JP4134366B2 - Surface emitting laser - Google Patents

Surface emitting laser Download PDF

Info

Publication number
JP4134366B2
JP4134366B2 JP00206898A JP206898A JP4134366B2 JP 4134366 B2 JP4134366 B2 JP 4134366B2 JP 00206898 A JP00206898 A JP 00206898A JP 206898 A JP206898 A JP 206898A JP 4134366 B2 JP4134366 B2 JP 4134366B2
Authority
JP
Japan
Prior art keywords
layer
gaas
emitting laser
surface emitting
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP00206898A
Other languages
Japanese (ja)
Other versions
JPH11204875A (en
Inventor
正彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP00206898A priority Critical patent/JP4134366B2/en
Publication of JPH11204875A publication Critical patent/JPH11204875A/en
Application granted granted Critical
Publication of JP4134366B2 publication Critical patent/JP4134366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は半導体レーザ装置に係り、これを構成する半導体層に対しほぼ垂直方向にレーザ光を発振する共振器、所謂垂直共振器を有する面発光型の半導体レーザ(以下、面発光レーザと呼ぶ)に関する。
【0002】
【従来の技術】
面発光レーザは、基板結晶の表面から垂直方向にレーザ光を出すので2次元並列集積が可能であり、光インターコネクションや並列光情報処理等のシステムへの応用、あるいは光ファイバ通信への応用が期待されている。さらに、素子の検査や光ファイバーとの結合が容易なのでシステムを安価に提供する事ができる。また、電流狭窄層を設けることで、電流をアパーチャーと呼ばれる部分から局所的に注入することができ、微小体積の活性領域でレーザ発振を起こすことが可能である。従って、低閾電流化、つまり、低消費電力化に適している。
【0003】
電流狭窄層として、AlAsを選択的に酸化させた AlOx層の使用が近年提案され、閾電流の大幅な低減が達成された。その詳細は、例えば、IEEE J. Selected Topics in Quantum Electronics誌, 3巻, 893-904頁, 1997年に記載されている。
【0004】
【発明が解決しようとする課題】
上記AlOx電流狭窄層は、結晶成長法により作製したAlAs層をメサ状にエッチングし、メサの周囲からAlAs層を選択的に酸化させAlOx層へ変化させて作製される。AlAs層のうち酸化されずに残ったメサ中央部分が、電流が注入されるアパーチャー層となる。低閾電流の面発光レーザを大量生産するためには、アパーチャー層の大きさを僅か数μmとし、尚且つ、その大きさを正確に制御する必要がある。しかし、AlAs層の酸化の速度は散つきが大きく、アパーチャー層の大きさを正確に制御することは困難であり、AlOx電流狭窄層を有する面発光レーザの実用化においては低い歩留まりが問題となっている。通常、AlAsアパーチャー層(およびAlOx電流狭窄層)の上下にはGaAs層が配置されるが、AlAsアパーチャー層とGaAs層との界面ではヘテロ障壁が発生し、直列抵抗となり電気特性を劣化させる。また、絶縁体のAlOxと半導体のGaAsは熱膨張係数が大きく異なるので、AlOx電流狭窄層とGaAs層との界面では物理的剥離が発生することがあり、素子の歩留まりを低下させたり、素子寿命が短くなるなどの問題が生じている。
【0005】
本発明の目的は、優れた特性の面発光レーザを歩留まり良く生産する事により、それを光源として利用したレーザ光送信モジュール及び光インターコネクション、あるいは光ファイバー通信等の応用システムを安価に提供する事である。また、直列抵抗が低い面発光レーザを提供する事も目的の一つである。更なる目的としては、優れた特性の長波長帯(波長:1.2から1.6μm)の面発光レーザを提供することである。
【0006】
【課題を解決するための手段】
基板結晶上に光を発生する活性層と前記活性層から発生した光からレーザ光を得る為に活性層の上下を反射鏡で挟んだ共振器構造を有し、前記基板結晶と垂直に光を出射する面発光レーザにおいて、AlInP、AlGaInP、もしくはAlAs等のバンドギャプが2eV以上の半導体、所謂ワイドギャップ半導体を電流狭窄層に用い、ホトリソグラフ工程(電流狭窄層に開口形成)と再成長工程(開口を埋め込む半導体結晶成長)により上記電流狭窄層に設けられたアパーチャー(開口)にアパーチャー層を形成することで歩留まりを大きく改善できる。本明細書で以下に論じるワイドギャップ半導体とは、バンドギャップ(禁制帯幅)が2eV以上の半導体材料であれば、種類を問わず、また上述のAlInP、AlGaInPにおいては、このバンドギャップ値を満たすような組成を有することが要請される。
【0007】
一方、上記電流狭窄層に形成された開口を埋め込むように形成されるアパーチャー層の材料としては、上記電流狭窄層よりバンドギャップの小さい例えばGaAsもしくはAlGaAsが好ましい。また、高濃度にドーピングされた電流導入層を電流狭窄層の上に形成することで直列抵抗を低減できる。さらに、活性層にGaInNAsを用いることで、光ファイバー通信で用いられる1.3μm帯もしくは1.55μm帯に適用できる(特に活性層以外の半導体層をGaAs、AlGaAs、AlAs、AlInPで形成する場合、結晶成長の観点からみて当該活性層組成は望ましい)。
【0008】
このように構成することで、活性層の上記アパーチャー層に対向する部分を中心に電流を注入することができ、これにより発生した光は上記アパーチャー層を介して対向した反射鏡で構成される共振器を往復して、誘導放出光を発生する。ここで反射鏡とは、これに対して活性層側に接合された層(半導体層)より反射率の高い物質からなる膜又は複数の膜の積層構造を指し、その材料は半導体又は誘電体等から選ばれる。そして、基板側に形成された反射鏡と基板の反対側に形成された反射鏡の反射率は、共振器の仕様に応じて夫々設定される。
【0009】
また、本発明の面発光レーザは、光インターコネクション、光ファイバー通信等のシステムで利用できる。その場合、面発光レーザをそれを駆動するICや光ファイバの部品と共にパッケージしたレーザ光送信モジュールとして利用する事が好ましい。
【0010】
本発明の面発光レーザの構造、作製方法、および作用について、実施例1の説明図1を用いて示す。同図において、1はn型GaAs基板、2はn型半導体多層膜反射鏡、3は第1GaAsスペーサ層、4は活性層、5は第2GaAsスペーサ層、6はAlInP電流狭窄層、7はp型GaAs電流導入層、8は再成長界面、9は第3GaAsスペーサ層、10は多層膜反射鏡、11はp側電極、12はn側電極である。まず、2から7までの層を、結晶成長法により作製する。次に、アパーチャー層を形成するために、p型GaAs電流導入層7、AlInP電流狭窄層6、および第2GaAsスペーサ層5の一部(レーザ発振に提供する部分を含めた領域)を図1に示すようにエッチングにより取り除く(これにより、レーザ光を発振させる光軸上から上記電流狭窄層が除去される)に提供する。その後、結晶成長法によりp型GaAsを再成長して第3GaAsスペーサ層9を作製する(換言すれば、上記開口はGaAsで埋め込まれる)。第3GaAsスペーサ層9のうち電流狭窄層6に挟まれた部分がアパーチャー層となる。アパーチャー層は、ホトリソグラフ工程により作製されるので大きさは正確に制御できる。アパーチャー層、つまり、第3GaAsスペーサ層9の ドーピング濃度をp=1×1018cm-3程度に設定することで、十分な導電率を得ることができ、尚且つ、レーザ光に対する光損失を十分に低減できる。最後に、多層膜反射鏡10、p側電極11、およびn側電極12を形成して構造が完成される。
【0011】
電流は、p側電極11より注入され、p型第3GaAsスペーサ層9およびp型GaAs電流導入層7を通してアパーチャー層に導かれる。電流が電流狭窄層6と平行に流れるとき、p型GaAs電流導入層7はp=1×1020cm-3と超高濃度にドーピングされているので抵抗が非常に低く電流の殆どがこの層を流れる。また、第3GaAsスペーサ層9、p型GaAs電流導入層7、アパーチャー層、および第2GaAsスペーサ層5は、すべてGaAsであるのでヘテロ障壁による直列抵抗は発生しない。従って、p側電極11からアパーチャー直下の活性領域までの間で電圧降下は殆ど発生しない。また、n型半導体多層膜反射鏡2の直列抵抗も小さいので、素子抵抗が非常に低い面発光レーザを作製することができる。
【0012】
ここで、AlInPによる電流狭窄の作用について、図3を参照して説明する。AlInPはGaAs基板と格子整合が可能であり良質な結晶が得られるのでレーザ光の散乱などの光学的劣化を生じさせない。図3(a)にn型AlInPとp型GaAs、及び図3(b)にp型AlInPとp型GaAsとのバンドラインナップの様子を示す。図中で+で示される正孔がGaAsからAlInPへ移動しようとしても、価電子帯におけるヘテロ障壁(図では下向きに引かれた線)があり、移動できない。つまり、電流が流れない。ヘテロ障壁の大きさは、AlInPがn型の場合2eV程度、AlInPがp型の場合でも約 0.4 eV以上ある。本発明の構造では、上述の通りp側電極11からアパーチャー直下の活性領域までの間で電圧降下は殆ど発生しないので、AlInP層6は、n型が好ましいもののp型の場合でも十分大きなヘテロ障壁を有し、p型GaAs電流導入層7に対して電流狭窄層として作用する。尚、電流狭窄層の材料としては、GaAs基板上に形成可能なバンドギャプが2eV以上のワイドギャップ半導体なら本発明と同様な効果が得られるので、例えばAlGaInPやAlAsなどでも良い。また、第2GaAsスペーサ層5は、電子のAlInP電流狭窄層6への流入を防ぐために、p型もしくはノンドープ層であることが好ましい。本発明では、電流導入層とワイドギャップ半導体とのヘテロ障壁により電流を狭窄するので、面発光レーザの動作電圧が低いものの方がより適している。つまり、活性層4のバンドギャップが小さいく発振波長が0.85μmより長いものの方が良い。具体的には、活性層の材料として、GaInAsやGaInNAsが適している。活性層がGaInNAsの場合、優れた特性の長波長帯の面発光レーザを作製することができる。発振波長が0.85μmよりも短い場合は、上記説明でGaAs層をAlGaAs層に置き換えれば、同様な効果が得られる。
【0013】
また、電流狭窄層6は半導体なので、上下のGaAs層とほぼ同じ熱膨張係数を有し、ヘテロ界面で剥離が発生することもなく素子寿命が長い特徴を有する。
【0014】
従って、本発明の面発光レーザは、優れた特性と長寿命を有し、尚且つ、高い歩留まりを有する。
【0015】
【発明の実施の形態】
以下、本発明の好ましき実施の形態を実施例1並びに2、及び図1並びに2を参照して具体的に説明する。
【0016】
<実施例1>
本実施例では、発光波長が0.98μmの面発光レーザを作製した。図1に構造断面図を示す。1はn型GaAs基板(n=1×1018cm-3、厚み:d=100μm )、2はn型GaAs/AlAs半導体多層膜反射鏡(n=1×1018cm-3)、3はn型第1GaAsスペーサ層(n=1×1016cm-3、d=半導体中での1/4波長厚)、4はノンドープGaInAs/GaAs歪量子井戸活性層、5はp型第2GaAsスペーサ層(p=1×1016cm-3、d=半導体中での1/8波長厚)、6はGaAs基板に格子整合したn型Al0.5In0.5P電流狭窄層(n=1×1017cm-3、d=半導体中での1波長厚)、7はp型GaAs電流導入層(p=1×1020cm-3、d=半導体中での1/2波長厚)、8は再成長界面、9はp型第3GaAsスペーサ層(p=1×1018cm-3)、10は誘電体多層膜反射鏡、11はp側電極、12はn側電極である。活性層4には、3層の7nm厚GaInAs井戸層を10nm厚のGaAs障壁層で隔てて実効的に1.27eV(波長:0.98μm)のバンドギャップを持つ歪量子井戸層を用いた。半導体多層膜反射鏡2は、半導体中で1/4波長厚の高屈折率のGaAs層と半導体中で1/4波長厚の低屈折率のAlAs層を交互に積層した。反射率を99.5%以上にする為に反射鏡層の積層数を20対とした。
【0017】
半導体層2-7は、化学線エピタキシー装置を用いて1×10-5Torrの高真空中で連続して結晶成長させた。III族の原料には金属のアルミニュム、ガリュウム及びインジウムを、V族の原料にはフォスフィン及びアルシンを用いた。ドーパントの原料には、Si、BeおよびCBr4を用いた。ウエハーを取り出し、ホトリソグラフ工程により図1に示すようにp型GaAs電流導入層7およびn型AlInP電流狭窄層6を硫酸系エッチング液および塩酸系エッチング液により順次選択的にエッチングし、直径3μmのアパーチャーを形成した。ウエハーを化学線エピタキシー装置に戻し、トリスヂメチルアミノアルシンを用いてp型第2GaAsスペーサ層5の一部を図1に示すように10nmエッチングし、良好な結晶性を有する再成長界面8を形成した。その後、第3GaAsスペーサ層9を再成長した。第3GaAsスペーサ層9のうち電流狭窄層6に挟まれた部分がアパーチャー層となる。アパーチャー層は、ホトリソグラフ工程により作製されるので大きさは正確に制御できる。第3GaAsスペーサ層9の厚みは、第2GaAsスペーサ層5の厚みと合わせて半導体中で3+1/4波長とし、最終的に第1GaAsスペーサ層3と合わせて3.5波長共振器を形成した(第3GaAsスペーサ層9の成長速度は、再成長界面8上とp型GaAs電流導入層7上で同一である)。アパーチャー層の外側の部分は共振条件からはずれているのでレーザ発振はおこらず、単一の横モード発振が得られる。リフトオフ法により内径10μm外径15μmのリング状p側電極11を形成した後、スッパタ蒸着法により誘電体多層膜反射鏡10を形成した。誘電体多層膜反射鏡10は、誘電体中で1/4波長厚さの高屈折率アモルファスSi層と誘電体中で1/4波長厚さの低屈折率SiO2層を交互に積層して作製した。反射率を99%以上にする為に積層数を5対とした。本実施例では面発光レーザの誘電体多層膜反射鏡にアモルファスSi層とSiO2層の材料系を用いたが、誘電体多層膜反射鏡は高屈折率層と低屈折率層が交互に積層されていれば良いので、SiNとSiO2、アモルファスSiとSiN、或いはTiO2とSiO2等の他の材料系を用いても良い。その後、図1に示すようにCl系反応性イオンビームエッチングにより誘電体多層膜反射鏡10の外側をエッチングし、p側電極11を露出させた。最後に、n側電極12を形成した。
【0018】
本面発光レーザに電流を注入したところ、閾電流10 μAでレーザ発振した。レーザ光は誘電体多層膜反射鏡側から出射され、室温において発振波長は0.98μmであった。本面発光レーザは、10万時間以上の長い素子寿命を有した。また、3インチウエハでの歩留まりも80%以上と高かった。
【0019】
<実施例2>
本実施例では、発光波長が1.3μmの面発光レーザを作製した。図2に構造断面図を示す。21はn型GaAs基板(n=1×1018cm-3、d=300μm)、22はn型GaAs/AlInP半導体多層膜反射鏡(n=1×1018cm-3)、23はノンドープ第1GaAsスペーサ層(d=半導体中での1/2波長厚)、24はノンドープGaInNAs/GaAs歪量子井戸活性層、25はノンドープ第2GaAsスペーサ層(d=半導体中での2波長厚)、26はGaAs基板に格子整合したp型Al0.3Ga0.2In0.5P電流狭窄層(p=1×1016cm-3、d=半導体中での3/8波長厚)、27はp型GaAs電流導入層(p=1×1019cm-3、d=半導体中での1波長厚)、28は再成長界面、29はp型第3GaAsスペーサ層(p=1×1018cm-3)、30はノンドープGaAs/AlInP半導体多層膜反射鏡、31はp側電極、32はn側電極である。活性層24には、7nm厚のGaInNAs井戸層1層を10nm厚のGaAs障壁層で挟んだ実効的に0.95eV(波長:1.3μm)のバンドギャップを持つ歪量子井戸層を用いた。半導体多層膜反射鏡22は、半導体中で1/4波長厚の高屈折率のGaAs層と半導体中で1/4波長厚の低屈折率のGaAs基板と格子整合するAl0.5In0.5P層を交互に積層した。反射率を99.5%以上にする為に反射鏡層の積層数を20対とした。
【0020】
半導体層22-27は、有機金属気相エピタキシー装置を用いて50Torrの真空中で連続して結晶成長させた。III族の原料には金属のトリメチルアルミニュム、トリメチルガリュウム及びトリメチルインジウムを、V族の原料にはヂメチルヒドラジン、フォスフィン及びアルシンを用いた。ドーパントの原料には、ヂシラン、およびヂメチル亜鉛を用いた。ウエハーを取り出し、ホトリソグラフ工程により図2に示すように、p型GaAs電流導入層27、p型AlInP電流狭窄層26、および第2GaAsスペーサ層25の一部を臭素系エッチング液でエッチングし、直径5μmのアパーチャーを形成した。ウエハーを有機金属気相エピタキシー装置に戻し、HClを用いて第2GaAsスペーサ層25の一部をさらに10nmエッチングし、良好な結晶性を有する再成長界面28を形成した。その後、第3GaAsスペーサ層29を再成長した。第3GaAsスペーサ層29のうち電流狭窄層26に挟まれた部分がアパーチャー層となる。アパーチャー層は、ホトリソグラフ工程により作製されるので大きさは正確に制御できる。第3GaAsスペーサ層29の厚みは、第1GaAsスペーサ層25の厚みと合わせて半導体中で3.5波長とし、最終的にGaAsスペーサ層23と合わせて4波長共振器を形成した。アパーチャー層の外側の部分は共振条件からはずれているのでレーザ発振はおこらず、単一の横モード発振が得られる。引き続いてノンドープGaAs/AlInP半導体多層膜反射鏡30を成長した。半導体多層膜反射鏡30は、半導体中で1/4波長厚の高屈折率のGaAs層と半導体中で1/4波長厚の低屈折率のGaAs基板と格子整合するAlInP層を交互に積層した。反射率を99%以上にする為に反射鏡層の積層数を15対とした。この後、図2に示すように臭素系エッチング液により半導体多層膜反射鏡10の外側を第2GaAsスペーサ層29までエッチングした。最後に、内径7μm外径15μmのリング状p側電極31およびn側電極32を形成した。
【0021】
本面発光レーザに電流を注入したところ、閾電流100 μAでレーザ発振した。レーザ光は誘電体多層膜反射鏡側から出射され、室温において発振波長は1.3μmであった。本面発光レーザは、10万時間以上の長い素子寿命を有した。また、3インチウエハでの歩留まりも70%以上と高かった。上記性能は、長波長帯面発光レーザとしては非常に優れている。
【0022】
【発明の効果】
本発明によれば、AlInP、AlGaInP、もしくはAlAs等のバンドギャプが2eV以上のワイドギャップ半導体を電流狭窄層に用い、ホトリソグラフ工程と再成長工程によりアパーチャー層を形成することで歩留まりを大きく改善できるので、優れた特性と長寿命を有する面発光レーザを大量に安価で提供する事ができる。従って、本面発光レーザは、レーザ光送信モジュールおよび、光インターコネクションあるいは光ファイバー通信などの応用システムで利用できる。
【図面の簡単な説明】
【図1】本発明の実施例1における面発光レーザの断面図。
【図2】本発明の実施例2における面発光レーザの断面図。
【図3】 n型AlInPとp型GaAsとのバンドラインナップ(a)、および、p型AlInPとp型GaAsとのバンドラインナップ(b)を示す図。
【符号の説明】
1…n型GaAs基板、2…n型半導体多層膜反射鏡、3…n型第1GaAsスペーサ層、4…活性層、5…p型第2GaAsスペーサ層、6…AlInP電流狭窄層、7…p型GaAs電流導入層、8…再成長界面、9…p型第3GaAsスペーサ層、10…多層膜反射鏡、11…p側電極、12…n側電極。
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a semiconductor laser device, and a surface emitting semiconductor laser (hereinafter referred to as a surface emitting laser) having a resonator that oscillates laser light in a direction substantially perpendicular to a semiconductor layer constituting the semiconductor laser device, that is, a so-called vertical resonator. About.
[0002]
[Prior art]
A surface emitting laser emits laser light in the vertical direction from the surface of the substrate crystal, enabling two-dimensional parallel integration, and can be applied to systems such as optical interconnection and parallel optical information processing, or to optical fiber communications. Expected. Furthermore, since the inspection of the element and the coupling with the optical fiber are easy, the system can be provided at a low cost. Further, by providing a current confinement layer, current can be locally injected from a portion called an aperture, and laser oscillation can be generated in a small volume active region. Therefore, it is suitable for low threshold current, that is, low power consumption.
[0003]
As the current confinement layer, the use of an AlOx layer in which AlAs is selectively oxidized has recently been proposed, and a significant reduction in threshold current has been achieved. The details are described in, for example, IEEE J. Selected Topics in Quantum Electronics, Vol. 3, pages 893-904, 1997.
[0004]
[Problems to be solved by the invention]
The AlOx current confinement layer is produced by etching an AlAs layer produced by a crystal growth method into a mesa shape, and selectively oxidizing the AlAs layer from the periphery of the mesa into an AlOx layer. The central portion of the mesa remaining unoxidized in the AlAs layer becomes an aperture layer into which current is injected. In order to mass-produce a surface emitting laser with a low threshold current, the size of the aperture layer is set to only a few μm, and the size needs to be accurately controlled. However, the rate of oxidation of the AlAs layer is highly scattered, and it is difficult to accurately control the size of the aperture layer, and low yield is a problem in the practical application of a surface emitting laser having an AlOx current confinement layer. ing. Normally, a GaAs layer is disposed above and below the AlAs aperture layer (and the AlOx current confinement layer), but a hetero barrier occurs at the interface between the AlAs aperture layer and the GaAs layer, resulting in series resistance and deterioration of electrical characteristics. Also, since the thermal expansion coefficient of AlOx insulator and semiconductor GaAs differ greatly, physical delamination may occur at the interface between the AlOx current confinement layer and the GaAs layer, reducing device yield and device life. There are problems such as shortening.
[0005]
An object of the present invention is to provide an inexpensive application system such as a laser light transmission module and an optical interconnection, or an optical fiber communication using the surface emitting laser with excellent characteristics as a light source by producing a surface emitting laser with excellent characteristics. is there. Another object is to provide a surface emitting laser with low series resistance. A further object is to provide a surface emitting laser having a long wavelength band (wavelength: 1.2 to 1.6 μm) having excellent characteristics.
[0006]
[Means for Solving the Problems]
In order to obtain a laser beam from the active layer that generates light on the substrate crystal and the light generated from the active layer, it has a resonator structure in which the upper and lower sides of the active layer are sandwiched by reflecting mirrors, and the light is perpendicular to the substrate crystal. In a surface emitting laser that emits light, a semiconductor having a band gap of 2 eV or more such as AlInP, AlGaInP, or AlAs, that is, a so-called wide gap semiconductor is used as a current confinement layer, and a photolithography process (opening in the current confinement layer) and a regrowth process (opening) The yield can be greatly improved by forming the aperture layer in the aperture (opening) provided in the current confinement layer by the semiconductor crystal growth). The wide gap semiconductor discussed below in this specification is a semiconductor material having a band gap (forbidden band width) of 2 eV or more, regardless of the type, and the above-described AlInP and AlGaInP satisfy this band gap value. It is required to have such a composition.
[0007]
On the other hand, the material of the aperture layer formed so as to fill the opening formed in the current confinement layer is preferably GaAs or AlGaAs having a band gap smaller than that of the current confinement layer. Further, the series resistance can be reduced by forming a current introduction layer doped at a high concentration on the current confinement layer. Furthermore, by using GaInNAs in the active layer, it can be applied to the 1.3 μm band or 1.55 μm band used in optical fiber communications (especially when a semiconductor layer other than the active layer is formed of GaAs, AlGaAs, AlAs, AlInP) The active layer composition is desirable from the viewpoint).
[0008]
With this configuration, current can be injected around the portion of the active layer facing the aperture layer, and the light generated thereby is a resonance composed of a reflecting mirror facing the aperture layer. The stimulated emission light is generated by reciprocating the vessel. Here, the reflecting mirror refers to a film or a laminated structure of a plurality of films made of a substance having a higher reflectivity than the layer (semiconductor layer) bonded to the active layer side, and the material is a semiconductor or a dielectric, etc. Chosen from. The reflectivities of the reflecting mirror formed on the substrate side and the reflecting mirror formed on the opposite side of the substrate are set according to the specifications of the resonator.
[0009]
The surface emitting laser of the present invention can be used in systems such as optical interconnection and optical fiber communication. In that case, it is preferable to use the surface emitting laser as a laser light transmission module packaged together with an IC or an optical fiber component for driving the surface emitting laser.
[0010]
The structure, manufacturing method, and operation of the surface emitting laser of the present invention will be described with reference to FIG. In the figure, 1 is an n-type GaAs substrate, 2 is an n-type semiconductor multilayer mirror, 3 is a first GaAs spacer layer, 4 is an active layer, 5 is a second GaAs spacer layer, 6 is an AlInP current confinement layer, and 7 is p. GaAs current introduction layer, 8 is a regrowth interface, 9 is a third GaAs spacer layer, 10 is a multilayer reflector, 11 is a p-side electrode, and 12 is an n-side electrode. First, layers 2 to 7 are produced by a crystal growth method. Next, in order to form the aperture layer, the p-type GaAs current introduction layer 7, the AlInP current confinement layer 6, and a part of the second GaAs spacer layer 5 (a region including a portion provided for laser oscillation) are shown in FIG. As shown, it is removed by etching (this removes the current confinement layer from the optical axis for oscillating the laser beam). Thereafter, the p-type GaAs is regrown by a crystal growth method to produce a third GaAs spacer layer 9 (in other words, the opening is filled with GaAs). A portion of the third GaAs spacer layer 9 sandwiched between the current confinement layers 6 serves as an aperture layer. The size of the aperture layer can be accurately controlled because it is produced by a photolithography process. By setting the doping concentration of the aperture layer, that is, the third GaAs spacer layer 9 to about p = 1 × 10 18 cm −3 , sufficient conductivity can be obtained, and the optical loss to the laser beam is sufficient. Can be reduced. Finally, the multilayer reflector 10, the p-side electrode 11, and the n-side electrode 12 are formed to complete the structure.
[0011]
The current is injected from the p-side electrode 11 and guided to the aperture layer through the p-type third GaAs spacer layer 9 and the p-type GaAs current introduction layer 7. When the current flows parallel to the current confinement layer 6, the p-type GaAs current introduction layer 7 is doped at an extremely high concentration of p = 1 × 10 20 cm −3 , so that the resistance is very low and most of the current is this layer. Flowing. Further, since the third GaAs spacer layer 9, the p-type GaAs current introduction layer 7, the aperture layer, and the second GaAs spacer layer 5 are all GaAs, series resistance due to the hetero barrier is not generated. Therefore, a voltage drop hardly occurs between the p-side electrode 11 and the active region immediately below the aperture. In addition, since the series resistance of the n-type semiconductor multilayer film reflecting mirror 2 is small, a surface emitting laser having a very low element resistance can be manufactured.
[0012]
Here, the action of current confinement by AlInP will be described with reference to FIG. AlInP can be lattice-matched with a GaAs substrate, and a good quality crystal can be obtained, so that optical degradation such as laser light scattering is not caused. FIG. 3A shows a band lineup of n-type AlInP and p-type GaAs, and FIG. 3B shows a band line-up of p-type AlInP and p-type GaAs. Even if a hole indicated by + in the figure tries to move from GaAs to AlInP, there is a heterobarrier in the valence band (a line drawn downward in the figure) and it cannot move. That is, no current flows. The size of the heterobarrier is about 2 eV when AlInP is n-type, and about 0.4 eV or more even when AlInP is p-type. In the structure of the present invention, since almost no voltage drop occurs between the p-side electrode 11 and the active region immediately below the aperture as described above, the AlInP layer 6 has a sufficiently large hetero barrier even in the case of the p-type although the n-type is preferable. And acts as a current confinement layer for the p-type GaAs current introduction layer 7. The material for the current confinement layer may be AlGaInP or AlAs, for example, as long as the band gap that can be formed on the GaAs substrate is a wide gap semiconductor of 2 eV or more because the same effect as the present invention can be obtained. The second GaAs spacer layer 5 is preferably a p-type or non-doped layer in order to prevent electrons from flowing into the AlInP current confinement layer 6. In the present invention, since the current is confined by the hetero barrier of the current introduction layer and the wide gap semiconductor, it is more suitable that the surface emitting laser has a low operating voltage. That is, it is better that the active layer 4 has a smaller band gap and an oscillation wavelength longer than 0.85 μm. Specifically, GaInAs and GaInNAs are suitable as the material for the active layer. When the active layer is GaInNAs, a long-wavelength surface emitting laser with excellent characteristics can be manufactured. When the oscillation wavelength is shorter than 0.85 μm, the same effect can be obtained by replacing the GaAs layer with an AlGaAs layer in the above description.
[0013]
Further, since the current confinement layer 6 is a semiconductor, it has substantially the same thermal expansion coefficient as that of the upper and lower GaAs layers, and has a feature that the device life is long without peeling at the heterointerface.
[0014]
Therefore, the surface emitting laser of the present invention has excellent characteristics and a long lifetime, and also has a high yield.
[0015]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, a preferred embodiment of the present invention will be described in detail with reference to Examples 1 and 2 and FIGS.
[0016]
<Example 1>
In this example, a surface emitting laser having an emission wavelength of 0.98 μm was manufactured. FIG. 1 shows a sectional view of the structure. 1 is an n-type GaAs substrate (n = 1 × 10 18 cm −3 , thickness: d = 100 μm), 2 is an n-type GaAs / AlAs semiconductor multilayer mirror (n = 1 × 10 18 cm −3 ), 3 is n-type first GaAs spacer layer (n = 1 × 10 16 cm −3 , d = ¼ wavelength thickness in semiconductor), 4 is a non-doped GaInAs / GaAs strained quantum well active layer, 5 is a p-type second GaAs spacer layer (p = 1 × 10 16 cm −3 , d = 1/8 wavelength thickness in semiconductor), 6 is an n-type Al 0.5 In 0.5 P current confinement layer (n = 1 × 10 17 cm) lattice-matched to the GaAs substrate -3 , d = one wavelength thickness in semiconductor), 7 is p-type GaAs current introduction layer (p = 1 × 10 20 cm -3 , d = 1/2 wavelength thickness in semiconductor), 8 is regrowth The interface, 9 is a p-type third GaAs spacer layer (p = 1 × 10 18 cm −3 ), 10 is a dielectric multilayer reflector, 11 is a p-side electrode, and 12 is an n-side electrode. As the active layer 4, a strained quantum well layer having a band gap of 1.27 eV (wavelength: 0.98 μm) is used by separating three 7 nm-thick GaInAs well layers by a 10 nm-thick GaAs barrier layer. In the semiconductor multilayer mirror 2, the high refractive index GaAs layer of 1/4 wavelength thickness in the semiconductor and the low refractive index AlAs layer of 1/4 wavelength thickness in the semiconductor are alternately laminated. In order to achieve a reflectance of 99.5% or more, the number of mirror layers laminated was 20 pairs.
[0017]
The semiconductor layer 2-7 was crystal-grown continuously in a high vacuum of 1 × 10 −5 Torr using an actinic radiation epitaxy apparatus. Metal group aluminum, gallium and indium were used for Group III materials, and phosphine and arsine were used for Group V materials. Si, Be, and CBr 4 were used as dopant materials. The wafer is taken out, and the p-type GaAs current introduction layer 7 and the n-type AlInP current confinement layer 6 are selectively etched sequentially with a sulfuric acid-based etching solution and a hydrochloric acid-based etching solution as shown in FIG. An aperture was formed. The wafer is returned to the actinic radiation epitaxy apparatus, and a portion of the p-type second GaAs spacer layer 5 is etched by 10 nm as shown in FIG. 1 using trisdimethylaminoarsine to form a regrowth interface 8 having good crystallinity. did. Thereafter, the third GaAs spacer layer 9 was regrown. A portion of the third GaAs spacer layer 9 sandwiched between the current confinement layers 6 serves as an aperture layer. The size of the aperture layer can be accurately controlled because it is produced by a photolithography process. The thickness of the third GaAs spacer layer 9 is set to 3 + 1/4 wavelength in the semiconductor together with the thickness of the second GaAs spacer layer 5, and finally, a 3.5 wavelength resonator is formed together with the first GaAs spacer layer 3 (first The growth rate of the 3GaAs spacer layer 9 is the same on the regrowth interface 8 and on the p-type GaAs current introduction layer 7). Since the outer portion of the aperture layer deviates from the resonance condition, laser oscillation does not occur and a single transverse mode oscillation is obtained. After forming the ring-shaped p-side electrode 11 having an inner diameter of 10 μm and an outer diameter of 15 μm by the lift-off method, the dielectric multilayer film reflecting mirror 10 was formed by the sputtering method. The dielectric multilayer reflector 10 is formed by alternately laminating a quarter-wave thickness high refractive index amorphous Si layer in a dielectric and a quarter wavelength thickness low refractive index SiO 2 layer in a dielectric. Produced. In order to achieve a reflectance of 99% or more, the number of layers was set to 5 pairs. In this example, the material system of the amorphous Si layer and the SiO 2 layer was used for the dielectric multilayer reflector of the surface emitting laser, but the dielectric multilayer reflector is alternately laminated with a high refractive index layer and a low refractive index layer. Therefore, other material systems such as SiN and SiO 2 , amorphous Si and SiN, or TiO 2 and SiO 2 may be used. Thereafter, as shown in FIG. 1, the outside of the dielectric multilayer film reflecting mirror 10 was etched by Cl-based reactive ion beam etching to expose the p-side electrode 11. Finally, the n-side electrode 12 was formed.
[0018]
When current was injected into the surface emitting laser, laser oscillation occurred at a threshold current of 10 μA. The laser light was emitted from the dielectric multilayer film reflecting mirror side, and the oscillation wavelength was 0.98 μm at room temperature. This surface emitting laser had a long element lifetime of 100,000 hours or more. Also, the yield with a 3-inch wafer was as high as 80% or more.
[0019]
<Example 2>
In this example, a surface emitting laser having an emission wavelength of 1.3 μm was manufactured. FIG. 2 shows a sectional view of the structure. 21 is an n-type GaAs substrate (n = 1 × 10 18 cm −3 , d = 300 μm), 22 is an n-type GaAs / AlInP semiconductor multilayer mirror (n = 1 × 10 18 cm −3 ), 23 is a non-doped first 1 GaAs spacer layer (d = 1/2 wavelength thickness in semiconductor), 24 is undoped GaInNAs / GaAs strained quantum well active layer, 25 is undoped second GaAs spacer layer (d = 2 wavelength thickness in semiconductor), 26 is P-type Al 0.3 Ga 0.2 In 0.5 P current confinement layer lattice matched to GaAs substrate (p = 1 × 10 16 cm -3 , d = 3/8 wavelength thickness in semiconductor), 27 is p-type GaAs current introduction layer (P = 1 × 10 19 cm −3 , d = one wavelength thickness in the semiconductor), 28 is the regrown interface, 29 is the p-type third GaAs spacer layer (p = 1 × 10 18 cm −3 ), 30 is A non-doped GaAs / AlInP semiconductor multilayer mirror, 31 is a p-side electrode, and 32 is an n-side electrode. As the active layer 24, a strained quantum well layer having an effective band gap of 0.95 eV (wavelength: 1.3 μm) in which one 7 nm thick GaInNAs well layer is sandwiched between 10 nm thick GaAs barrier layers was used. The semiconductor multilayer mirror 22 includes an Al 0.5 In 0.5 P layer lattice-matched with a high refractive index GaAs layer of 1/4 wavelength thickness in a semiconductor and a low refractive index GaAs substrate of 1/4 wavelength thickness in a semiconductor. Alternatingly stacked. In order to achieve a reflectance of 99.5% or more, the number of mirror layers laminated was 20 pairs.
[0020]
The semiconductor layers 22-27 were continuously grown in a vacuum of 50 Torr using a metal organic vapor phase epitaxy apparatus. Metals trimethylaluminum, trimethylgallium and trimethylindium were used as Group III materials, and dimethylhydrazine, phosphine and arsine were used as Group V materials. Disilane and dimethylzinc were used as dopant materials. As shown in FIG. 2, the wafer is taken out and a part of the p-type GaAs current introduction layer 27, the p-type AlInP current confinement layer 26, and the second GaAs spacer layer 25 is etched with a bromine-based etchant as shown in FIG. A 5 μm aperture was formed. The wafer was returned to the metalorganic vapor phase epitaxy apparatus, and a part of the second GaAs spacer layer 25 was further etched by 10 nm using HCl to form a regrowth interface 28 having good crystallinity. Thereafter, the third GaAs spacer layer 29 was regrown. A portion of the third GaAs spacer layer 29 sandwiched between the current confinement layers 26 becomes an aperture layer. The size of the aperture layer can be accurately controlled because it is produced by a photolithography process. The thickness of the third GaAs spacer layer 29 was set to 3.5 wavelengths in the semiconductor together with the thickness of the first GaAs spacer layer 25, and finally the four-wavelength resonator was formed together with the GaAs spacer layer 23. Since the outer portion of the aperture layer deviates from the resonance condition, laser oscillation does not occur and a single transverse mode oscillation is obtained. Subsequently, a non-doped GaAs / AlInP semiconductor multilayer mirror 30 was grown. The semiconductor multilayer mirror 30 is formed by alternately laminating a high refractive index GaAs layer having a quarter wavelength thickness in a semiconductor and an AlInP layer lattice-matching with a low refractive index GaAs substrate having a quarter wavelength thickness in the semiconductor. . In order to make the reflectivity 99% or more, the number of mirror layers was 15 pairs. Thereafter, as shown in FIG. 2, the outside of the semiconductor multilayer reflector 10 was etched to the second GaAs spacer layer 29 with a bromine-based etchant. Finally, a ring-shaped p-side electrode 31 and an n-side electrode 32 having an inner diameter of 7 μm and an outer diameter of 15 μm were formed.
[0021]
When current was injected into the surface emitting laser, laser oscillation occurred at a threshold current of 100 μA. The laser light was emitted from the dielectric multilayer film reflecting mirror side, and the oscillation wavelength was 1.3 μm at room temperature. This surface emitting laser had a long element lifetime of 100,000 hours or more. Also, the yield with a 3-inch wafer was as high as 70% or more. The above performance is very excellent as a long wavelength surface emitting laser.
[0022]
【The invention's effect】
According to the present invention, since a wide gap semiconductor having a band gap of 2 eV or more such as AlInP, AlGaInP, or AlAs is used for the current confinement layer, and the aperture layer is formed by the photolithography process and the regrowth process, the yield can be greatly improved. Therefore, a large amount of surface emitting lasers having excellent characteristics and long life can be provided at low cost. Therefore, the surface emitting laser can be used in laser light transmission modules and application systems such as optical interconnection or optical fiber communication.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view of a surface emitting laser according to Embodiment 1 of the present invention.
FIG. 2 is a sectional view of a surface emitting laser according to Example 2 of the present invention.
FIG. 3 is a diagram showing a band lineup (a) of n-type AlInP and p-type GaAs and a band lineup (b) of p-type AlInP and p-type GaAs.
[Explanation of symbols]
1 ... n-type GaAs substrate, 2 ... n-type semiconductor multilayer mirror, 3 ... n-type first GaAs spacer layer, 4 ... active layer, 5 ... p-type second GaAs spacer layer, 6 ... AlInP current confinement layer, 7 ... p Type GaAs current introduction layer, 8 ... regrowth interface, 9 ... p-type third GaAs spacer layer, 10 ... multilayer reflector, 11 ... p-side electrode, 12 ... n-side electrode.

Claims (5)

GaAs基板(1)結晶上に光を発生する活性層(4)と前記活性層(4)から発生した光からレーザ光を得る為に活性層(4)の上下を反射鏡(2, 10)で挟んだ共振器構造を有し、前記基板(1)結晶と垂直に光を出射する面発光レーザにおいて、
バンドギャップが2eV以上のワイドギャップ半導体からなる電流狭窄層、および、前記電流狭窄層より二次元断面でみて内側に設けられたGaAsもしくはAlGaAsからなるアパーチャー層を有し、
前記電流狭窄層の上のみに高濃度に不純物がドーピングされたAlInP電流導入層が設けられ、
前記反射鏡の一方は前記アパーチャー層上および前記電流導入層にまたがって設けられた誘電体多層膜反射鏡(10)であり、
前記電流導入層と前記アパーチャー層とは同じ導電型であり、
前記誘電体多層膜反射鏡(10)の前記二次元断面でみて外側にP型電極(11)が設けられていることを特徴とする面発光レーザ。
Reflective mirrors (2, 10) above and below the active layer (4) in order to obtain laser light from the active layer (4) that generates light on the GaAs substrate (1) crystal and the light generated from the active layer (4) In a surface emitting laser that has a resonator structure sandwiched between and emits light perpendicular to the substrate (1) crystal,
A current confinement layer made of a wide gap semiconductor having a band gap of 2 eV or more, and an aperture layer made of GaAs or AlGaAs provided on the inner side in a two-dimensional section from the current confinement layer;
AlInP current introduction layer doped with impurities at a high concentration is provided only on the current confinement layer,
One of the reflecting mirrors is a dielectric multilayer film reflecting mirror (10) provided on the aperture layer and straddling the current introduction layer,
The current introduction layer and the aperture layer are of the same conductivity type,
A surface-emitting laser, wherein a P-type electrode (11) is provided outside the dielectric multilayer mirror (10) as viewed in the two-dimensional section.
請求項1に記載の面発光レーザにおいて、上記電流狭窄層がAlInP、AlGaInP、およびAlAsの群から選ばれたものの一つであることを特徴とする面発光レーザ。  2. The surface emitting laser according to claim 1, wherein the current confinement layer is one selected from the group consisting of AlInP, AlGaInP, and AlAs. 請求項1または2のいずれかに記載の面発光レーザにおいて、上記活性層にGaInAsもしくはGaInNAsが用いられていることを特徴とする面発光レーザ。  3. The surface emitting laser according to claim 1, wherein GaInAs or GaInNAs is used for the active layer. 請求項1乃至3のいずれかに記載の面発光レーザにおいて、レーザ光の波長が0.85μmより長いことを特徴とする面発光レーザ。  4. The surface emitting laser according to claim 1, wherein the wavelength of the laser beam is longer than 0.85 [mu] m. 請求項1乃至3のいずれかに記載の面発光レーザにおいて、レーザ光の波長が光ファイバー通信で用いられる1.3μm帯もしくは1.55μm帯にあることを特徴とする面発光レーザ。  4. The surface emitting laser according to claim 1, wherein the wavelength of the laser light is in a 1.3 [mu] m band or 1.55 [mu] m band used in optical fiber communication.
JP00206898A 1998-01-08 1998-01-08 Surface emitting laser Expired - Fee Related JP4134366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00206898A JP4134366B2 (en) 1998-01-08 1998-01-08 Surface emitting laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00206898A JP4134366B2 (en) 1998-01-08 1998-01-08 Surface emitting laser

Publications (2)

Publication Number Publication Date
JPH11204875A JPH11204875A (en) 1999-07-30
JP4134366B2 true JP4134366B2 (en) 2008-08-20

Family

ID=11519039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00206898A Expired - Fee Related JP4134366B2 (en) 1998-01-08 1998-01-08 Surface emitting laser

Country Status (1)

Country Link
JP (1) JP4134366B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4034513B2 (en) * 2000-12-15 2008-01-16 日本オプネクスト株式会社 Surface emitting laser device, optical module using the same, and optical system
US7590159B2 (en) 2001-02-26 2009-09-15 Ricoh Company, Ltd. Surface-emission laser diode operable in the wavelength band of 1.1-1.7 micrometers and optical telecommunication system using such a laser diode
JP2002329928A (en) * 2001-02-27 2002-11-15 Ricoh Co Ltd Optical communication system
JP4265875B2 (en) 2001-05-28 2009-05-20 日本オプネクスト株式会社 Manufacturing method of surface emitting semiconductor laser
JP4602692B2 (en) * 2004-04-23 2010-12-22 株式会社リコー Surface emitting laser and optical transmission system
JP2008283028A (en) 2007-05-11 2008-11-20 Fuji Xerox Co Ltd Surface light emission type semiconductor laser, manufacturing method of the same, module, light source device, information processing apparatus, optical transmission apparatus, optical space transmission apparatus, and optical space transmission system
JP2018186213A (en) * 2017-04-27 2018-11-22 スタンレー電気株式会社 Vertical resonator type light-emitting element
CN111384666B (en) * 2020-03-20 2021-08-03 北京嘉圣光通科技有限公司 Method for manufacturing vertical cavity surface emitting laser and vertical cavity surface emitting laser

Also Published As

Publication number Publication date
JPH11204875A (en) 1999-07-30

Similar Documents

Publication Publication Date Title
JP4265875B2 (en) Manufacturing method of surface emitting semiconductor laser
JP4034513B2 (en) Surface emitting laser device, optical module using the same, and optical system
JP4728656B2 (en) Surface emitting laser element
US20030048824A1 (en) Vertical cavity surface emitting semiconductor laser device
JPH10233557A (en) Semiconductor light emitting element
JPH06314854A (en) Surface light emitting element and its manufacture
JPH10145003A (en) Semiconductor laser and optical communication system using the same
JP2002064244A (en) Distributed feedback semiconductor laser device
JP4134366B2 (en) Surface emitting laser
JP2738194B2 (en) Surface emitting integrated device and method of manufacturing the same
US20020146053A1 (en) Surface emitting semiconductor laser device
JP3299056B2 (en) Surface emitting type InGaAlN based semiconductor laser
JP2004031925A (en) N-type semiconductor distributed bragg reflector, plane emission semiconductor laser device, plane emission laser array, plane emission laser module optical interconnection system, and optical communication system
JP2002043696A (en) Semiconductor laser device
JP2757633B2 (en) Surface emitting semiconductor laser
JP2758598B2 (en) Semiconductor laser
JPH11340570A (en) Photoelectric conversion element and its manufacture
JP2004179640A (en) Semiconductor laser, module for optical transmission, and optical communication system
JPWO2004027950A1 (en) Semiconductor laser
JP2006253340A (en) Surface emission laser element, manufacturing method thereof, surface emission laser array, electrophotographic system, optical communication system, and optical interconnection system
JP3132445B2 (en) Long wavelength band surface emitting semiconductor laser and method of manufacturing the same
JP2003115635A (en) Surface emitting semiconductor laser element
JP2002252416A (en) Optical communications system
JPH10256665A (en) Semiconductor light emitting device and computer system using the same
JP2005332881A (en) Semiconductor light emitting element, method of manufacturing the same and optical module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20041215

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120613

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees