JP2011134967A - Semiconductor light emitting element - Google Patents

Semiconductor light emitting element Download PDF

Info

Publication number
JP2011134967A
JP2011134967A JP2009294752A JP2009294752A JP2011134967A JP 2011134967 A JP2011134967 A JP 2011134967A JP 2009294752 A JP2009294752 A JP 2009294752A JP 2009294752 A JP2009294752 A JP 2009294752A JP 2011134967 A JP2011134967 A JP 2011134967A
Authority
JP
Japan
Prior art keywords
layer
light emitting
type
type semiconductor
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009294752A
Other languages
Japanese (ja)
Other versions
JP5381692B2 (en
Inventor
Kenichi Kawaguchi
研一 河口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2009294752A priority Critical patent/JP5381692B2/en
Publication of JP2011134967A publication Critical patent/JP2011134967A/en
Application granted granted Critical
Publication of JP5381692B2 publication Critical patent/JP5381692B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a long-wavelength semiconductor light emitting element that uses a GaAs substrate without requiring complicate design with respect to a semiconductor light emitting element. <P>SOLUTION: The GaAs substrate has thereupon a first conductivity type semiconductor layer, a light emitting layer having a heterojunction of at least one Ge<SB>1-x</SB>Si<SB>x</SB>layer (where 0≤x≤0.5) and at least one In<SB>1-y</SB>Ga<SB>y</SB>As layer (where 0≤y≤0.7), and a second conductivity type semiconductor layer having the opposite conductivity type from that of the first conductivity type semiconductor layer. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は半導体発光素子に関するものであり、例えば、GaAs基板上に形成されたタイプIIの量子井戸構造を有する1.5μm波長帯の半導体発光素子に関するものである。   The present invention relates to a semiconductor light emitting device, for example, a 1.5 μm wavelength semiconductor light emitting device having a type II quantum well structure formed on a GaAs substrate.

現在、光通信システムの1.3μm帯以上の波長の長波長光源としてはInGaAsP/InP系の半導体レーザが用いられている。しかし、InP基板はGaAs基板に比べて高価であり且つ大面積ウェーハの製造が困難であるため、GaAs基板上に波長1.3μm以上の長波長発光素子を形成することが望まれている。   Currently, an InGaAsP / InP semiconductor laser is used as a long wavelength light source having a wavelength of 1.3 μm or more in an optical communication system. However, since an InP substrate is more expensive than a GaAs substrate and it is difficult to manufacture a large-area wafer, it is desired to form a long wavelength light emitting element having a wavelength of 1.3 μm or more on the GaAs substrate.

一般的な発光素子は、量子井戸や量子ドットのように、発光させる材料層をその層よりバンドギャップの大きな材料によって挟み、キャリアを閉じ込める構造が用いられている。これまで、GaAs基板を用いた発光素子においては、電子と正孔の両方のキャリアを同一の層内に閉じ込めることが可能なタイプIの量子井戸構造が用いられている。   A general light-emitting element has a structure in which a material layer that emits light is sandwiched by a material having a larger band gap than that layer and a carrier is confined, such as a quantum well or a quantum dot. Conventionally, in a light emitting device using a GaAs substrate, a type I quantum well structure capable of confining both carriers of electrons and holes in the same layer has been used.

このGaAs基板上に形成したタイプIの量子井戸構造として、一般的にはInGaAsが発光層として用いられている。しかし、InGaAsはGaAsに対して格子定数が大きい格子不整合系材料であるため、長波化するために高In組成で厚い膜厚の発光層を形成すると、蓄積した歪みが大きくなりすぎてしまう。その結果、結晶性を劣化させるため、波長1.3μm以上の長波化に課題があった。   As a type I quantum well structure formed on this GaAs substrate, InGaAs is generally used as a light emitting layer. However, since InGaAs is a lattice-mismatched material having a larger lattice constant than GaAs, if a light-emitting layer having a high In composition and a thick film thickness is formed in order to increase the wave length, the accumulated strain becomes too large. As a result, there was a problem in increasing the wavelength of 1.3 μm or more in order to deteriorate the crystallinity.

長波長化を可能とする構成としては、電子または正孔のいずれかのみを閉じ込めるタイプIIの量子井戸構造が提案されている。GaAsと組み合わせることによってタイプIIの量子井戸構造を形成可能なものにGaSbがあるが、InGaAsと同じく格子定数がGaAsよりも大きい。   As a configuration that enables longer wavelengths, a type II quantum well structure that confines only electrons or holes has been proposed. There is GaSb that can form a type II quantum well structure by combining with GaAs, but the lattice constant is larger than that of GaAs as in InGaAs.

その結果、量子井戸層数の増加に伴い単調に圧縮歪みが蓄積するため、GaAs基板上ではGaAs/GaSb量子井戸構造を形成することができなかった。以上の理由によって、GaAs基板上にIII-V族化合物半導体のみによって長波長の発光素子を形成することができなかった。   As a result, compressive strain accumulated monotonously with the increase in the number of quantum well layers, and thus a GaAs / GaSb quantum well structure could not be formed on the GaAs substrate. For the above reasons, it has been impossible to form a light emitting element having a long wavelength on a GaAs substrate using only a III-V group compound semiconductor.

そこで、IV族半導体を用いた1.3μm帯発光構造が提案されており、例えば、GaAsとほぼ格子整合するGeを用いたGaAs/Ge超格子構造を用いてGe層で発光させる素子が提案されている(例えば、特許文献1参照)。   Therefore, a 1.3 μm band light-emitting structure using a group IV semiconductor has been proposed. For example, an element that emits light with a Ge layer using a GaAs / Ge superlattice structure using Ge that is substantially lattice-matched with GaAs has been proposed. (For example, refer to Patent Document 1).

特開平08−070154号公報Japanese Patent Laid-Open No. 08-070154

しかし、Ge自体は発光効率の低い間接遷移型半導体であるため、発光効率を改善するためにGe層を薄くして量子効果によって伝導帯の基底準位を直接遷移バンド(Γ点)にするための複雑な設計が必要になるという問題がある。   However, Ge itself is an indirect transition type semiconductor with low luminous efficiency. Therefore, in order to improve luminous efficiency, the Ge layer is thinned and the ground level of the conduction band is made a direct transition band (Γ point) by the quantum effect. There is a problem that a complicated design is required.

したがって、本発明は、複雑な設計を要することなく、GaAs基板を用いた長波長発光素子を実現することを目的とする。   Accordingly, an object of the present invention is to realize a long wavelength light emitting device using a GaAs substrate without requiring a complicated design.

開示する一つの観点からは、GaAs基板と、前記GaAs基板上に設けられた第一導電型半導体層と、前記第一導電型半導体層に設けられた少なくとも一層のGe1−xSi層(但し、0≦x≦0.5)と少なくとも一層のIn1−yGaAs層(但し、0≦y≦0.7)とのヘテロ接合を有する発光層と、前記発光層上に設けられた前記第一導電型半導体層とは反対の導電型の第二導電型半導体層とを有することを特徴とする半導体発光素子が提供される。 From one aspect to be disclosed, a GaAs substrate, a first conductive semiconductor layer provided on the GaAs substrate, and at least one Ge 1-x Si x layer provided on the first conductive semiconductor layer ( However, a light emitting layer having a heterojunction between 0 ≦ x ≦ 0.5) and at least one In 1-y Ga y As layer (where 0 ≦ y ≦ 0.7) is provided on the light emitting layer. In addition, a semiconductor light emitting device is provided, comprising a second conductivity type semiconductor layer having a conductivity type opposite to the first conductivity type semiconductor layer.

開示の半導体発光素子によれば、複雑な設計を要することなく、GaAs基板上に波長1.5μm帯等の長波長発光素子を形成することが可能となる。   According to the disclosed semiconductor light emitting device, a long wavelength light emitting device having a wavelength of 1.5 μm or the like can be formed on a GaAs substrate without requiring a complicated design.

本発明の実施の形態の半導体発光素子の概念的断面図である。1 is a conceptual cross-sectional view of a semiconductor light emitting device according to an embodiment of the present invention. 本発明の実施の形態の半導体発光素子のバンドダイアグラムである。1 is a band diagram of a semiconductor light emitting device according to an embodiment of the present invention. InGaAsの直接遷移伝導帯エネルギーとGeの間接遷移伝導帯エネルギーとの差ΔEc1のGa組成比y依存性の説明図である。Is an illustration of a Ga composition ratio y dependence of the difference Delta] E c1 and indirect conduction band energy of the direct transition conduction band energy and Ge of InGaAs. 価電子帯エネルギー差ΔEのSi組成比x依存性の説明図である。A Si composition ratio x dependency of illustration of the valence band energy difference Delta] E v. GeSi層とAlGaAs層との伝導帯エネルギー差ΔEc2のAl組成比依存性の説明図である。It is an illustration of the Al composition ratio dependency of the conduction band energy difference Delta] E c2 of the GeSi layer and the AlGaAs layer. 超格子構造のバンドダイアグラムである。It is a band diagram of a superlattice structure. 本発明の実施例1の発光ダイオードの概念的断面図である。It is a notional cross section of the light emitting diode of Example 1 of the present invention. 本発明の実施例2の発光ダイオードの概念的断面図である。It is a conceptual sectional drawing of the light emitting diode of Example 2 of this invention. 本発明の実施例3の面発光レーザの途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle of the surface emitting laser of Example 3 of this invention. 本発明の実施例3の面発光レーザの図9以降の途中までの製造工程の説明図である。It is explanatory drawing of the manufacturing process to the middle after FIG. 9 of the surface emitting laser of Example 3 of this invention. 本発明の実施例3の面発光レーザの図10以降の製造工程の説明図である。It is explanatory drawing of the manufacturing process after FIG. 10 of the surface emitting laser of Example 3 of this invention. 本発明の実施例4のリッジ型端面発光レーザの光軸に垂直な概念的断面図である。It is a conceptual sectional view perpendicular to the optical axis of the ridge type edge emitting laser of Example 4 of the present invention.

ここで、図1乃至図6を参照して、本発明の実施の形態の半導体発光素子を説明する。図1は、本発明の実施の形態の半導体発光素子の概念的断面図であり、GaAs基板1上に第一導電型半導体層2、発光層3及び第二導電型半導体層4を順次積層することによって形成される。なお、第二導電型半導体層4と第一導電型半導体層2は互いに反対の導電型である。また、発光層3は少なくとも一層のGe1−xSi層5(但し、0≦x≦0.5)と少なくとも一層のIn1−yGaAs層6(但し、0≦y≦0.7)とのヘテロ接合を有している。 Here, with reference to FIG. 1 thru | or FIG. 6, the semiconductor light-emitting device of embodiment of this invention is demonstrated. FIG. 1 is a conceptual cross-sectional view of a semiconductor light emitting device according to an embodiment of the present invention. A first conductive semiconductor layer 2, a light emitting layer 3, and a second conductive semiconductor layer 4 are sequentially stacked on a GaAs substrate 1. Formed by. The second conductivity type semiconductor layer 4 and the first conductivity type semiconductor layer 2 are of opposite conductivity types. Further, the light-emitting layer 3 is at least one layer of Ge 1-x Si x layer 5 (where, 0 ≦ x ≦ 0.5) and at least one layer of In 1-y Ga y As layer 6 (where, 0 ≦ y ≦ 0. 7) and a heterojunction.

図2は、本発明の実施の形態の半導体発光素子のバンドダイアグラムである。本発明者による鋭意研究の結果、図に示すように伝導帯の最低エネルギーがIn1−yGaAs層6(直接遷移バンド:Γ点)で、価電子帯の最高エネルギーがGe1−xSi層5となる場合があることを見出した。このとき、発光遷移は、In1−yGaAs層6に閉じ込められた電子とGe1−xSi層5に閉じ込められた正孔が再結合することによって行われるため、従来のInGaAs層のみを使用した量子井戸構造に比べて発光波長の長波長化が可能となる。 FIG. 2 is a band diagram of the semiconductor light emitting device according to the embodiment of the present invention. As a result of intensive studies by the present inventor, as shown in the figure, the lowest energy of the conduction band is the In 1-y Ga y As layer 6 (direct transition band: Γ point), and the highest energy of the valence band is Ge 1-x. It has been found that the Si x layer 5 may be obtained. At this time, the light emission transition is performed by recombination of electrons confined in the In 1-y Ga y As layer 6 and holes confined in the Ge 1-x Si x layer 5, so that the conventional InGaAs layer The emission wavelength can be increased compared to a quantum well structure using only a single layer.

電子がIn1−yGaAs層6に閉じ込められるためには、In1−yGaAs層6のΓ点のエネルギーがGe1−xSi層5の間接遷移バンドのL点のエネルギーよりも低いことが必要である。それを全てのGeSi層に対して満たすには、GeSiの中でもっとも低い伝導帯エネルギーを有するGe層に対してInGaAs層のGa組成比yの範囲を求めれば良い。 For electrons confined in In 1-y Ga y As layer 6, In 1-y Ga y energy Γ point of As layer 6 is L points of an indirect transition band of Ge 1-x Si x layer 5 Energy Need to be lower. In order to satisfy all the GeSi layers, the range of the Ga composition ratio y of the InGaAs layer may be obtained for the Ge layer having the lowest conduction band energy in GeSi.

図3は、InGaAsの直接遷移伝導帯エネルギーとGeの間接遷移伝導帯エネルギーとの差ΔEc1のGa組成比y依存性の説明図であり、ここでは、エネルギー差ΔEc1を、ΔEc1=Ec1(ΓInGaAs)−Ec1(LGe
で定義する。縦軸の値ΔEが負であれば、In1−yGaAs層に電子が閉じ込められるので、In1−yGaAs層のGa組成比yを0≦y≦0.7とすれば良い。
FIG. 3 is an explanatory diagram of the dependence of the difference ΔEc1 between the direct transition conduction band energy of InGaAs and the indirect transition conduction band energy of Ge on the Ga composition ratio y. Here, the energy difference ΔE c1 is expressed as ΔE c1 = E c1.InGaAs ) -E c1 (L Ge )
Define in. If the value Delta] E c of the vertical axis is negative, the electrons are confined in an In 1-y Ga y As layer, the an In 1-y Ga y As layer of Ga composition ratio y them with 0 ≦ y ≦ 0.7 It ’s fine.

次に、正孔がGe1−xSi層に閉じ込められるためには、InGaAs層の中で最も高い価電子帯エネルギーを有するInAsに対してGe1−xSi層のSi組成比xの範囲を求めれば良い。 Next, in order to confine holes in the Ge 1-x Si x layer, the Si composition ratio x of the Ge 1-x Si x layer with respect to InAs having the highest valence band energy in the InGaAs layer. Find the range.

図4は、価電子帯エネルギー差のSi組成比x依存性の説明図であり、ここでは、価電子帯エネルギー差ΔEを、
ΔE=E(GeSi)−E(InAs)
で定義する。縦軸の値Eが正であれば、Ge1−xSi層に正孔が閉じ込められるので、Ge1−xSi層のSi組成比xを0≦x≦0.5とすれば良い。
FIG. 4 is an explanatory diagram of the dependence of the valence band energy difference on the Si composition ratio x. Here, the valence band energy difference ΔE v is expressed as follows:
ΔE v = E v (GeSi) −E v (InAs)
Define in. If positive value E v of the vertical axis, since the hole is confined in the Ge 1-x Si x layer, if the Ge 1-x Si x layer of Si composition ratio x between 0 ≦ x ≦ 0.5 good.

第一導電型半導体層2及び第二導電型半導体層4は、その価電子帯エネルギーがGe1−xSi層5の価電子帯エネルギーよりも低く、その伝導帯エネルギーがIn1−yGaAs層6の伝導帯エネルギーよりも大きい半導体を用いることが望ましい。例えば、AlGaAsを用いれば良く、それによって、第一導電型半導体層2及び第二導電型半導体層4は発光層3の発光波長に対する光吸収層として作用することを抑制することができ、且つ、エネルギー障壁層及びクラッド層として機能する。 The first conductive type semiconductor layer 2 and the second conductive type semiconductor layer 4 have a valence band energy lower than that of the Ge 1-x Si x layer 5 and have a conduction band energy of In 1-y Ga. it is preferable to use a larger semiconductor than the conduction band energy of the y As layer 6. For example, AlGaAs may be used, whereby the first conductive semiconductor layer 2 and the second conductive semiconductor layer 4 can be prevented from acting as a light absorption layer for the emission wavelength of the light emitting layer 3, and It functions as an energy barrier layer and a cladding layer.

図5は、GeSi層とAlGaAs層との伝導帯エネルギー差ΔEc2のAl組成比依存性の説明図であり、AlGaAsが直接遷移となるAl組成比の範囲となるようにGeとGe0.9Si0.1の場合を示している。ここでは、伝導帯エネルギー差ΔEc2を、
ΔEc2=Ec2(ΓAlGaAs)−Ec2(ΓGeSi
で定義する。縦軸の値ΔEが正であれば、Ge1−xSi層がAlGaAs層から注入される電子に対する障壁とはならず電子が良好に注入される。なお、InGaAsはAlGaAsの総ての組成比において正孔に対する障壁になることはない。
FIG. 5 is an explanatory view of the Al composition ratio dependence of the conduction band energy difference ΔE c2 between the GeSi layer and the AlGaAs layer. Ge and Ge 0.9 so that the Al composition ratio is in the range where AlGaAs is in direct transition. The case of Si 0.1 is shown. Here, the conduction band energy difference ΔE c2 is expressed as
ΔE c2 = E c2AlGaAs ) −E c2GeSi )
Define in. If the value ΔE c on the vertical axis is positive, the Ge 1-x Si x layer does not serve as a barrier against electrons injected from the AlGaAs layer, and electrons are injected well. Note that InGaAs does not become a barrier to holes at all composition ratios of AlGaAs.

また、図1においては省略しているが、第一導電型半導体層2及び第二導電型半導体層4の少なくとも一方と発光層3との間に光閉じ込め層(SCH層)を設けても良い。光閉じ込め層は、伝導帯エネルギーがGe1−xSi層5直接遷移伝導帯エネルギー(Γ点)よりも高く、価電子帯エネルギーがIn1−yGaAs層6の価電子帯エネルギーよりも低い半導体、例えば、AlGaAsを用いる。また、光閉じ込め層のバンドギャップは、第一導電型半導体層2及び第二導電型半導体層4のバンドギャップと同じかそれよりも小さくする。 Although omitted in FIG. 1, a light confinement layer (SCH layer) may be provided between at least one of the first conductive semiconductor layer 2 and the second conductive semiconductor layer 4 and the light emitting layer 3. . The optical confinement layer has a conduction band energy higher than the Ge 1-x Si x layer 5 direct transition conduction band energy (Γ point), and a valence band energy higher than that of the In 1-y Ga y As layer 6. A lower semiconductor, for example, AlGaAs. Further, the band gap of the optical confinement layer is set to be equal to or smaller than the band gaps of the first conductive semiconductor layer 2 and the second conductive semiconductor layer 4.

また、発光層3は上述のように、少なくとも一層のGe1−xSi層5(但し、0≦x≦0.5)と少なくとも一層のIn1−yGaAs層6(但し、0≦y≦0.7)とのヘテロ接合を有している。好適には、薄いGe1−xSi層5とIn1−yGaAs層6を交互に積層した多重量子井戸構造或いは超格子構造が望ましい。多重量子井戸構造或いは超格子構造とする場合には、何方を先に積層しても良く、積層数は、n:nでも、n:n−1のいずれでも良い。 Further, the light-emitting layer 3, as described above, at least one layer of Ge 1-x Si x layer 5 (0 ≦ x ≦ 0.5) and at least one layer of In 1-y Ga y As layer 6 (0 ≦ y ≦ 0.7). Preferably, a multiple quantum well structure or a superlattice structure in which thin Ge 1-x Si x layers 5 and In 1-y Ga y As layers 6 are alternately stacked is desirable. In the case of a multiple quantum well structure or a superlattice structure, any one may be stacked first, and the number of stacked layers may be either n: n or n: n-1.

図6は、超格子構造のバンドダイアグラムであり、各層の膜厚を多重量子井戸構造の場合に比べて薄くして超格子構造にした場合には、GeSi層同士、InGaAs層同士が量子力学的に結合して、電子と正孔の状態密度の重なりが大きくなる。その結果、発光層全体で発光性再結合が起こり、より高効率に発光する。   FIG. 6 is a band diagram of a superlattice structure. When the thickness of each layer is made thinner than that of a multiple quantum well structure to form a superlattice structure, GeSi layers and InGaAs layers are quantum mechanically coupled. And the overlap of the density of states of electrons and holes increases. As a result, luminescent recombination occurs in the entire light emitting layer, and light is emitted more efficiently.

なお、発光層3を超格子構造とする場合には、以下の式で表される発光層の平均歪みεav小さくすることが、結晶性の点からより好ましい。
εav=(εGeSi×tGeSiG+εInGaAs×tInGaAs)/( tGeSi+tInGaAs
ここで、各εはGaAs基板に対する歪み、各tは膜厚である。εInGaAsは、全ての組成で負の値をとり、εGeSiは、正の値をとることが可能なため、InGaAsとGeSiの膜厚を調整することによって平均歪みεavを小さくすることができる。
When the light emitting layer 3 has a superlattice structure, it is more preferable from the viewpoint of crystallinity to reduce the average strain ε av of the light emitting layer represented by the following formula.
ε av = (ε GeSi × t GeSi G + ε InGaAs × t InGaAs) / (t GeSi + t InGaAs)
Here, each ε is a strain with respect to the GaAs substrate, and each t is a film thickness. Since ε InGaAs takes negative values for all compositions and ε GeSi can take positive values, the average strain ε av can be reduced by adjusting the film thickness of InGaAs and GeSi. .

因に、GaAsに対する各材料の歪量は、
GaAs:εGaAs=0
InAs:εInAs=−0.066
In0.8Ga0.2As:εIn0.8Ga0.2As=−0.053
Ge:εGe=−0.001
Si:εSi=0.046
Ge0.9Si0.1:εGe0.9Si0.1=0.004
となる。
Incidentally, the amount of strain of each material with respect to GaAs is
GaAs: ε GaAs = 0
InAs: ε InAs = −0.066
In 0.8 Ga 0.2 As: ε In0.8Ga0.2As = -0.053
Ge: ε Ge = −0.001
Si: ε Si = 0.046
Ge 0.9 Si 0.1: ε Ge0.9Si0.1 = 0.004
It becomes.

この半導体発光素子は発光ダイオード(LED)としても良いし、半導体レーザ(LD)としても良い。半導体レーザとする場合には、積層方向に沿った面をファブリペロー面としても良く、必要に応じてストライプ状のリッジ等を設けても良い。或いは、積層方向の上下にIII-V族化合物半導体で構成する分布ブラッグ反射器(DBR)を設けて面発光レーザとしても良い。   The semiconductor light emitting element may be a light emitting diode (LED) or a semiconductor laser (LD). When a semiconductor laser is used, a surface along the stacking direction may be a Fabry-Perot surface, and a striped ridge may be provided as necessary. Alternatively, a surface emitting laser may be provided by providing a distributed Bragg reflector (DBR) made of a III-V group compound semiconductor above and below the stacking direction.

以上の構成を採用することによって、InP基板に比べて大口径で安価なGaAs基板を用いて1.3μmより長波長で発光する半導体発光素子を形成することが可能になる。   By adopting the above configuration, it is possible to form a semiconductor light emitting element that emits light at a wavelength longer than 1.3 μm using a GaAs substrate that is large in diameter and inexpensive compared to the InP substrate.

以上を前提として、次に、図7を参照して本発明の実施例1の半導体発光ダイオードを説明する。図7は本発明の実施例1の発光ダイオードの概念的断面図であり、n型GaAs基板11上に厚さが100〜300nmのn型GaAsバッファ層12、多重量子井戸層13、及び、厚さが100〜300nmのp型GaAs層14を順次積層する。また、n型GaAs基板11の裏面にn側電極17を形成するとともに、p型GaAs層14の表面にはp側電極18を形成する。なお、成膜方法としては分子線エピタキシー或いはMOCVD法を用いる。   Based on the above, a semiconductor light-emitting diode according to Example 1 of the present invention will now be described with reference to FIG. FIG. 7 is a conceptual cross-sectional view of the light-emitting diode according to the first embodiment of the present invention. The n-type GaAs buffer layer 12 having a thickness of 100 to 300 nm, the multiple quantum well layer 13 and the thickness are formed on the n-type GaAs substrate 11. A p-type GaAs layer 14 having a thickness of 100 to 300 nm is sequentially stacked. An n-side electrode 17 is formed on the back surface of the n-type GaAs substrate 11, and a p-side electrode 18 is formed on the surface of the p-type GaAs layer 14. As a film forming method, molecular beam epitaxy or MOCVD method is used.

この場合の多重量子井戸層13は、厚さが例えば、17nmのGe0.9Si0.1層15を3層と、厚さが例えば、1.8nmのIn0.8Ga0.2As層16を2層交互に積層して形成する。ここでは、組成比と膜厚とを調整して平均歪みεavが0になる歪み補償としている。 In this case, the multi-quantum well layer 13 includes three layers of Ge 0.9 Si 0.1 layer 15 having a thickness of, for example, 17 nm and In 0.8 Ga 0.2 As having a thickness of, for example, 1.8 nm. The layers 16 are formed by alternately stacking two layers. Here, the strain ratio is adjusted so that the average strain ε av becomes 0 by adjusting the composition ratio and the film thickness.

このように、本発明の実施例1においては、Ge0.9Si0.1層15と、In0.8Ga0.2As層16とにより多重量子井戸層13を形成しているので、GaAs基板を用いても1.55μm帯での発光が可能になる。 Thus, in Example 1 of the present invention, the multiple quantum well layer 13 is formed by the Ge 0.9 Si 0.1 layer 15 and the In 0.8 Ga 0.2 As layer 16. Even if a GaAs substrate is used, light emission in the 1.55 μm band is possible.

次に、図8を参照して、本発明の実施例2の発光ダイオードを説明する。図8は、本発明の実施例2の発光ダイオードの概念的断面図であり、n型GaAs基板21上に厚さが100〜300nmのn型Al0.3Ga0.7Asバッファ層22、厚さが例えば、30nmのi型Al0.3Ga0.7As光閉じ込め層23、超格子発光層24、厚さが例えば、30nmのi型Al0.3Ga0.7As光閉じ込め層25、及び、厚さが100〜300nmのp型Al0.3Ga0.7As層26を順次積層する。また、n型GaAs基板21の裏面にn側電極29を形成するとともに、p型Al0.3Ga0.7As層26の表面にはp側電極30を形成する。なお、p型Al0.3Ga0.7As層26上に例えば、p型GaAsコンタクト層を設けても良い。また、成膜方法としては分子線エピタキシー或いはMOCVD法を用いる。 Next, with reference to FIG. 8, the light emitting diode of Example 2 of this invention is demonstrated. FIG. 8 is a conceptual cross-sectional view of the light-emitting diode according to Example 2 of the present invention, in which an n-type Al 0.3 Ga 0.7 As buffer layer 22 having a thickness of 100 to 300 nm is formed on an n-type GaAs substrate 21. For example, an i-type Al 0.3 Ga 0.7 As light confinement layer 23 having a thickness of 30 nm, a superlattice light-emitting layer 24, and an i-type Al 0.3 Ga 0.7 As light confinement layer having a thickness of 30 nm, for example. 25 and a p-type Al 0.3 Ga 0.7 As layer 26 having a thickness of 100 to 300 nm are sequentially stacked. An n-side electrode 29 is formed on the back surface of the n-type GaAs substrate 21, and a p-side electrode 30 is formed on the surface of the p-type Al 0.3 Ga 0.7 As layer 26. For example, a p-type GaAs contact layer may be provided on the p-type Al 0.3 Ga 0.7 As layer 26. As a film forming method, molecular beam epitaxy or MOCVD is used.

この場合の超格子発光層24は、厚さが例えば、2nmのGe0.9Si0.1層27と、厚さが例えば、1nmのIn0.5Ga0.5As層28を交互に20層ずつ積層して形成する。 In this case, the superlattice light-emitting layer 24 has a Ge 0.9 Si 0.1 layer 27 having a thickness of, for example, 2 nm and an In 0.5 Ga 0.5 As layer 28 having a thickness of, for example, 1 nm alternately. It is formed by stacking 20 layers.

このように、本発明の実施例2においては、Ge0.9Si0.1層27と、In0.5Ga0.5As層28とにより超格子発光層24を形成しているので、超格子発光層全体で発光性再結合が起こり、より高効率に発光する。また、超格子発光層24をAl0.3Ga0.7As層で挟んでいるので、光の閉じ込めが良好に行われることになる。なお、劈開によりファブリペロー共振器を構成することによりレーザ発振も可能になる。 Thus, in Example 2 of the present invention, the superlattice light-emitting layer 24 is formed by the Ge 0.9 Si 0.1 layer 27 and the In 0.5 Ga 0.5 As layer 28. Luminescent recombination occurs in the entire superlattice light emitting layer, and light is emitted with higher efficiency. Further, since the superlattice light emitting layer 24 is sandwiched between Al 0.3 Ga 0.7 As layers, light confinement is performed well. Laser oscillation is also possible by forming a Fabry-Perot resonator by cleavage.

次に、図9乃至図11を参照して、本発明の実施例3の面発光レーザを説明する。図9乃至図11は、本発明の実施例3の面発光レーザの製造工程の説明図であり、まず、図9(a)に示すように、例えば、分子線エピタキシー法を用いてn型GaAs基板31上に、成長温度を600℃〜700℃としてn型GaAs層33及びn型AlGaAs層34を交互に例えば35周期以上積層して下部DBRミラー層32を形成する。   Next, a surface emitting laser according to Example 3 of the present invention will be described with reference to FIGS. FIGS. 9 to 11 are explanatory views of the manufacturing process of the surface emitting laser according to the third embodiment of the present invention. First, as shown in FIG. 9A, for example, an n-type GaAs using a molecular beam epitaxy method is used. On the substrate 31, the lower DBR mirror layer 32 is formed by alternately stacking n-type GaAs layers 33 and n-type AlGaAs layers 34, for example, 35 cycles or more at a growth temperature of 600 ° C. to 700 ° C.

下部DBRミラー層32は、屈折率の異なる膜を反射させたい波長λの1/4の光学距離の厚さで交互に積層すれば良い。例えば、n型AlGaAs層34としてSiを1×1018cm-3ドープした厚さが例えば、120nmのAl0.3Ga0.7Asを用い、n型GaAs層33としてはSiを1×1018cm-3ドープした厚さが例えば、115nmのGaAsを用いる。 The lower DBR mirror layer 32 may be alternately stacked with a thickness of an optical distance that is ¼ of the wavelength λ desired to reflect a film having a different refractive index. For example, the n-type AlGaAs layer 34 is made of Al 0.3 Ga 0.7 As having a thickness of, for example, 120 nm doped with Si of 1 × 10 18 cm −3 , and the n-type GaAs layer 33 has Si of 1 × 10 6. For example, GaAs with a thickness of 115 nm doped with 18 cm −3 is used.

引き続いて、成長温度を600℃〜700℃として下部DBRミラー層32上に厚さが例えば、50nmのi型GaAs層35、多重量子井戸層36、厚さが例えば、50nmのi型GaAs層39を順次堆積させる。   Subsequently, an i-type GaAs layer 35 having a thickness of, for example, 50 nm, a multiple quantum well layer 36, and an i-type GaAs layer 39 having a thickness of, for example, 50 nm are formed on the lower DBR mirror layer 32 at a growth temperature of 600 ° C. to 700 ° C. Are sequentially deposited.

この場合の多重量子井戸層36は、厚さが例えば、21nmのGe0.9Si0.1層37を6層と、厚さが例えば、1.8nmのIn0.8Ga0.2As層38を5層交互に積層して形成する。ここでも、組成比 と膜厚とを調整して平均歪みεavが0になる歪み補償としている。 In this case, the multi-quantum well layer 36 includes six Ge 0.9 Si 0.1 layers 37 having a thickness of, for example, 21 nm, and In 0.8 Ga 0.2 As having a thickness of, for example, 1.8 nm. The layers 38 are formed by alternately stacking five layers. In this case as well, the distortion is compensated so that the average strain ε av becomes 0 by adjusting the composition ratio and the film thickness.

引き続いて、成長温度を500℃〜600℃としてi型GaAs層39上に電流狭窄層となる厚さが例えば、10nmのi型AlAs層40を成長することにより、i型GaAs層/多重量子井戸層/i型GaAs層/i型AlAs層からなる共振器層が形成される。   Subsequently, an i-type GaAs layer / multiple quantum well is grown by growing an i-type AlAs layer 40 having a thickness of, for example, 10 nm as a current confinement layer on the i-type GaAs layer 39 at a growth temperature of 500 ° C. to 600 ° C. A resonator layer composed of layer / i-type GaAs layer / i-type AlAs layer is formed.

引き続いて、成長温度を600℃〜700℃としてi型AlAs層40上にp型GaAs層42及びp型AlGaAs層43を交互に例えば35周期以上積層して上部DBRミラー層41を形成する。   Subsequently, the upper DBR mirror layer 41 is formed by alternately stacking the p-type GaAs layer 42 and the p-type AlGaAs layer 43 on the i-type AlAs layer 40 for, for example, 35 periods or more at a growth temperature of 600 ° C. to 700 ° C.

上部DBRミラー層41は、例えば、p型AlGaAs層43としてBeを1×1018cm-3ドープした厚さが例えば、120nmのAl0.3Ga0.7Asを用いる。また、p型GaAs層42としてはBeを1×1018cm-3ドープした厚さが例えば、115nmのGaAsを用いる。 The upper DBR mirror layer 41 uses, for example, Al 0.3 Ga 0.7 As having a thickness of 120 nm, for example, doped with 1 × 10 18 cm −3 of Be as the p-type AlGaAs layer 43. As the p-type GaAs layer 42, GaAs having a thickness of, for example, 115 nm doped with 1 × 10 18 cm −3 of Be is used.

次いで、図9(b)に示すように、レジストパターン(図示は省略)をマスクとして、上部DBRミラー層41乃至i型GaAs層35をエッチングして直径が例えば、20μmの円筒状のメサを形成する。   Next, as shown in FIG. 9B, using the resist pattern (not shown) as a mask, the upper DBR mirror layer 41 to the i-type GaAs layer 35 are etched to form a cylindrical mesa having a diameter of 20 μm, for example. To do.

次いで、図10(c)に示すように、例えば、450℃に加熱した加熱水蒸気雰囲気によってi型AlAs層40の露出端面を局所酸化して電流狭窄酸化膜44を形成する。この時、Alが含まれていない他の層の露出端部はあまり酸化されない。   Next, as shown in FIG. 10C, for example, the exposed end face of the i-type AlAs layer 40 is locally oxidized in a heated water vapor atmosphere heated to 450 ° C. to form a current confining oxide film 44. At this time, the exposed end portions of other layers not containing Al are not oxidized much.

次いで、図10(d)に示すように、例えば、SiO膜を厚さが200nmになるように堆積させ て保護酸化膜45を形成する。なお、保護酸化膜45としては、SiO膜の代わりにSiN膜やSi ON膜を用いても良い。 Next, as shown in FIG. 10D, for example, a protective oxide film 45 is formed by depositing a SiO 2 film to a thickness of 200 nm. As the protective oxide film 45, a SiN film or a Si ON film may be used instead of the SiO 2 film.

次いで、図11(e)に示すように、レジストパターン(図示は省略)をマスクとしてメサの頂部に堆積した保護酸化膜45を選択的に除去する。   Next, as shown in FIG. 11E, the protective oxide film 45 deposited on the top of the mesa is selectively removed using a resist pattern (not shown) as a mask.

最後に、図11(f)に示すように、リソグラフィー、蒸着によって、n型GaAs基板31の裏面にn側電極46を形成するとともに、メサの頂部に円環状のp側電極47を形成することによって、本発明の実施例3の面発光レーザが完成する。   Finally, as shown in FIG. 11 (f), an n-side electrode 46 is formed on the back surface of the n-type GaAs substrate 31 by lithography and vapor deposition, and an annular p-side electrode 47 is formed on the top of the mesa. Thus, the surface emitting laser according to Example 3 of the present invention is completed.

このように、本発明の実施例3においては、GeSi/InGaAs多重量子井戸層を用いるとともに、DBRミラーを設けることによって、GaAs基板を用いた長波長面発光レーザを実現することが可能になる。   Thus, in Example 3 of the present invention, a long wavelength surface emitting laser using a GaAs substrate can be realized by using a GeSi / InGaAs multiple quantum well layer and providing a DBR mirror.

次に、図12を参照して、本発明の実施例4のリッジ型端面発光レーザを説明する。図12は、本発明の実施例4のリッジ型端面発光レーザの光軸に垂直な概念的断面図である。まず、例えば、分子線エピタキシー法を用いて(100)面を主面とするn型GaAs基板51上に、成長温度を600℃〜700℃としてn型AlGaAsクラッド層52を成長させる。この場合のn型AlGaAsクラッド層52は、例えば、Siを1×1018cm-3ドープした厚さが500nm〜1500nmのAl0.3Ga0.7Asとする。 Next, a ridge-type edge emitting laser according to Example 4 of the present invention will be described with reference to FIG. FIG. 12 is a conceptual cross-sectional view perpendicular to the optical axis of the ridge-type edge emitting laser according to Example 4 of the present invention. First, for example, an n-type AlGaAs cladding layer 52 is grown on an n-type GaAs substrate 51 having a (100) plane as a main surface by using molecular beam epitaxy at a growth temperature of 600 ° C. to 700 ° C. In this case, the n-type AlGaAs cladding layer 52 is, for example, Al 0.3 Ga 0.7 As having a thickness of 500 nm to 1500 nm doped with Si of 1 × 10 18 cm −3 .

引き続いて、n型AlGaAsクラッド層52上に厚さが例えば、30nmでAl組成比が0.3のi型AlGaAs光閉じ込め層53を形成する。   Subsequently, an i-type AlGaAs optical confinement layer 53 having a thickness of, for example, 30 nm and an Al composition ratio of 0.3 is formed on the n-type AlGaAs cladding layer 52.

引き続いて、i型AlGaAs光閉じ込め層53上に多重量子井戸層54を成長させる。この多重量子井戸層54は、例えば、上記の実施例1と同様に、厚さが例えば、17nmのGe0.9Si0.1層55を3層と、厚さが例えば、1.8nmのIn0.8Ga0.2As層56を2層交互に積層して形成する。 Subsequently, a multiple quantum well layer 54 is grown on the i-type AlGaAs optical confinement layer 53. The multi-quantum well layer 54 has, for example, three Ge 0.9 Si 0.1 layers 55 having a thickness of, for example, 17 nm, and a thickness of, for example, 1.8 nm, as in the first embodiment. Two In 0.8 Ga 0.2 As layers 56 are alternately stacked.

引き続いて、多重量子井戸層54上に、i型AlGaAs光閉じ込め層57、p型AlGaAsクラッド層58及びp型GaAsコンタクト層59を順次成長させる。この場合のi型AlGaAs光閉じ込め層57は厚さが例えば、30nmのAl0.3Ga0.7Asとし、p型AlGaAsクラッド層58は、例えば、Beを1×1018cm-3ドープした厚さが500nm〜1000nmのAl0.3Ga0.7Asとする。また、p型GaAsコンタクト層59は、例えば、Beを1×1019cm-3ドープした厚さが10nmのGaAsとする。 Subsequently, an i-type AlGaAs optical confinement layer 57, a p-type AlGaAs cladding layer 58, and a p-type GaAs contact layer 59 are sequentially grown on the multiple quantum well layer. In this case, the i-type AlGaAs optical confinement layer 57 has an Al 0.3 Ga 0.7 As thickness of 30 nm, for example, and the p-type AlGaAs cladding layer 58 has Be doped 1 × 10 18 cm −3 , for example. The thickness is set to Al 0.3 Ga 0.7 As having a thickness of 500 nm to 1000 nm. The p-type GaAs contact layer 59 is, for example, GaAs having a thickness of 10 nm doped with 1 × 10 19 cm −3 of Be.

次いで、幅が例えば、1.0μm〜2.5μmになるようにp型GaAsコンタクト層59乃至p型AlGaAsクラッド層58の一部をストライプ状にエッチングしてリッジ構造を形成する。   Next, a part of the p-type GaAs contact layer 59 to the p-type AlGaAs cladding layer 58 is etched into a stripe shape so that the width becomes, for example, 1.0 μm to 2.5 μm, thereby forming a ridge structure.

次いで、n型GaAs基板51の裏面にn側電極60を形成するとともに、p型GaAsコンタクト層59の頂面にp側電極61を形成する。最後に、リッジの延在方向と垂直な面で劈開してキャビティを形成することによって、本発明の実施例4のリッジ型端面発光レーザが完成する。   Next, an n-side electrode 60 is formed on the back surface of the n-type GaAs substrate 51, and a p-side electrode 61 is formed on the top surface of the p-type GaAs contact layer 59. Finally, a cavity is formed by cleaving along a plane perpendicular to the extending direction of the ridge, thereby completing the ridge-type edge emitting laser of Example 4 of the present invention.

このように、本発明の実施例4においては、GeSi/InGaAs多重量子井戸層を用いるとともに、劈開によってファブペロー型共振器を形成しているので、GaAs基板を用いた長波長端面発光レーザを実現することが可能になる。   Thus, in Example 4 of the present invention, a GeSi / InGaAs multiple quantum well layer is used and a Fabry-Perot resonator is formed by cleavage, so that a long wavelength edge emitting laser using a GaAs substrate is realized. It becomes possible.

1 GaAs基板
2 第一導電型半導体層
3 発光層
4 第二導電型半導体層
5 Ge1−xSi
6 In1−yGaAs層
11,21,31,51 n型GaAs基板
12 n型GaAsバッファ層
13,36,54 多重量子井戸層
14 p型GaAs層
15,27,37,55 Ge0.9Si0.1
16,38,56 In0.8Ga0.2As層
17,29,46,60 n側電極
18,30,47,61 p側電極
22 n型Al0.3Ga0.7Asバッファ層
23,25 i型Al0.3Ga0.7As光閉じ込め層
24 超格子発光層
26 p型Al0.3Ga0.7As層
28 In0.5Ga0.5As層
33 n型GaAs層
34 n型AlGaAs層
32 下部DBRミラー層
35,39 i型GaAs層
40 i型AlAs層
41 上部DBRミラー層
42 p型GaAs層
43 p型AlGaAs層
44 電流狭窄酸化膜
45 保護酸化膜
52 n型AlGaAsクラッド層
53 i型AlGaAs光閉じ込め層
57 i型AlGaAs光閉じ込め層
58 p型AlGaAsクラッド層
59 p型GaAsコンタクト層
1 GaAs substrate 2 first conductivity type semiconductor layer 3 light-emitting layer 4 second conductivity type semiconductor layer 5 Ge 1-x Si x layer 6 In 1-y Ga y As layer 11,21,31,51 n-type GaAs substrate 12 n Type GaAs buffer layer 13, 36, 54 multiple quantum well layer 14 p type GaAs layer 15, 27, 37, 55 Ge 0.9 Si 0.1 layer 16, 38, 56 In 0.8 Ga 0.2 As layer 17 , 29, 46, 60 n-side electrode 18, 30, 47, 61 p-side electrode 22 n-type Al 0.3 Ga 0.7 As buffer layer 23, 25 i-type Al 0.3 Ga 0.7 As optical confinement layer 24 superlattice light emitting layer 26 p-type Al 0.3 Ga 0.7 As layer 28 In 0.5 Ga 0.5 As layer 33 n-type GaAs layer 34 n-type AlGaAs layer 32 lower DBR mirror layers 35 and 39 i-type GaAs Layer 40 On i-type AlAs layer 41 Part DBR mirror layer 42 p-type GaAs layer 43 p-type AlGaAs layer 44 current confinement oxide film 45 protective oxide film 52 n-type AlGaAs cladding layer 53 i-type AlGaAs optical confinement layer 57 i-type AlGaAs optical confinement layer 58 p-type AlGaAs cladding layer 59 p-type GaAs contact layer

Claims (5)

GaAs基板と、
前記GaAs基板上に設けられた第一導電型半導体層と、
前記第一導電型半導体層に設けられた少なくとも一層のGe1−xSi層但し、0≦x≦0.5)と少なくとも一層のIn1−yGaAs層(但し、0≦y≦0.7)とのヘテロ接合を有する発光層と、
前記発光層上に設けられた前記第一導電型半導体層とは反対の導電型の第二導電型半導体層と
を有することを特徴とする半導体発光素子。
A GaAs substrate;
A first conductivity type semiconductor layer provided on the GaAs substrate;
At least one Ge 1-x Si x layer provided in the first conductivity type semiconductor layer where 0 ≦ x ≦ 0.5 and at least one In 1-y Ga y As layer where 0 ≦ y ≦ A light emitting layer having a heterojunction with 0.7),
A semiconductor light emitting device comprising: a second conductivity type semiconductor layer having a conductivity type opposite to the first conductivity type semiconductor layer provided on the light emitting layer.
前記第1導電型半導体層及び前記第二導電型半導体層の価電子帯のエネルギーが前記Ge1−xSi層の価電子帯のエネルギーよりも低く、前記第1導電型半導体層及び前記第二導電型半導体層の伝導帯のエネルギーが前記In1−yGaAs層の伝導帯のエネルギーよりも大きいことを特徴とする請求項1に記載の半導体発光素子。 The energy of the valence band of the first conductivity type semiconductor layer and the second conductivity type semiconductor layer is lower than the energy of the valence band of the Ge 1-x Si x layer, and the first conductivity type semiconductor layer and the first conductivity type semiconductor layer 2. The semiconductor light emitting device according to claim 1, wherein the energy of the conduction band of the two-conductivity-type semiconductor layer is larger than the energy of the conduction band of the In 1-y Ga y As layer. 前記第1導電型半導体層及び前記第二導電型半導体層の少なくとも一方と、前記発光層との間に、伝導帯エネルギーが前記Ge1−xSi層の直接遷移伝導帯エネルギーよりも高く、価電子帯エネルギーが前記In1−yGaAs層の価電子帯エネルギーよりも低いAlGaAs層を有することを特徴とする請求項1または請求項2に記載の半導体発光素子。 Between at least one of the first conductive type semiconductor layer and the second conductive type semiconductor layer and the light emitting layer, a conduction band energy is higher than a direct transition conduction band energy of the Ge 1-x Si x layer, 3. The semiconductor light emitting element according to claim 1, further comprising an AlGaAs layer having a valence band energy lower than that of the In 1-y Ga y As layer. 4. 前記発光層が、前記Ge1−xSi層と前記In1−yGaAs層とを交互に積層した超格子構造を有することを特徴とする請求項1乃至請求項3のいずれか1項に記載の半導体発光素子。 The light-emitting layer, any of the Ge 1-x Si x layer and the In 1-y Ga y As claim and having a superlattice structure of alternately laminated layers 1 through claim 3 1 The semiconductor light emitting device according to item. 前記発光層の積層方向の上下にIII-V族化合物半導体からなる分布ブラッグ反射ミラーを有していることを特徴とする請求項4に記載の半導体発光素子。
5. The semiconductor light emitting device according to claim 4, further comprising a distributed Bragg reflection mirror made of a III-V group compound semiconductor above and below the stacking direction of the light emitting layer.
JP2009294752A 2009-12-25 2009-12-25 Semiconductor light emitting device Expired - Fee Related JP5381692B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009294752A JP5381692B2 (en) 2009-12-25 2009-12-25 Semiconductor light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009294752A JP5381692B2 (en) 2009-12-25 2009-12-25 Semiconductor light emitting device

Publications (2)

Publication Number Publication Date
JP2011134967A true JP2011134967A (en) 2011-07-07
JP5381692B2 JP5381692B2 (en) 2014-01-08

Family

ID=44347366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009294752A Expired - Fee Related JP5381692B2 (en) 2009-12-25 2009-12-25 Semiconductor light emitting device

Country Status (1)

Country Link
JP (1) JP5381692B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579902A (en) * 2013-10-25 2014-02-12 中国科学院半导体研究所 Method for manufacturing silicon substrate microcavity laser device
JP2015103741A (en) * 2013-11-27 2015-06-04 キヤノン株式会社 Surface emitting laser and optical coherence tomography using the same
CN109449757A (en) * 2018-09-17 2019-03-08 西安电子科技大学 SiGe/Ge/SiGe double heterojunection laser and preparation method thereof
WO2023193829A1 (en) * 2022-04-06 2023-10-12 苏州长光华芯光电技术股份有限公司 High-efficiency active layer, semiconductor light-emitting device and preparation method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794806A (en) * 1993-09-20 1995-04-07 Sony Corp Quantum box aggregation element and light beam input/ output method
JPH10256158A (en) * 1997-03-13 1998-09-25 Hitachi Ltd Semiconductor device and manufacture thereof
WO2006085361A1 (en) * 2005-02-09 2006-08-17 Fujitsu Limited Light-emitting device and semiconductor device
JP2008532294A (en) * 2005-03-11 2008-08-14 アリゾナ ボード オブ リージェンツ ア ボディー コーポレート アクティング オン ビハーフ オブ アリゾナ ステイト ユニバーシティ Novel GeSiSn-based compounds, templates, and semiconductor structures
JP2010153739A (en) * 2008-12-26 2010-07-08 Fujitsu Ltd Optical semiconductor element and integrated element

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0794806A (en) * 1993-09-20 1995-04-07 Sony Corp Quantum box aggregation element and light beam input/ output method
JPH10256158A (en) * 1997-03-13 1998-09-25 Hitachi Ltd Semiconductor device and manufacture thereof
WO2006085361A1 (en) * 2005-02-09 2006-08-17 Fujitsu Limited Light-emitting device and semiconductor device
JP2008532294A (en) * 2005-03-11 2008-08-14 アリゾナ ボード オブ リージェンツ ア ボディー コーポレート アクティング オン ビハーフ オブ アリゾナ ステイト ユニバーシティ Novel GeSiSn-based compounds, templates, and semiconductor structures
JP2010153739A (en) * 2008-12-26 2010-07-08 Fujitsu Ltd Optical semiconductor element and integrated element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103579902A (en) * 2013-10-25 2014-02-12 中国科学院半导体研究所 Method for manufacturing silicon substrate microcavity laser device
CN103579902B (en) * 2013-10-25 2016-07-13 中国科学院半导体研究所 A kind of manufacture method of silicon substrate microcavity laser device
JP2015103741A (en) * 2013-11-27 2015-06-04 キヤノン株式会社 Surface emitting laser and optical coherence tomography using the same
US9945658B2 (en) 2013-11-27 2018-04-17 Canon Kabushiki Kaisha Wavelength tunable surface emitting laser and optical coherence tomography apparatus including the same
CN109449757A (en) * 2018-09-17 2019-03-08 西安电子科技大学 SiGe/Ge/SiGe double heterojunection laser and preparation method thereof
WO2023193829A1 (en) * 2022-04-06 2023-10-12 苏州长光华芯光电技术股份有限公司 High-efficiency active layer, semiconductor light-emitting device and preparation method

Also Published As

Publication number Publication date
JP5381692B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
US6566688B1 (en) Compound semiconductor structures for optoelectronic devices
JP4167968B2 (en) Semiconductor optical device
US6791104B2 (en) Type II quantum well optoelectronic devices
US20060193361A1 (en) Vertical cavity surface emitting laser device having a higher optical output power
US6472691B2 (en) Distributed feedback semiconductor laser device
EP1553670B1 (en) Semiconductor device having a quantum well structure including dual barrier layers, semiconductor laser employing the semiconductor device and methods of manufacturing the semiconductor device and the semiconductor laser.
JP2010109223A (en) Surface-emitting laser
JP5381692B2 (en) Semiconductor light emitting device
US6931044B2 (en) Method and apparatus for improving temperature performance for GaAsSb/GaAs devices
JP4045639B2 (en) Semiconductor laser and semiconductor light emitting device
US6859474B1 (en) Long wavelength pseudomorphic InGaNPAsSb type-I and type-II active layers for the gaas material system
US20080165819A1 (en) Multiwavelength quantum dot laser element
US20070217465A1 (en) Semiconductor optical device
JPH0629612A (en) Manufacture of surface emission-type semiconductor laser and laser obtained by above manufacture
EP0528439B1 (en) Semiconductor laser
JP3889896B2 (en) Semiconductor light emitting device
JPH04350988A (en) Light-emitting element of quantum well structure
Modak et al. AlGaInP microcavity light-emitting diodes at 650 nm on Ge substrates
JP2007250896A (en) Semiconductor optical element
JP2002094187A (en) Semiconductor laser and optical communication system using it
JP2000277856A (en) Self oscillation semiconductor laser system
KR20040098798A (en) Superluminescent diode using active layer of quantum dots structure and method for manufacturing the same
JP2003078160A (en) Light emitting element and its manufacturing method
JP4957355B2 (en) Semiconductor light emitting device
JPH07254755A (en) Semiconductor light emitting element

Legal Events

Date Code Title Description
RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120910

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130416

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130603

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130916

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees