JPH11204875A - Surface emitting laser, laser optical transmission module using it, and applied system - Google Patents

Surface emitting laser, laser optical transmission module using it, and applied system

Info

Publication number
JPH11204875A
JPH11204875A JP206898A JP206898A JPH11204875A JP H11204875 A JPH11204875 A JP H11204875A JP 206898 A JP206898 A JP 206898A JP 206898 A JP206898 A JP 206898A JP H11204875 A JPH11204875 A JP H11204875A
Authority
JP
Japan
Prior art keywords
layer
surface emitting
emitting laser
gaas
laser
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP206898A
Other languages
Japanese (ja)
Other versions
JP4134366B2 (en
Inventor
Masahiko Kondo
正彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP00206898A priority Critical patent/JP4134366B2/en
Publication of JPH11204875A publication Critical patent/JPH11204875A/en
Application granted granted Critical
Publication of JP4134366B2 publication Critical patent/JP4134366B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cheap applied system such as a laser optical transmission module, an optical interconnection, an optical fiber communication or the like where a surface emitting laser is used as a light source at a low cost by a method wherein the surface emitting laser excellent in characteristics is produced being kept high in yield and the surface emitting laser which is low in series resistance, excellent in characteristics, and capable of emitting a laser beam of long wavelengths band (1.2 to 1.6 μm). SOLUTION: A surface emitting laser is composed of an N-type GaAs substrate 1, an N-type semiconductor multilayer film reflective mirror 2, a first GaAs spacer layer 3, an active layer 4, a second GaAs spacer 5, a current constriction layer 6, a P-type GaAs current introduction layer, a regrowth interface 8, a P-type third GaAs spacer layer 9, and multilayer film reflective mirror 10. The current constriction layer 6 is formed of wide band gap semiconductor such as AlInP, AlGaInP or AlAs whose band gap is above 2e V, and an aperture layer is formed through a photolithography process and a regrowth process, whereby a surface emitting laser of this constitution can be markedly improved in yield.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は半導体レーザ装置に
係り、これを構成する半導体層に対しほぼ垂直方向にレ
ーザ光を発振する共振器、所謂垂直共振器を有する面発
光型の半導体レーザ(以下、面発光レーザと呼ぶ)に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor laser device, and more particularly to a surface-emitting type semiconductor laser having a so-called vertical resonator which oscillates a laser beam in a direction substantially perpendicular to a semiconductor layer constituting the device (hereinafter referred to as a vertical cavity). , Surface emitting lasers).

【0002】[0002]

【従来の技術】面発光レーザは、基板結晶の表面から垂
直方向にレーザ光を出すので2次元並列集積が可能であ
り、光インターコネクションや並列光情報処理等のシス
テムへの応用、あるいは光ファイバ通信への応用が期待
されている。さらに、素子の検査や光ファイバーとの結
合が容易なのでシステムを安価に提供する事ができる。
また、電流狭窄層を設けることで、電流をアパーチャー
と呼ばれる部分から局所的に注入することができ、微小
体積の活性領域でレーザ発振を起こすことが可能であ
る。従って、低閾電流化、つまり、低消費電力化に適し
ている。
2. Description of the Related Art A surface emitting laser emits laser light in a vertical direction from the surface of a substrate crystal, so that two-dimensional parallel integration is possible, and application to systems such as optical interconnection and parallel optical information processing, or optical fiber The application to communication is expected. Further, since the inspection of the element and the coupling with the optical fiber are easy, the system can be provided at low cost.
Further, by providing the current confinement layer, a current can be locally injected from a portion called an aperture, and laser oscillation can be caused in an active region with a small volume. Therefore, it is suitable for lower threshold current, that is, lower power consumption.

【0003】電流狭窄層として、AlAsを選択的に酸化さ
せた AlOx層の使用が近年提案され、閾電流の大幅な低
減が達成された。その詳細は、例えば、IEEE J. Select
ed Topics in Quantum Electronics誌, 3巻, 893-904
頁, 1997年に記載されている。
The use of an AlOx layer in which AlAs is selectively oxidized as a current confinement layer has recently been proposed, and a significant reduction in threshold current has been achieved. For details, see, for example, IEEE J. Select
ed Topics in Quantum Electronics, Volume 3, 893-904
Page, 1997.

【0004】[0004]

【発明が解決しようとする課題】上記AlOx電流狭窄層
は、結晶成長法により作製したAlAs層をメサ状にエッチ
ングし、メサの周囲からAlAs層を選択的に酸化させAlOx
層へ変化させて作製される。AlAs層のうち酸化されずに
残ったメサ中央部分が、電流が注入されるアパーチャー
層となる。低閾電流の面発光レーザを大量生産するため
には、アパーチャー層の大きさを僅か数μmとし、尚且
つ、その大きさを正確に制御する必要がある。しかし、
AlAs層の酸化の速度は散つきが大きく、アパーチャー層
の大きさを正確に制御することは困難であり、AlOx電流
狭窄層を有する面発光レーザの実用化においては低い歩
留まりが問題となっている。通常、AlAsアパーチャー層
(およびAlOx電流狭窄層)の上下にはGaAs層が配置され
るが、AlAsアパーチャー層とGaAs層との界面ではヘテロ
障壁が発生し、直列抵抗となり電気特性を劣化させる。
また、絶縁体のAlOxと半導体のGaAsは熱膨張係数が大き
く異なるので、AlOx電流狭窄層とGaAs層との界面では物
理的剥離が発生することがあり、素子の歩留まりを低下
させたり、素子寿命が短くなるなどの問題が生じてい
る。
The AlOx current confinement layer is formed by etching an AlAs layer formed by a crystal growth method in a mesa shape and selectively oxidizing the AlAs layer from the periphery of the mesa to form an AlOx current confinement layer.
It is manufactured by changing into layers. The mesa central portion remaining without being oxidized in the AlAs layer becomes an aperture layer into which current is injected. In order to mass-produce a surface emitting laser with a low threshold current, it is necessary to reduce the size of the aperture layer to only a few μm and to precisely control the size. But,
The rate of oxidation of the AlAs layer is large and it is difficult to control the size of the aperture layer accurately, and a low yield is a problem in the practical use of a surface emitting laser having an AlOx current confinement layer. . Usually, GaAs layers are arranged above and below the AlAs aperture layer (and the AlOx current confinement layer). However, at the interface between the AlAs aperture layer and the GaAs layer, a hetero-barrier is generated, resulting in series resistance and deterioration of electrical characteristics.
Also, since AlOx as an insulator and GaAs as a semiconductor have a large difference in thermal expansion coefficient, physical delamination may occur at the interface between the AlOx current confinement layer and the GaAs layer, which reduces the yield of the device and the life of the device. There are problems such as shortening.

【0005】本発明の目的は、優れた特性の面発光レー
ザを歩留まり良く生産する事により、それを光源として
利用したレーザ光送信モジュール及び光インターコネク
ション、あるいは光ファイバー通信等の応用システムを
安価に提供する事である。また、直列抵抗が低い面発光
レーザを提供する事も目的の一つである。更なる目的と
しては、優れた特性の長波長帯(波長:1.2から1.6μ
m)の面発光レーザを提供することである。
An object of the present invention is to produce a surface emitting laser having excellent characteristics at a high yield, and to provide an inexpensive laser light transmitting module and an optical interconnection using the laser as a light source, or an application system such as an optical fiber communication. It is to do. Another object is to provide a surface emitting laser having a low series resistance. As a further object, the long wavelength band (wavelength: 1.2 to 1.6μ) with excellent characteristics
m) is to provide a surface emitting laser.

【0006】[0006]

【課題を解決するための手段】基板結晶上に光を発生す
る活性層と前記活性層から発生した光からレーザ光を得
る為に活性層の上下を反射鏡で挟んだ共振器構造を有
し、前記基板結晶と垂直に光を出射する面発光レーザに
おいて、AlInP、AlGaInP、もしくはAlAs等のバンドギャ
プが2eV以上の半導体、所謂ワイドギャップ半導体を電
流狭窄層に用い、ホトリソグラフ工程(電流狭窄層に開
口形成)と再成長工程(開口を埋め込む半導体結晶成
長)により上記電流狭窄層に設けられたアパーチャー
(開口)にアパーチャー層を形成することで歩留まりを
大きく改善できる。本明細書で以下に論じるワイドギャ
ップ半導体とは、バンドギャップ(禁制帯幅)が2eV以
上の半導体材料であれば、種類を問わず、また上述のAl
InP、AlGaInPにおいては、このバンドギャップ値を満た
すような組成を有することが要請される。
According to the present invention, there is provided an active layer for generating light on a substrate crystal, and a resonator structure in which upper and lower portions of the active layer are sandwiched between reflectors to obtain a laser beam from the light generated from the active layer. In a surface emitting laser that emits light perpendicular to the substrate crystal, a semiconductor having a band gap of 2 eV or more, such as AlInP, AlGaInP, or AlAs, a so-called wide gap semiconductor is used as a current confinement layer, The yield can be greatly improved by forming an aperture layer in the aperture (opening) provided in the current constriction layer by the opening formation) and the regrowth step (semiconductor crystal growth filling the opening). In the present specification, the term “wide-gap semiconductor” refers to a semiconductor material having a band gap (forbidden band width) of 2 eV or more, regardless of the type of the semiconductor material.
InP and AlGaInP are required to have a composition satisfying this band gap value.

【0007】一方、上記電流狭窄層に形成された開口を
埋め込むように形成されるアパーチャー層の材料として
は、上記電流狭窄層よりバンドギャップの小さい例えば
GaAsもしくはAlGaAsが好ましい。また、高濃度にドーピ
ングされた電流導入層を電流狭窄層の上に形成すること
で直列抵抗を低減できる。さらに、活性層にGaInNAsを
用いることで、光ファイバー通信で用いられる1.3μm帯
もしくは1.55μm帯に適用できる(特に活性層以外の半
導体層をGaAs、AlGaAs、AlAs、AlInPで形成する場合、
結晶成長の観点からみて当該活性層組成は望ましい)。
On the other hand, the material of the aperture layer formed so as to fill the opening formed in the current confinement layer is, for example, a material having a smaller band gap than the current confinement layer.
GaAs or AlGaAs is preferred. Further, by forming a highly doped current introduction layer on the current confinement layer, the series resistance can be reduced. Furthermore, by using GaInNAs for the active layer, it can be applied to the 1.3 μm band or 1.55 μm band used in optical fiber communication (especially when the semiconductor layer other than the active layer is formed of GaAs, AlGaAs, AlAs, AlInP,
The active layer composition is desirable from the viewpoint of crystal growth).

【0008】このように構成することで、活性層の上記
アパーチャー層に対向する部分を中心に電流を注入する
ことができ、これにより発生した光は上記アパーチャー
層を介して対向した反射鏡で構成される共振器を往復し
て、誘導放出光を発生する。ここで反射鏡とは、これに
対して活性層側に接合された層(半導体層)より反射率
の高い物質からなる膜又は複数の膜の積層構造を指し、
その材料は半導体又は誘電体等から選ばれる。そして、
基板側に形成された反射鏡と基板の反対側に形成された
反射鏡の反射率は、共振器の仕様に応じて夫々設定され
る。
With this configuration, it is possible to inject a current around the portion of the active layer facing the aperture layer, and the light generated by this is formed by a reflecting mirror facing the aperture layer through the aperture layer. Reciprocating in the resonator to generate stimulated emission light. Here, the term “reflector” refers to a film or a laminated structure of a plurality of films made of a substance having higher reflectivity than a layer (semiconductor layer) bonded to the active layer side,
The material is selected from a semiconductor or a dielectric. And
The reflectances of the reflector formed on the substrate side and the reflector formed on the opposite side of the substrate are set according to the specifications of the resonator.

【0009】また、本発明の面発光レーザは、光インタ
ーコネクション、光ファイバー通信等のシステムで利用
できる。その場合、面発光レーザをそれを駆動するICや
光ファイバの部品と共にパッケージしたレーザ光送信モ
ジュールとして利用する事が好ましい。
The surface emitting laser of the present invention can be used in systems such as optical interconnection and optical fiber communication. In that case, it is preferable to use the surface emitting laser as a laser light transmission module packaged with an IC or an optical fiber component for driving the surface emitting laser.

【0010】本発明の面発光レーザの構造、作製方法、
および作用について、実施例1の説明図1を用いて示
す。同図において、1はn型GaAs基板、2はn型半導体多層
膜反射鏡、3は第1GaAsスペーサ層、4は活性層、5は第2G
aAsスペーサ層、6はAlInP電流狭窄層、7はp型GaAs電流
導入層、8は再成長界面、9は第3GaAsスペーサ層、10は
多層膜反射鏡、11はp側電極、12はn側電極である。ま
ず、2から7までの層を、結晶成長法により作製する。次
に、アパーチャー層を形成するために、p型GaAs電流導
入層7、AlInP電流狭窄層6、および第2GaAsスペーサ層5
の一部(レーザ発振に提供する部分を含めた領域)を図
1に示すようにエッチングにより取り除く(これによ
り、レーザ光を発振させる光軸上から上記電流狭窄層が
除去される)に提供する。その後、結晶成長法によりp
型GaAsを再成長して第3GaAsスペーサ層9を作製する(換
言すれば、上記開口はGaAsで埋め込まれる)。第3GaAs
スペーサ層9のうち電流狭窄層6に挟まれた部分がアパー
チャー層となる。アパーチャー層は、ホトリソグラフ工
程により作製されるので大きさは正確に制御できる。ア
パーチャー層、つまり、第3GaAsスペーサ層9の ドーピ
ング濃度をp=1×1018cm-3程度に設定することで、十分
な導電率を得ることができ、尚且つ、レーザ光に対する
光損失を十分に低減できる。最後に、多層膜反射鏡10、
p側電極11、およびn側電極12を形成して構造が完成され
る。
The structure and manufacturing method of the surface emitting laser of the present invention,
The operation and the operation will be described with reference to FIG. In the figure, 1 is an n-type GaAs substrate, 2 is an n-type semiconductor multilayer film reflecting mirror, 3 is a first GaAs spacer layer, 4 is an active layer, and 5 is a 2G
aAs spacer layer, 6 is an AlInP current confinement layer, 7 is a p-type GaAs current introducing layer, 8 is a regrowth interface, 9 is a third GaAs spacer layer, 10 is a multilayer reflector, 11 is a p-side electrode, and 12 is an n-side. Electrodes. First, layers 2 to 7 are formed by a crystal growth method. Next, in order to form an aperture layer, a p-type GaAs current introduction layer 7, an AlInP current confinement layer 6, and a second GaAs spacer layer 5 are formed.
(A region including a portion provided for laser oscillation) is removed by etching as shown in FIG. 1 (this removes the current constriction layer from the optical axis for oscillating laser light). . Then, p
The third GaAs spacer layer 9 is produced by regrowing the type GaAs (in other words, the opening is filled with GaAs). 3rd GaAs
The portion of the spacer layer 9 sandwiched between the current confinement layers 6 becomes the aperture layer. The size of the aperture layer can be accurately controlled because it is produced by a photolithographic process. By setting the doping concentration of the aperture layer, that is, the third GaAs spacer layer 9 to about p = 1 × 10 18 cm −3 , sufficient conductivity can be obtained, and light loss with respect to laser light can be sufficiently reduced. Can be reduced to Finally, the multilayer reflector 10,
The p-side electrode 11 and the n-side electrode 12 are formed to complete the structure.

【0011】電流は、p側電極11より注入され、p型第3G
aAsスペーサ層9およびp型GaAs電流導入層7を通してアパ
ーチャー層に導かれる。電流が電流狭窄層6と平行に流
れるとき、p型GaAs電流導入層7はp=1×1020cm-3と超高
濃度にドーピングされているので抵抗が非常に低く電流
の殆どがこの層を流れる。また、第3GaAsスペーサ層9、
p型GaAs電流導入層7、アパーチャー層、および第2GaAs
スペーサ層5は、すべてGaAsであるのでヘテロ障壁によ
る直列抵抗は発生しない。従って、p側電極11からアパ
ーチャー直下の活性領域までの間で電圧降下は殆ど発生
しない。また、n型半導体多層膜反射鏡2の直列抵抗も小
さいので、素子抵抗が非常に低い面発光レーザを作製す
ることができる。
A current is injected from the p-side electrode 11 and the p-type 3G
The light is guided to the aperture layer through the aAs spacer layer 9 and the p-type GaAs current introducing layer 7. When the current flows in parallel with the current confinement layer 6, the p-type GaAs current introduction layer 7 has an extremely high resistance of p = 1 × 10 20 cm -3 and has a very low resistance, so that most of the current flows in this layer. Flows through. Also, the third GaAs spacer layer 9,
p-type GaAs current introduction layer 7, aperture layer, and second GaAs
Since the spacer layers 5 are all made of GaAs, no series resistance occurs due to the hetero barrier. Therefore, there is almost no voltage drop between the p-side electrode 11 and the active region immediately below the aperture. Further, since the series resistance of the n-type semiconductor multilayer mirror 2 is small, a surface emitting laser having a very low element resistance can be manufactured.

【0012】ここで、AlInPによる電流狭窄の作用につ
いて、図3を参照して説明する。AlInPはGaAs基板と格
子整合が可能であり良質な結晶が得られるのでレーザ光
の散乱などの光学的劣化を生じさせない。図3(a)にn型
AlInPとp型GaAs、及び図3(b)にp型AlInPとp型GaAsとの
バンドラインナップの様子を示す。図中で+で示される
正孔がGaAsからAlInPへ移動しようとしても、価電子帯
におけるヘテロ障壁(図では下向きに引かれた線)があ
り、移動できない。つまり、電流が流れない。ヘテロ障
壁の大きさは、AlInPがn型の場合2eV程度、AlInPがp型
の場合でも約 0.4 eV以上ある。本発明の構造では、上
述の通りp側電極11からアパーチャー直下の活性領域ま
での間で電圧降下は殆ど発生しないので、AlInP層6は、
n型が好ましいもののp型の場合でも十分大きなヘテロ障
壁を有し、p型GaAs電流導入層7に対して電流狭窄層とし
て作用する。尚、電流狭窄層の材料としては、GaAs基板
上に形成可能なバンドギャプが2eV以上のワイドギャッ
プ半導体なら本発明と同様な効果が得られるので、例え
ばAlGaInPやAlAsなどでも良い。また、第2GaAsスペーサ
層5は、電子のAlInP電流狭窄層6への流入を防ぐため
に、p型もしくはノンドープ層であることが好ましい。
本発明では、電流導入層とワイドギャップ半導体とのヘ
テロ障壁により電流を狭窄するので、面発光レーザの動
作電圧が低いものの方がより適している。つまり、活性
層4のバンドギャップが小さいく発振波長が0.85μmより
長いものの方が良い。具体的には、活性層の材料とし
て、GaInAsやGaInNAsが適している。活性層がGaInNAsの
場合、優れた特性の長波長帯の面発光レーザを作製する
ことができる。発振波長が0.85μmよりも短い場合は、
上記説明でGaAs層をAlGaAs層に置き換えれば、同様な効
果が得られる。
Here, the function of current confinement by AlInP will be described with reference to FIG. AlInP can be lattice-matched to a GaAs substrate and can provide high-quality crystals, so that optical deterioration such as scattering of laser light does not occur. Fig. 3 (a) shows n-type
FIG. 3B shows the band lineup of AlInP and p-type GaAs, and FIG. 3B shows the lineup of p-type AlInP and p-type GaAs. Even if holes indicated by + in the figure move from GaAs to AlInP, they cannot move due to a heterobarrier in the valence band (line drawn downward in the figure). That is, no current flows. The size of the hetero barrier is about 2 eV when AlInP is n-type, and is about 0.4 eV or more even when AlInP is p-type. In the structure of the present invention, as described above, almost no voltage drop occurs from the p-side electrode 11 to the active region immediately below the aperture.
Although the n-type is preferable, the p-type has a sufficiently large hetero-barrier even in the case of the p-type and functions as a current confinement layer for the p-type GaAs current introduction layer 7. As a material for the current confinement layer, the same effects as those of the present invention can be obtained as long as the band gap formed on the GaAs substrate is a wide gap semiconductor of 2 eV or more. For example, AlGaInP or AlAs may be used. The second GaAs spacer layer 5 is preferably a p-type or non-doped layer in order to prevent electrons from flowing into the AlInP current confinement layer 6.
In the present invention, since the current is constricted by the hetero barrier between the current introducing layer and the wide gap semiconductor, the surface emitting laser having a lower operating voltage is more suitable. That is, it is better that the active layer 4 has a small band gap and an oscillation wavelength longer than 0.85 μm. Specifically, GaInAs and GaInNAs are suitable as the material of the active layer. When the active layer is made of GaInNAs, a surface emitting laser having excellent characteristics in a long wavelength band can be manufactured. If the oscillation wavelength is shorter than 0.85μm,
The same effect can be obtained by replacing the GaAs layer with the AlGaAs layer in the above description.

【0013】また、電流狭窄層6は半導体なので、上下
のGaAs層とほぼ同じ熱膨張係数を有し、ヘテロ界面で剥
離が発生することもなく素子寿命が長い特徴を有する。
Further, since the current confinement layer 6 is a semiconductor, it has substantially the same thermal expansion coefficient as the upper and lower GaAs layers, and has a feature that the element life is long without separation occurring at the hetero interface.

【0014】従って、本発明の面発光レーザは、優れた
特性と長寿命を有し、尚且つ、高い歩留まりを有する。
Therefore, the surface emitting laser of the present invention has excellent characteristics and a long life, and has a high yield.

【0015】[0015]

【発明の実施の形態】以下、本発明の好ましき実施の形
態を実施例1並びに2、及び図1並びに2を参照して具
体的に説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be specifically described below with reference to Examples 1 and 2 and FIGS.

【0016】<実施例1>本実施例では、発光波長が0.
98μmの面発光レーザを作製した。図1に構造断面図を
示す。1はn型GaAs基板(n=1×1018cm-3、厚み:d=100μ
m )、2はn型GaAs/AlAs半導体多層膜反射鏡(n=1×1018
cm-3)、3はn型第1GaAsスペーサ層(n=1×1016cm-3、d=半
導体中での1/4波長厚)、4はノンドープGaInAs/GaAs歪量
子井戸活性層、5はp型第2GaAsスペーサ層(p=1×1016cm
-3、d=半導体中での1/8波長厚)、6はGaAs基板に格子整
合したn型Al0.5In0.5P電流狭窄層(n=1×1017cm-3、d=半
導体中での1波長厚)、7はp型GaAs電流導入層(p=1×10
20cm-3、d=半導体中での1/2波長厚)、8は再成長界面、9
はp型第3GaAsスペーサ層(p=1×1018cm-3)、10は誘電体
多層膜反射鏡、11はp側電極、12はn側電極である。活性
層4には、3層の7nm厚GaInAs井戸層を10nm厚のGaAs障壁
層で隔てて実効的に1.27eV(波長:0.98μm)のバンドギ
ャップを持つ歪量子井戸層を用いた。半導体多層膜反射
鏡2は、半導体中で1/4波長厚の高屈折率のGaAs層と半導
体中で1/4波長厚の低屈折率のAlAs層を交互に積層し
た。反射率を99.5%以上にする為に反射鏡層の積層数を2
0対とした。
<Embodiment 1> In the present embodiment, the emission wavelength is set to 0.
A 98 μm surface emitting laser was manufactured. FIG. 1 shows a structural sectional view. 1 is an n-type GaAs substrate (n = 1 × 10 18 cm −3 , thickness: d = 100μ)
m) and 2 are n-type GaAs / AlAs semiconductor multilayer mirrors (n = 1 × 10 18
cm -3 ), 3 is an n-type first GaAs spacer layer (n = 1 × 10 16 cm -3 , d == wavelength thickness in semiconductor), 4 is a non-doped GaInAs / GaAs strained quantum well active layer, 5 Is a p-type second GaAs spacer layer (p = 1 × 10 16 cm
-3 , d = 1/8 wavelength thickness in semiconductor), 6 is an n-type Al 0.5 In 0.5 P current confinement layer lattice-matched to the GaAs substrate (n = 1 × 10 17 cm -3 , d = semiconductor 7 is a p-type GaAs current introduction layer (p = 1 × 10
20 cm -3 , d = 1/2 wavelength thickness in semiconductor), 8 is the regrowth interface, 9
Is a p-type third GaAs spacer layer (p = 1 × 10 18 cm −3 ), 10 is a dielectric multilayer mirror, 11 is a p-side electrode, and 12 is an n-side electrode. As the active layer 4, a strained quantum well layer having an effective band gap of 1.27 eV (wavelength: 0.98 μm) was used in which three 7-nm-thick GaInAs well layers were separated by a 10-nm-thick GaAs barrier layer. The semiconductor multilayer reflector 2 was formed by alternately stacking a 屈折 wavelength-high refractive index GaAs layer in a semiconductor and a / 4 wavelength low refractive index AlAs layer in a semiconductor. To increase the reflectivity to 99.5% or more, the number of reflective mirror layers
0 pairs.

【0017】半導体層2-7は、化学線エピタキシー装置
を用いて1×10-5Torrの高真空中で連続して結晶成長さ
せた。III族の原料には金属のアルミニュム、ガリュウ
ム及びインジウムを、V族の原料にはフォスフィン及び
アルシンを用いた。ドーパントの原料には、Si、Beおよ
びCBr4を用いた。ウエハーを取り出し、ホトリソグラフ
工程により図1に示すようにp型GaAs電流導入層7および
n型AlInP電流狭窄層6を硫酸系エッチング液および塩酸
系エッチング液により順次選択的にエッチングし、直径
3μmのアパーチャーを形成した。ウエハーを化学線エ
ピタキシー装置に戻し、トリスヂメチルアミノアルシン
を用いてp型第2GaAsスペーサ層5の一部を図1に示すよ
うに10nmエッチングし、良好な結晶性を有する再成長
界面8を形成した。その後、第3GaAsスペーサ層9を再成
長した。第3GaAsスペーサ層9のうち電流狭窄層6に挟ま
れた部分がアパーチャー層となる。アパーチャー層は、
ホトリソグラフ工程により作製されるので大きさは正確
に制御できる。第3GaAsスペーサ層9の厚みは、第2GaAs
スペーサ層5の厚みと合わせて半導体中で3+1/4波長と
し、最終的に第1GaAsスペーサ層3と合わせて3.5波長
共振器を形成した(第3GaAsスペーサ層9の成長速度は、
再成長界面8上とp型GaAs電流導入層7上で同一であ
る)。アパーチャー層の外側の部分は共振条件からはず
れているのでレーザ発振はおこらず、単一の横モード発
振が得られる。リフトオフ法により内径10μm外径15μ
mのリング状p側電極11を形成した後、スッパタ蒸着法
により誘電体多層膜反射鏡10を形成した。誘電体多層膜
反射鏡10は、誘電体中で1/4波長厚さの高屈折率アモル
ファスSi層と誘電体中で1/4波長厚さの低屈折率SiO2
を交互に積層して作製した。反射率を99%以上にする為
に積層数を5対とした。本実施例では面発光レーザの誘
電体多層膜反射鏡にアモルファスSi層とSiO2層の材料系
を用いたが、誘電体多層膜反射鏡は高屈折率層と低屈折
率層が交互に積層されていれば良いので、SiNとSiO2
アモルファスSiとSiN、或いはTiO2とSiO2等の他の材料
系を用いても良い。その後、図1に示すようにCl系反応
性イオンビームエッチングにより誘電体多層膜反射鏡10
の外側をエッチングし、p側電極11を露出させた。最後
に、n側電極12を形成した。
The semiconductor layer 2-7 was grown continuously in a high vacuum of 1 × 10 −5 Torr using an actinic ray epitaxy apparatus. Metals such as aluminum, gallium and indium were used as group III raw materials, and phosphine and arsine were used as group V raw materials. Si, Be and CBr 4 were used as dopant raw materials. The wafer is taken out, and a p-type GaAs current introducing layer 7 and a
The n-type AlInP current confinement layer 6 was selectively and sequentially etched with a sulfuric acid-based etching solution and a hydrochloric acid-based etching solution to form an aperture having a diameter of 3 μm. The wafer is returned to the actinic ray epitaxy apparatus, and a part of the p-type second GaAs spacer layer 5 is etched by 10 nm using tris-dimethylaminoarsine as shown in FIG. 1 to form a regrowth interface 8 having good crystallinity. did. Thereafter, the third GaAs spacer layer 9 was regrown. The portion of the third GaAs spacer layer 9 sandwiched between the current confinement layers 6 becomes an aperture layer. The aperture layer is
The size can be accurately controlled because it is produced by a photolithographic process. The thickness of the third GaAs spacer layer 9 is
The thickness of the spacer layer 5 was adjusted to 3 + 1/4 wavelength in the semiconductor, and finally a 3.5-wavelength resonator was formed together with the first GaAs spacer layer 3 (the growth rate of the third GaAs spacer layer 9 was:
It is the same on the regrowth interface 8 and the p-type GaAs current introduction layer 7). Since the portion outside the aperture layer is out of the resonance condition, laser oscillation does not occur, and a single transverse mode oscillation is obtained. Inner diameter 10μm outer diameter 15μ by lift-off method
After forming the ring-shaped p-side electrode 11 of m, the dielectric multilayer film reflecting mirror 10 was formed by the sputtering evaporation method. The dielectric multilayer mirror 10 is formed by alternately stacking a high-refractive-index amorphous Si layer having a quarter-wave thickness in a dielectric and a low-refractive-index SiO 2 layer having a quarter-wave thickness in a dielectric. Produced. In order to make the reflectance 99% or more, the number of layers was set to 5 pairs. In the present embodiment, a material system of an amorphous Si layer and a SiO 2 layer was used for the dielectric multilayer reflector of the surface emitting laser, but the dielectric multilayer reflector has high refractive index layers and low refractive index layers alternately laminated. SiN and SiO 2 ,
Other material systems such as amorphous Si and SiN or TiO 2 and SiO 2 may be used. Thereafter, as shown in FIG. 1, the dielectric multilayer reflecting mirror 10 is formed by Cl-based reactive ion beam etching.
Was etched to expose the p-side electrode 11. Finally, an n-side electrode 12 was formed.

【0018】本面発光レーザに電流を注入したところ、
閾電流10 μAでレーザ発振した。レーザ光は誘電体多
層膜反射鏡側から出射され、室温において発振波長は0.
98μmであった。本面発光レーザは、10万時間以上の長
い素子寿命を有した。また、3インチウエハでの歩留ま
りも80%以上と高かった。
When a current was injected into the surface emitting laser,
Laser oscillation was performed at a threshold current of 10 μA. The laser light is emitted from the dielectric multilayer mirror and has an oscillation wavelength of 0.
It was 98 μm. The surface emitting laser has a long element life of 100,000 hours or more. Further, the yield on a 3-inch wafer was as high as 80% or more.

【0019】<実施例2>本実施例では、発光波長が1.
3μmの面発光レーザを作製した。図2に構造断面図を
示す。21はn型GaAs基板(n=1×1018cm-3、d=300μm)、
22はn型GaAs/AlInP半導体多層膜反射鏡(n=1×1018c
m-3)、23はノンドープ第1GaAsスペーサ層(d=半導体中
での1/2波長厚)、24はノンドープGaInNAs/GaAs歪量子井
戸活性層、25はノンドープ第2GaAsスペーサ層(d=半導体
中での2波長厚)、26はGaAs基板に格子整合したp型Al0.3
Ga0.2In0.5P電流狭窄層(p=1×1016cm-3、d=半導体中で
の3/8波長厚)、27はp型GaAs電流導入層(p=1×1019c
m-3、d=半導体中での1波長厚)、28は再成長界面、29はp
型第3GaAsスペーサ層(p=1×1018cm-3)、30はノンドープ
GaAs/AlInP半導体多層膜反射鏡、31はp側電極、32はn側
電極である。活性層24には、7nm厚のGaInNAs井戸層1層
を10nm厚のGaAs障壁層で挟んだ実効的に0.95eV(波長:1.
3μm)のバンドギャップを持つ歪量子井戸層を用いた。
半導体多層膜反射鏡22は、半導体中で1/4波長厚の高屈
折率のGaAs層と半導体中で1/4波長厚の低屈折率のGaAs
基板と格子整合するAl0.5In0.5P層を交互に積層した。
反射率を99.5%以上にする為に反射鏡層の積層数を20対
とした。
<Embodiment 2> In this embodiment, the emission wavelength is 1.
A 3 μm surface emitting laser was produced. FIG. 2 shows a cross-sectional view of the structure. 21 is an n-type GaAs substrate (n = 1 × 10 18 cm −3 , d = 300 μm),
22 is an n-type GaAs / AlInP semiconductor multilayer film reflecting mirror (n = 1 × 10 18 c
m- 3 ), 23 is a non-doped first GaAs spacer layer (d = 1/2 wavelength thickness in a semiconductor), 24 is a non-doped GaInNAs / GaAs strained quantum well active layer, 25 is a non-doped second GaAs spacer layer (d = 26 is the p-type Al 0.3 lattice-matched to the GaAs substrate.
Ga 0.2 In 0.5 P current confinement layer (p = 1 × 10 16 cm −3 , d = 3/8 wavelength thickness in semiconductor), 27 is a p-type GaAs current introduction layer (p = 1 × 10 19 c
m- 3 , d = one wavelength thickness in semiconductor), 28 is the regrowth interface, 29 is p
Type 3rd GaAs spacer layer (p = 1 × 10 18 cm -3 ), 30 is non-doped
A GaAs / AlInP semiconductor multilayer film reflecting mirror, 31 is a p-side electrode, and 32 is an n-side electrode. The active layer 24 has an effective thickness of 0.95 eV (wavelength: 1.0 nm) in which one 7 nm thick GaInNAs well layer is sandwiched between 10 nm thick GaAs barrier layers.
A strained quantum well layer having a band gap of 3 μm) was used.
The semiconductor multilayer reflector 22 is composed of a high refractive index GaAs layer having a quarter wavelength thickness in the semiconductor and a low refractive index GaAs layer having a quarter wavelength thickness in the semiconductor.
Al 0.5 In 0.5 P layers lattice-matched to the substrate were alternately stacked.
In order to make the reflectivity 99.5% or more, the number of laminated reflective mirror layers was set to 20 pairs.

【0020】半導体層22-27は、有機金属気相エピタキ
シー装置を用いて50Torrの真空中で連続して結晶成長さ
せた。III族の原料には金属のトリメチルアルミニュ
ム、トリメチルガリュウム及びトリメチルインジウム
を、V族の原料にはヂメチルヒドラジン、フォスフィン
及びアルシンを用いた。ドーパントの原料には、ヂシラ
ン、およびヂメチル亜鉛を用いた。ウエハーを取り出
し、ホトリソグラフ工程により図2に示すように、p型G
aAs電流導入層27、p型AlInP電流狭窄層26、および第2Ga
Asスペーサ層25の一部を臭素系エッチング液でエッチン
グし、直径5μmのアパーチャーを形成した。ウエハー
を有機金属気相エピタキシー装置に戻し、HClを用いて
第2GaAsスペーサ層25の一部をさらに10nmエッチング
し、良好な結晶性を有する再成長界面28を形成した。そ
の後、第3GaAsスペーサ層29を再成長した。第3GaAsスペ
ーサ層29のうち電流狭窄層26に挟まれた部分がアパーチ
ャー層となる。アパーチャー層は、ホトリソグラフ工程
により作製されるので大きさは正確に制御できる。第3G
aAsスペーサ層29の厚みは、第1GaAsスペーサ層25の厚み
と合わせて半導体中で3.5波長とし、最終的にGaAsス
ペーサ層23と合わせて4波長共振器を形成した。アパー
チャー層の外側の部分は共振条件からはずれているので
レーザ発振はおこらず、単一の横モード発振が得られ
る。引き続いてノンドープGaAs/AlInP半導体多層膜反射
鏡30を成長した。半導体多層膜反射鏡30は、半導体中で
1/4波長厚の高屈折率のGaAs層と半導体中で1/4波長厚の
低屈折率のGaAs基板と格子整合するAlInP層を交互に積
層した。反射率を99%以上にする為に反射鏡層の積層数
を15対とした。この後、図2に示すように臭素系エッチ
ング液により半導体多層膜反射鏡10の外側を第2GaAsス
ペーサ層29までエッチングした。最後に、内径7μm外
径15μmのリング状p側電極31およびn側電極32を形成し
た。
The semiconductor layers 22-27 were grown continuously in a vacuum of 50 Torr using a metal organic vapor phase epitaxy apparatus. Metals such as trimethylaluminum, trimethylgallium and trimethylindium were used as group III raw materials, and ヂ methylhydrazine, phosphine and arsine were used as group V raw materials. As a dopant material, ヂ silane and ヂ methylzinc were used. The wafer is taken out and subjected to a photolithographic process, as shown in FIG.
aAs current introduction layer 27, p-type AlInP current confinement layer 26, and second Ga
A part of the As spacer layer 25 was etched with a bromine-based etchant to form an aperture having a diameter of 5 μm. The wafer was returned to the metal organic vapor phase epitaxy apparatus, and a portion of the second GaAs spacer layer 25 was further etched by 10 nm using HCl to form a regrowth interface 28 having good crystallinity. After that, the third GaAs spacer layer 29 was regrown. The portion of the third GaAs spacer layer 29 interposed between the current confinement layers 26 becomes an aperture layer. The size of the aperture layer can be accurately controlled because it is produced by a photolithographic process. 3G
The thickness of the aAs spacer layer 29 was set to 3.5 wavelength in the semiconductor in accordance with the thickness of the first GaAs spacer layer 25, and finally a four-wavelength resonator was formed in combination with the GaAs spacer layer 23. Since the portion outside the aperture layer is out of the resonance condition, laser oscillation does not occur, and a single transverse mode oscillation is obtained. Subsequently, a non-doped GaAs / AlInP semiconductor multilayer mirror 30 was grown. The semiconductor multilayer mirror 30
A quarter-wavelength high-refractive-index GaAs layer and an AlInP layer lattice-matched with a quarter-wavelength low-refractive-index GaAs substrate in a semiconductor were alternately stacked. In order to make the reflectivity 99% or more, the number of laminated mirror layers was set to 15 pairs. Thereafter, as shown in FIG. 2, the outside of the semiconductor multilayer reflector 10 was etched to the second GaAs spacer layer 29 using a bromine-based etchant. Finally, a ring-shaped p-side electrode 31 and an n-side electrode 32 having an inner diameter of 7 μm and an outer diameter of 15 μm were formed.

【0021】本面発光レーザに電流を注入したところ、
閾電流100 μAでレーザ発振した。レーザ光は誘電体
多層膜反射鏡側から出射され、室温において発振波長は
1.3μmであった。本面発光レーザは、10万時間以上の
長い素子寿命を有した。また、3インチウエハでの歩留
まりも70%以上と高かった。上記性能は、長波長帯面
発光レーザとしては非常に優れている。
When a current was injected into the surface emitting laser,
Laser oscillation was performed at a threshold current of 100 μA. The laser beam is emitted from the dielectric multilayer mirror, and the oscillation wavelength at room temperature is
1.3 μm. The surface emitting laser has a long element life of 100,000 hours or more. Further, the yield on a 3-inch wafer was as high as 70% or more. The above performance is very excellent as a long wavelength band surface emitting laser.

【0022】[0022]

【発明の効果】本発明によれば、AlInP、AlGaInP、もし
くはAlAs等のバンドギャプが2eV以上のワイドギャップ
半導体を電流狭窄層に用い、ホトリソグラフ工程と再成
長工程によりアパーチャー層を形成することで歩留まり
を大きく改善できるので、優れた特性と長寿命を有する
面発光レーザを大量に安価で提供する事ができる。従っ
て、本面発光レーザは、レーザ光送信モジュールおよ
び、光インターコネクションあるいは光ファイバー通信
などの応用システムで利用できる。
According to the present invention, a wide gap semiconductor having a band gap of 2 eV or more, such as AlInP, AlGaInP, or AlAs, is used as a current confinement layer, and an aperture layer is formed by a photolithographic process and a regrowth process. Can be greatly improved, and a large number of surface emitting lasers having excellent characteristics and long life can be provided at low cost. Therefore, the surface emitting laser can be used in a laser light transmission module and an application system such as optical interconnection or optical fiber communication.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例1における面発光レーザの断面
図。
FIG. 1 is a sectional view of a surface emitting laser according to a first embodiment of the present invention.

【図2】本発明の実施例2における面発光レーザの断面
図。
FIG. 2 is a sectional view of a surface emitting laser according to a second embodiment of the present invention.

【図3】n型AlInPとp型GaAsとのバンドラインナップ
(a)、および、p型AlInPとp型GaAsとのバンドラインナ
ップ(b)を示す図。
FIG. 3 is a diagram showing a band lineup of n-type AlInP and p-type GaAs (a) and a band lineup of p-type AlInP and p-type GaAs (b).

【符号の説明】[Explanation of symbols]

1…n型GaAs基板、2…n型半導体多層膜反射鏡、3…n型第
1GaAsスペーサ層、4…活性層、5…p型第2GaAsスペーサ
層、6…AlInP電流狭窄層、7…p型GaAs電流導入層、8…
再成長界面、9…p型第3GaAsスペーサ層、10…多層膜反
射鏡、11…p側電極、12…n側電極。
1 ... n-type GaAs substrate, 2 ... n-type semiconductor multilayer mirror, 3 ... n-type
1 GaAs spacer layer, 4 ... active layer, 5 ... p-type second GaAs spacer layer, 6 ... AlInP current confinement layer, 7 ... p-type GaAs current introduction layer, 8 ...
Regrowth interface, 9 ... p-type third GaAs spacer layer, 10 ... multilayer reflector, 11 ... p-side electrode, 12 ... n-side electrode.

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】基板結晶上に光を発生する活性層と前記活
性層から発生した光からレーザ光を得る為に活性層の上
下を反射鏡で挟んだ共振器構造を有し、前記基板結晶と
垂直に光を出射する面発光レーザにおいて、バンドギャ
プが2eV以上のワイドギャップ半導体からなる電流狭窄
層を有することを特徴とする面発光レーザ。
An active layer for generating light on a substrate crystal, and a resonator structure in which upper and lower portions of the active layer are sandwiched between reflecting mirrors to obtain a laser beam from the light generated from the active layer; A vertical cavity surface emitting laser that emits light perpendicularly to the surface emitting laser, comprising a current confinement layer made of a wide gap semiconductor having a band gap of 2 eV or more.
【請求項2】GaAs基板結晶上に光を発生する活性層と前
記活性層から発生した光からレーザ光を得る為に活性層
の上下を反射鏡で挟んだ共振器構造を有し、前記基板結
晶と垂直に光を出射する面発光レーザにおいて、バンド
ギャプが2eV以上のワイドギャップ半導体からなる電流
狭窄層、および、GaAsもしくはAlGaAsからなるアパーチ
ャー層を有することを特徴とする面発光レーザ。
2. An active layer for generating light on a GaAs substrate crystal, and a resonator structure in which upper and lower portions of the active layer are sandwiched between reflectors to obtain a laser beam from the light generated from the active layer, A surface emitting laser that emits light perpendicular to a crystal, comprising: a current confinement layer made of a wide gap semiconductor having a band gap of 2 eV or more; and an aperture layer made of GaAs or AlGaAs.
【請求項3】請求項1項又は請求項2に記載の面発光レ
ーザにおいて、上記電流狭窄層の上に高濃度にドーピン
グされた電流導入層が形成されていることを特徴とする
面発光レーザ。
3. The surface emitting laser according to claim 1, wherein a highly doped current introducing layer is formed on the current confining layer. .
【請求項4】請求項1乃至3のいずれかに記載の面発光
レーザにおいて、上記電流狭窄層がAlInP、AlGaInP、お
よびAlAsの群から選ばれたものの一つであることを特徴
とする面発光レーザ。
4. The surface emitting laser according to claim 1, wherein said current confinement layer is one of a group selected from the group consisting of AlInP, AlGaInP and AlAs. laser.
【請求項5】請求項1乃至4のいずれかに記載の面発光
レーザにおいて、上記活性層にGaInAsもしくはGaInNAs
が用いられていることを特徴とする面発光レーザ。
5. The surface emitting laser according to claim 1, wherein said active layer is made of GaInAs or GaInNAs.
A surface emitting laser characterized in that a surface emitting laser is used.
【請求項6】請求項1乃至5のいずれかに記載の面発光
レーザにおいて、レーザ光の波長が0.85μmより長いこ
とを特徴とする面発光レーザ。
6. The surface emitting laser according to claim 1, wherein a wavelength of the laser light is longer than 0.85 μm.
【請求項7】特許請求の範囲第1項から第5項のいずれ
かに記載の面発光レーザにおいて、レーザ光の波長が光
ファイバー通信で用いられる1.3μm帯もしくは1.55μm
帯にあることを特徴とする面発光レーザ。
7. The surface emitting laser according to claim 1, wherein a wavelength of the laser light is 1.3 μm band or 1.55 μm used in optical fiber communication.
A surface emitting laser characterized by being in a band.
【請求項8】請求項1乃至7のいずれかに記載の面発光
レーザが、光源として使用されていることを特徴とする
レーザ光送信モジュール。
8. A laser light transmission module, wherein the surface emitting laser according to claim 1 is used as a light source.
【請求項9】請求項1乃至7のいずれかに記載の面発光
レーザが、光源として使用されていることを特徴とする
光ファイバー通信システム。
9. An optical fiber communication system, wherein the surface emitting laser according to claim 1 is used as a light source.
【請求項10】請求項1乃至7のいずれかに記載の面発
光レーザが、光源として使用されていることを特徴とす
る光インターコネクションシステム。
10. An optical interconnection system, wherein the surface emitting laser according to claim 1 is used as a light source.
JP00206898A 1998-01-08 1998-01-08 Surface emitting laser Expired - Fee Related JP4134366B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP00206898A JP4134366B2 (en) 1998-01-08 1998-01-08 Surface emitting laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP00206898A JP4134366B2 (en) 1998-01-08 1998-01-08 Surface emitting laser

Publications (2)

Publication Number Publication Date
JPH11204875A true JPH11204875A (en) 1999-07-30
JP4134366B2 JP4134366B2 (en) 2008-08-20

Family

ID=11519039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP00206898A Expired - Fee Related JP4134366B2 (en) 1998-01-08 1998-01-08 Surface emitting laser

Country Status (1)

Country Link
JP (1) JP4134366B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002329928A (en) * 2001-02-27 2002-11-15 Ricoh Co Ltd Optical communication system
US6697405B2 (en) * 2000-12-15 2004-02-24 Hitachi, Ltd. Vertical cavity surface emitting lasers, optical modules and systems
US6782032B2 (en) 2001-05-28 2004-08-24 Hitachi, Ltd. Semiconductor laser, ray module using the same and ray communication system
JP2005311175A (en) * 2004-04-23 2005-11-04 Ricoh Co Ltd Surface emitting laser and light transmission system
US7590159B2 (en) 2001-02-26 2009-09-15 Ricoh Company, Ltd. Surface-emission laser diode operable in the wavelength band of 1.1-1.7 micrometers and optical telecommunication system using such a laser diode
US7944957B2 (en) 2007-05-11 2011-05-17 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser, method for fabricating surface emitting semiconductor laser, module, light source apparatus, data processing apparatus, light sending apparatus, optical spatial transmission apparatus, and optical spatial transmission system
JP2018186213A (en) * 2017-04-27 2018-11-22 スタンレー電気株式会社 Vertical resonator type light-emitting element
CN111384666A (en) * 2020-03-20 2020-07-07 北京嘉圣光通科技有限公司 Method for manufacturing vertical cavity surface emitting laser and vertical cavity surface emitting laser

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6697405B2 (en) * 2000-12-15 2004-02-24 Hitachi, Ltd. Vertical cavity surface emitting lasers, optical modules and systems
US7590159B2 (en) 2001-02-26 2009-09-15 Ricoh Company, Ltd. Surface-emission laser diode operable in the wavelength band of 1.1-1.7 micrometers and optical telecommunication system using such a laser diode
JP2002329928A (en) * 2001-02-27 2002-11-15 Ricoh Co Ltd Optical communication system
US6782032B2 (en) 2001-05-28 2004-08-24 Hitachi, Ltd. Semiconductor laser, ray module using the same and ray communication system
JP2005311175A (en) * 2004-04-23 2005-11-04 Ricoh Co Ltd Surface emitting laser and light transmission system
US7944957B2 (en) 2007-05-11 2011-05-17 Fuji Xerox Co., Ltd. Surface emitting semiconductor laser, method for fabricating surface emitting semiconductor laser, module, light source apparatus, data processing apparatus, light sending apparatus, optical spatial transmission apparatus, and optical spatial transmission system
JP2018186213A (en) * 2017-04-27 2018-11-22 スタンレー電気株式会社 Vertical resonator type light-emitting element
CN111384666A (en) * 2020-03-20 2020-07-07 北京嘉圣光通科技有限公司 Method for manufacturing vertical cavity surface emitting laser and vertical cavity surface emitting laser

Also Published As

Publication number Publication date
JP4134366B2 (en) 2008-08-20

Similar Documents

Publication Publication Date Title
JP4265875B2 (en) Manufacturing method of surface emitting semiconductor laser
JP4034513B2 (en) Surface emitting laser device, optical module using the same, and optical system
JPH10173294A (en) Multilayered compound semiconductor film mirror containing nitrogen and surface type light emitting device
JPH0669585A (en) Surface emitting semiconductor laser and its manufacture
JP2002299742A (en) Vertical cavity surface-emitting laser, manufacturing method therefor, and communication system
JP2004063657A (en) Surface emitting laser, surface emitting laser array, light transmitting module, light transmitting/receiving module and optical communication system
JPH10233557A (en) Semiconductor light emitting element
JP2003133640A (en) Surface light-emitting semiconductor laser element
JPH10145003A (en) Semiconductor laser and optical communication system using the same
JP2002064244A (en) Distributed feedback semiconductor laser device
JP4134366B2 (en) Surface emitting laser
US20030156613A1 (en) Vertical-cavity surface-emitting semiconductor laser
JP2003168845A (en) Semiconductor laser element, optical module using the same, and optical system
JP2004031925A (en) N-type semiconductor distributed bragg reflector, plane emission semiconductor laser device, plane emission laser array, plane emission laser module optical interconnection system, and optical communication system
JP2002043696A (en) Semiconductor laser device
JP2011134967A (en) Semiconductor light emitting element
JP2757633B2 (en) Surface emitting semiconductor laser
JP4345673B2 (en) Semiconductor laser
JP2004179640A (en) Semiconductor laser, module for optical transmission, and optical communication system
JPH06132605A (en) Surface emitting type semiconductor laser in long wavelength range
JP3132445B2 (en) Long wavelength band surface emitting semiconductor laser and method of manufacturing the same
JP2001024282A (en) Manufacture of semiconductor device using group iii-v mixed crystal semiconductor and optical communication system
JP2005191260A (en) Semiconductor laser, method of manufacturing the same, module for optical transmission, and light communication system
US20030179803A1 (en) Vertical cavity surface emitting laser and laser beam transmitting module using the same
JP3469051B2 (en) Surface emitting semiconductor laser

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041215

RD01 Notification of change of attorney

Effective date: 20041215

Free format text: JAPANESE INTERMEDIATE CODE: A7421

RD01 Notification of change of attorney

Effective date: 20060417

Free format text: JAPANESE INTERMEDIATE CODE: A7421

A977 Report on retrieval

Effective date: 20070913

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071016

A521 Written amendment

Effective date: 20071204

Free format text: JAPANESE INTERMEDIATE CODE: A523

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080215

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080507

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080520

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 3

Free format text: PAYMENT UNTIL: 20110613

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110613

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 4

Free format text: PAYMENT UNTIL: 20120613

LAPS Cancellation because of no payment of annual fees