 0.5 P clad layer, 103...n-Al 0.5 Ga 0.5
As guide layer, 104,503...undoped
Ga 0.5 In 0.5 P active layer, 105...p-Al 0.5 Ga 0.5 As
Guide layer, 106,504...p-(Al 0.3 Ga 0.7 ) 0.
5 In 0.5 P cladding layer, 202...n-(Al 0.6 Ga 0.4 )
0.5 In 0.5 P clad layer, 203,523...n-
Al x Ga 1-x As graded layer, 204...Undoped (Al 0.1 Ga 0.9 ) 0.5 In 0.5 P active layer, 205,5
25...p-Al x Ga 1-x As graded layer, 2
06...p-(Al 0.6 Ga 0.4 ) 0.5 In 0.5 P clad layer,
522... n-Al 0.5 Ga 0.5 As cladding layer, 524
...Undoped GaAs active layer, 526...p-
Al 0.5 Ga 0.5 As cladding layer, 107,207,50
5,527...p-GaAs layer, 108,208,
506,528...SiO 2 film, 109,209,
507,529...p electrode, 110,210,5
08,530...n electrode, 111,211,50
9,531...Striped opening.

Claims (1)

【特許請求の範囲】 1 ガリウムおよびアルミニウムのうちその一方
或いはその両方を族元素としてもつ二元或いは
三元−V化合物半導体基板上に、多元化合物半
導体より成る活性層と、該活性層の上下両面に設
けられた活性層よりも大きなエネルギーギヤツプ
と小さな屈折率をもつ多元化合物半導体より成る
クラツド層とを有する半導体発光素子において、
前記活性層と一方のクラツド層或いは両方のクラ
ツド層との間にガリウムおよびアルミニウムのう
ち一方或いはその両方を族元素とし、前記半導
体基板のV族元素と同じ種類でかつ同じ組成のも
のをV族元素として有し、かつ前記活性層よりも
大きなエネルギーギヤツプと小さな屈折率をもつ
二元或いは三元化合物半導体層を設けたことを特
徴とする半導体発光素子。 2 活性層とクラツド層との間に形成された化合
物半導体層中のアルミニウム組成が、活性層に接
する側からクラツド層に接する側に向かつて大き
くなつていることを特徴とする特許請求の範囲第
1項記載の半導体発光素子。
[Scope of Claims] 1. An active layer made of a multi-component compound semiconductor on a binary or ternary-V compound semiconductor substrate having one or both of gallium and aluminum as a group element, and an active layer on both upper and lower surfaces of the active layer. In a semiconductor light emitting device having a cladding layer made of a multicompound semiconductor having a larger energy gap and a smaller refractive index than an active layer provided in the semiconductor light emitting device,
One or both of gallium and aluminum is used as a group element between the active layer and one clad layer or both clad layers, and the group V element is the same type and has the same composition as the group V element of the semiconductor substrate. 1. A semiconductor light emitting device, comprising a binary or ternary compound semiconductor layer having a compound semiconductor layer as an element and having a larger energy gap and a smaller refractive index than the active layer. 2. Claim No. 2, characterized in that the aluminum composition in the compound semiconductor layer formed between the active layer and the cladding layer increases from the side in contact with the active layer to the side in contact with the cladding layer. The semiconductor light emitting device according to item 1.
JP60197013A 1985-09-05 1985-09-05 Semiconductor light emitting element Granted JPS6255985A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60197013A JPS6255985A (en) 1985-09-05 1985-09-05 Semiconductor light emitting element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60197013A JPS6255985A (en) 1985-09-05 1985-09-05 Semiconductor light emitting element

Publications (2)

Publication Number Publication Date
JPS6255985A JPS6255985A (en) 1987-03-11
JPH0440872B2 true JPH0440872B2 (en) 1992-07-06

Family

ID=16367330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60197013A Granted JPS6255985A (en) 1985-09-05 1985-09-05 Semiconductor light emitting element

Country Status (1)

Country Link
JP (1) JPS6255985A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2616272B1 (en) * 1987-06-02 1990-10-26 Thomson Csf SEMICONDUCTOR MATERIAL DEVICE MADE ON A DIFFERENT MESH PARAMETER SUBSTRATE, APPLICATION TO A LASER AND METHOD FOR PRODUCING THE SAME

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574189A (en) * 1980-06-10 1982-01-09 Matsushita Electric Ind Co Ltd Semiconductor laser device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS574189A (en) * 1980-06-10 1982-01-09 Matsushita Electric Ind Co Ltd Semiconductor laser device

Also Published As

Publication number Publication date
JPS6255985A (en) 1987-03-11

Similar Documents

Publication Publication Date Title
EP0661782B1 (en) A semiconductor laser
US4750183A (en) Semiconductor laser device
JPH0418476B2 (en)
EP0989643B1 (en) Semiconductor light-emitting device and manufacturing method for the same
US5042049A (en) Semiconductor optical device
JP2558768B2 (en) Semiconductor laser device
JPH0732285B2 (en) Semiconductor laser device
US4916708A (en) Semiconductor light-emitting devices
US5574741A (en) Semiconductor laser with superlattice cladding layer
US4761790A (en) Optical semiconductor device
JP4045639B2 (en) Semiconductor laser and semiconductor light emitting device
JP5381692B2 (en) Semiconductor light emitting device
JP2721185B2 (en) Rib waveguide type light emitting semiconductor device
JPH0654821B2 (en) Semiconductor light emitting element
JPH04350988A (en) Light-emitting element of quantum well structure
JP2001144375A (en) Semiconductor light-emitting device
JPH0440872B2 (en)
JP2748570B2 (en) Semiconductor laser device
US5608751A (en) Laser diode and process for producing the same
JP4154757B2 (en) AlGaAs layer growth method and semiconductor laser manufacturing method
JPH0669589A (en) Semiconductor laser element
JP3033333B2 (en) Semiconductor laser device
JPH01184972A (en) Semiconductor laser device
WO1990004275A1 (en) Semiconductor light-emitting devices
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof