JPS6083389A - Surface luminescent laser oscillator - Google Patents

Surface luminescent laser oscillator

Info

Publication number
JPS6083389A
JPS6083389A JP19145983A JP19145983A JPS6083389A JP S6083389 A JPS6083389 A JP S6083389A JP 19145983 A JP19145983 A JP 19145983A JP 19145983 A JP19145983 A JP 19145983A JP S6083389 A JPS6083389 A JP S6083389A
Authority
JP
Japan
Prior art keywords
layers
type inp
current density
junctions
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19145983A
Other languages
Japanese (ja)
Inventor
Kenichi Iga
伊賀 健一
Yuji Kotaki
小滝 裕二
Makoto Ishikawa
信 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Shingijutsu Kaihatsu Jigyodan
Original Assignee
Research Development Corp of Japan
Shingijutsu Kaihatsu Jigyodan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Development Corp of Japan, Shingijutsu Kaihatsu Jigyodan filed Critical Research Development Corp of Japan
Priority to JP19145983A priority Critical patent/JPS6083389A/en
Publication of JPS6083389A publication Critical patent/JPS6083389A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18305Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with emission through the substrate, i.e. bottom emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/0206Substrates, e.g. growth, shape, material, removal or bonding
    • H01S5/0207Substrates having a special shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18383Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] with periodic active regions at nodes or maxima of light intensity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/305Structure or shape of the active region; Materials used for the active region characterised by the doping materials used in the laser structure
    • H01S5/3095Tunnel junction

Abstract

PURPOSE:To reduce the oscillation threshold-value current density of the titled oscillator by a method wherein two layers or multilayered active layers are simultaneously activated utilizing tunnel current in reversely biased p<+>-n<+> junctions. CONSTITUTION:An n type GaInAsP layer 12 is grown on an n type InP substrate 11, and moreover, double-hetero structures consisting of n type InP clad layers 13, GaInAsP active layers 14 and p type InP clad layers 15 are respectively grown in a multilayer structure through high-impurity concentration p<+>-n<+> junctions of p<+> type InP layers 16 and n<+> type InP layers 17. Voltage is impressed in the forward direction extending over the direction and when tunnel current begins to flow between the p<+>-n<+> junctions 16 and 17 doped in a high-impurity concentration in a reversely biased condition, current begins to flow on the whole laser, carriers are injected in the layers 14 and an inverted population is formed. Resonance generates between optical resonance path 23 and laser beams 24 are outputted from the substrate 11. As current of the same current density as the layers 14 runs on the layers 14, the active regions can be made longer, thereby enabling to reduce the oscillation threshold-value current density.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、面発光レーザ発振装置に関し、特に複数の活
性層を重ねた構造により1発振しきい値電流密度の低減
を可能にした面発光レーザ発振装置に関する。
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a surface-emitting laser oscillation device, and in particular to a surface-emitting laser that has a structure in which a plurality of active layers are stacked to reduce the threshold current density of one oscillation. It relates to an oscillation device.

〔技術の背景〕[Technology background]

第1図は、従来の面発光レーザの1例を示す。 FIG. 1 shows an example of a conventional surface emitting laser.

図中、1は外形InP基板、2はGa4.A、P活性層
、3はP形InPクラッド層、4ζよ反射表面。
In the figure, 1 is an external InP substrate, 2 is a Ga4. A, P active layer, 3 P-type InP cladding layer, 4ζ reflective surface.

5は電極、6は鏡面電極、7は電流、8は活性領域、9
は光共振経路、lOはレーザ光を表わす。
5 is an electrode, 6 is a mirror electrode, 7 is a current, 8 is an active region, 9
represents an optical resonance path, and lO represents a laser beam.

図示の装置は、電極5および鏡面電極6の間に所定のレ
ベル以上の電流7を流すことにより、GcLInAsP
活性層2に活性領域8を生成させ9反射表面4と鏡面電
極6との間にファブリベロー共振器を形成させる。その
結果、光共振経路9にしたがって光共振が生じ、レーザ
光10が放射されるものである。
The illustrated device allows GcLInAsP
An active region 8 is generated in the active layer 2 to form a Fabry-Bello resonator between the reflective surface 4 and the mirror electrode 6 . As a result, optical resonance occurs along the optical resonance path 9, and laser light 10 is emitted.

上記例示したように、従来の面発光レーザは。As exemplified above, conventional surface emitting lasers.

活性層を1層しかもたず、利得領域が活性層の厚みの長
さしかないため1発振しきい値電流密度が高くたとえば
(約800.、A;77K)、熱の発生などにより室温
動作が困難であるという問題点があった。
Since it has only one active layer and the gain region is only as long as the thickness of the active layer, the single oscillation threshold current density is high (for example, approximately 800.A; 77K), and room temperature operation is not possible due to heat generation. The problem was that it was difficult.

発振しきい値電流密度を低減するには、高反射率の反射
鏡を形成するか、もしくは活性層を厚くして利得領域を
増やさなければならない。なお。
In order to reduce the oscillation threshold current density, it is necessary to increase the gain region by forming a reflector with a high reflectance or by increasing the thickness of the active layer. In addition.

単に活性層を多層化してヘテロ障壁からのもれ電流によ
り活性化した場合は9等価的に厚い単一の活性層の場合
と同じことになる。
If the active layer is simply formed into multiple layers and activated by leakage current from the hetero barrier, the result will be the same as in the case of a single active layer that is 9 equivalently thick.

ところで、前者の高反射率の反射鏡を形成する方法では
、レーザ光出力が著しく小さくなるという問題□があり
、後者の活性層を厚くする方法でも。
By the way, the former method of forming a reflecting mirror with a high reflectance has the problem that the laser light output becomes significantly small, and the latter method of forming a thick active layer also has the problem.

その厚みはキャリアの拡散長以下という制限があり1.
!′た。特にGaInAsP などの口元化合物では、
液相成長法の場合、均一の組成の厚膜を成長させるのは
困難であるという問題があった。
The thickness is limited to be less than the carrier diffusion length.1.
! 'Ta. Especially for mouth compounds such as GaInAsP,
In the case of liquid phase growth, there is a problem in that it is difficult to grow a thick film with a uniform composition.

〔発明の目的および要点〕[Object and main points of the invention]

この発明の目的は、上述した問題点を解決し。 The purpose of this invention is to solve the above-mentioned problems.

面発光レーザを従来方式のものより低い発振しきい値電
流密度で動作させることを可能にすることにあり、その
ため逆バイアスされたP −n接合におけるトンネル電
流を利用し、2層または多層活性層を同時に活性化する
ことにより上記目的を達成するものである。
The aim is to enable surface-emitting lasers to operate at lower oscillation threshold current densities than conventional ones, and to do so by exploiting the tunneling current in the reverse-biased P-n junction. The above objective is achieved by activating both at the same time.

〔発明の実施例〕[Embodiments of the invention]

牙2図は9本発明にもとづく面発光レーザの1実施例の
断面図であり9図中、11は外形1nP基板、12は外
形G−I%AsP層、13は外形I。
Figure 2 is a cross-sectional view of one embodiment of a surface emitting laser according to the present invention.

P層、14はGaInAaP活性層、15はP形1nP
15ツド層、16はP−InP層、17はn −InP
層、18はP”G aI nA s Pキャブ層、19
はS、:02膜、20はA s /S nなどn側電極
、21はA tL/ Z nまたはA a /Crなと
のP側電極、22はAu反射膜、23は光共振経路、2
4はレーザ光を示す。
P layer, 14 is GaInAaP active layer, 15 is P type 1nP
15 is a solid layer, 16 is a P-InP layer, and 17 is an n-InP layer.
layer, 18 is P”G aI nA s P cab layer, 19
is S, :02 film, 20 is n-side electrode such as As /S n, 21 is P-side electrode such as A tL / Z n or A a /Cr, 22 is Au reflective film, 23 is optical resonance path, 2
4 indicates a laser beam.

図示の構造は、n形IaP基板ll上に、 n形GαI
%AsP層12を成長させ、さらに、外形InPクラッ
ド層13 、 Ga1nAsP活性層14.P形+ InPクラッド層15のタプルヘテロ構造を、P−In
P層16 * n’ LnP層17の高不純物濃度のP
+−n+接合を介しで、多層成長させたものである。
The structure shown is an n-type GαI on an n-type IaP substrate II.
%AsP layer 12 is grown, and further an InP cladding layer 13 and a Ga1nAsP active layer 14 are grown. The tuple heterostructure of the P type + InP cladding layer 15 is replaced by a P-In
P layer 16 * n' High impurity concentration P of LnP layer 17
It is grown in multiple layers through +-n+ junctions.

図示の例は、3層多重化されている。最後のP形ItL
Pクラッド層15の上には、電極におけるオーミック接
触抵抗を低減するため、 P” G−I nAs Pキ
ャブ層18を成長させている。n形GαI n 4a 
P層12は、短共振器構造を製作するとき1.PとGa
InAsPとの間のエツチング速度の差を利用している
ために必要となる層である。
In the illustrated example, three layers are multiplexed. The last P-type ItL
On the P cladding layer 15, a P"G-I nAs P cab layer 18 is grown to reduce the ohmic contact resistance at the electrode. n-type GαI n 4a
The P layer 12 is used in 1. when fabricating a short resonator structure. P and Ga
This layer is necessary because it takes advantage of the difference in etching speed between InAsP and InAsP.

この実施例では、電流を流す領域を限定するために、5
(Ox膜19に円形の穴が開けられでおり。
In this example, in order to limit the area where current flows, 5
(A circular hole is made in the Ox film 19.

A −/Z nまたはA、/C,等のP側電極21がつ
けられている。外側には、As/Sqなどの電極20が
つけられ、その上から、高反射率のA、膜22がつけら
れている。
A P-side electrode 21 such as A − /Z n or A, /C, etc. is attached. An electrode 20 made of As/Sq or the like is attached to the outside, and a high reflectance A film 22 is attached thereon.

次に、第2図の実施例の動作を、説明する。まず。Next, the operation of the embodiment shown in FIG. 2 will be explained. first.

順方向に電圧を印加していき、逆バイアス状態の高不純
物濃度にドーピングされたP+ 、 n+ 2合16−
17間にトンネル電流が流れ出すと、レーザ全体に電流
が流れだし、各Ga I n As P活性層14にキ
ャリアが注入され、1反転分布が形成される。光共振経
、路230間で共振し、レーザ光24が基板11側から
出力される。
Applying a voltage in the forward direction, the P+, n+ 2 mixture 16- doped to a high impurity concentration in a reverse bias state
When a tunnel current begins to flow between 17 and 17, a current begins to flow throughout the laser, carriers are injected into each Ga In As P active layer 14, and one population inversion is formed. Resonance occurs between the optical resonance path 230, and laser light 24 is output from the substrate 11 side.

各Ga I’nAs P活性層14には、同じ、電流密
度Jの電流が流れるため、すべて一様に活性化され。
Since a current with the same current density J flows through each Ga I'nAs P active layer 14, they are all activated uniformly.

単一の活性層しかも、たない従来の面発光レーザに比べ
て、活性領域を長くとることが可能となる。。
Compared to conventional surface-emitting lasers that only have a single active layer, the active region can be made longer. .

そのため1発振しきい値電流密度を低くすることができ
る。
Therefore, the threshold current density for one oscillation can be lowered.

さらに、多層活性層の特徴として2例えばJ竺さdの単
一活性層構造面発光レーザと、厚さ、 d/Nの活性層
をN層多層化した多層活性層構造面発光レーザとを比較
した場合、活性領域の全体の長さは両者とも同じである
が、前者の発振しきい値電流密度をJth 、後者のそ
れをJ’t hとすると、後者では、一層当りの利得が
前者のN分の1で済むため。
Furthermore, the characteristics of the multilayer active layer are 2. For example, a single active layer structure surface emitting laser with a J thickness of d and a multilayer active layer structure surface emitting laser with a multilayer structure of N active layers with a thickness of d/N are compared. In the case of Because it only costs 1/N.

Jth’もJthのN分の1で済み1発振しきい値電流
密度を多層構造を採用することにより著しく低下させる
ことが可能となる。
Jth' can also be reduced to 1/N of Jth, making it possible to significantly reduce the threshold current density for one oscillation by employing a multilayer structure.

また、この構造は、GaAa基板を用いたGαAgA3
半導体レーザにもまったく同様に適用できることは言う
までもない。
In addition, this structure is based on GαAgA3 using a GaAa substrate.
It goes without saying that the invention can be applied to semiconductor lasers in exactly the same way.

〔、発明の効果〕〔,Effect of the invention〕

以上詳細に説明したように、この発明によれば。 As described in detail above, according to the present invention.

従来の面発光レーザに比べ、著しく発振しきい値電流密
度を低くでき、高い信頼性をもつ面発光レーザを実現で
きる。従来の面発光レーザの持つ。
Compared to conventional surface emitting lasers, the oscillation threshold current density can be significantly lowered, and a highly reliable surface emitting laser can be realized. Conventional surface emitting laser has.

共振器のモノリシック製作、短共振器構造による単−縦
モード動作、狭山射角、二次元アレイ化等の優れた特徴
に加えで、低しきい値動作による高値・頼性を合わせ持
った。この発明による素子は。
In addition to excellent features such as monolithic resonator fabrication, single-longitudinal mode operation due to short resonator structure, Sayama radiation angle, and two-dimensional array formation, it also has high value and reliability due to low threshold operation. The device according to this invention is:

これからの光集積回路を構成する上で1幅広い利用が期
待されるもので、きわめて重要な意義を有するものであ
る。
It is expected to be widely used in the construction of future optical integrated circuits, and has extremely important significance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は、従来の面発光レーザの1例の断面図。 第2図は本発明の1実施例装置の断面図である。 図中、11はn形IRP基板、12はn形GαI。 AaP層、13は外形IsPクラッド層、14はGaI
nAsP活性層、15はP形I n Pクラッド層、1
6はP+−InP層、17はn+−ISP層、18はP
+GcLInAsPキャブ層、19は5iOz膜120
はA1L/Sn電極、21はA−/zn又はA u/(
: 、−のP側電極、22はA14膜、23は光共振経
路、24はレーザ光である。 特許出願人 新技術開発事業団 代理人弁理士 長谷用 文 廣
FIG. 1 is a cross-sectional view of an example of a conventional surface emitting laser. FIG. 2 is a sectional view of an apparatus according to an embodiment of the present invention. In the figure, 11 is an n-type IRP substrate, and 12 is an n-type GαI. AaP layer, 13 is IsP cladding layer, 14 is GaI
nAsP active layer, 15 is P type I n P cladding layer, 1
6 is P+-InP layer, 17 is n+-ISP layer, 18 is P
+GcLInAsP cab layer, 19 is 5iOz film 120
is A1L/Sn electrode, 21 is A-/zn or A u/(
: , - P-side electrode, 22 is an A14 film, 23 is an optical resonance path, and 24 is a laser beam. Patent applicant Hiroshi Haseyo, Patent attorney, New Technology Development Corporation

Claims (1)

【特許請求の範囲】 + + 複数の活性層のそれぞれを、P−nトンネル接続を介し
て交互に積層し、多層の活性層構造としたことを特徴と
する面発光レーザ発振装置。
[Claims] + + A surface emitting laser oscillation device characterized in that a plurality of active layers are alternately stacked via Pn tunnel connections to form a multilayer active layer structure.
JP19145983A 1983-10-13 1983-10-13 Surface luminescent laser oscillator Pending JPS6083389A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19145983A JPS6083389A (en) 1983-10-13 1983-10-13 Surface luminescent laser oscillator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19145983A JPS6083389A (en) 1983-10-13 1983-10-13 Surface luminescent laser oscillator

Publications (1)

Publication Number Publication Date
JPS6083389A true JPS6083389A (en) 1985-05-11

Family

ID=16274988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19145983A Pending JPS6083389A (en) 1983-10-13 1983-10-13 Surface luminescent laser oscillator

Country Status (1)

Country Link
JP (1) JPS6083389A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949350A (en) * 1989-07-17 1990-08-14 Bell Communications Research, Inc. Surface emitting semiconductor laser
US5034344A (en) * 1989-07-17 1991-07-23 Bell Communications Research, Inc. Method of making a surface emitting semiconductor laser
US5115442A (en) * 1990-04-13 1992-05-19 At&T Bell Laboratories Top-emitting surface emitting laser structures
US5197077A (en) * 1992-02-28 1993-03-23 Mcdonnell Douglas Corporation Low divergence laser
US5263041A (en) * 1992-03-27 1993-11-16 The University Of Colorado Foundation, Inc. Surface emitting semiconductor laser
EP2043210A3 (en) * 2007-09-28 2010-12-22 OSRAM Opto Semiconductors GmbH Semiconductor laser and method for producing the semiconductor laser
US8179940B2 (en) 2007-09-28 2012-05-15 Osram Opto Semiconductors Gmbh Semiconductor laser and method for producing the semiconductor laser

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4949350A (en) * 1989-07-17 1990-08-14 Bell Communications Research, Inc. Surface emitting semiconductor laser
US5034344A (en) * 1989-07-17 1991-07-23 Bell Communications Research, Inc. Method of making a surface emitting semiconductor laser
US5115442A (en) * 1990-04-13 1992-05-19 At&T Bell Laboratories Top-emitting surface emitting laser structures
US5197077A (en) * 1992-02-28 1993-03-23 Mcdonnell Douglas Corporation Low divergence laser
US5263041A (en) * 1992-03-27 1993-11-16 The University Of Colorado Foundation, Inc. Surface emitting semiconductor laser
EP2043210A3 (en) * 2007-09-28 2010-12-22 OSRAM Opto Semiconductors GmbH Semiconductor laser and method for producing the semiconductor laser
US8179940B2 (en) 2007-09-28 2012-05-15 Osram Opto Semiconductors Gmbh Semiconductor laser and method for producing the semiconductor laser

Similar Documents

Publication Publication Date Title
JPS6254489A (en) Semiconductor light emitting element
JPS6083389A (en) Surface luminescent laser oscillator
JPH04144183A (en) Surface light emitting type semiconductor laser
JPH04144182A (en) Optical semiconductor device array
JPH0156547B2 (en)
JP2865325B2 (en) Semiconductor laser device
JPH0325037B2 (en)
JPH03104292A (en) Semiconductor laser
JPS63269594A (en) Surface emission type bistable semiconductor laser
JP2855887B2 (en) Semiconductor laser and method of manufacturing the same
JP3674139B2 (en) Visible semiconductor laser
JPS6342867B2 (en)
JPS58110085A (en) Buried type semiconductor laser
JPS60189983A (en) Semiconductor light emitting element
JPS641074B2 (en)
JPH01108789A (en) Surface emission semiconductor laser element
JP2527024B2 (en) Semiconductor laser
JPS6148277B2 (en)
JPS58196084A (en) Distributed feedback type semiconductor laser element
JPH0233988A (en) Semiconductor laser
JPS5923585A (en) Semiconductor laser element
JPH07202321A (en) Light semiconductor device
JPS6320393B2 (en)
JPS6083388A (en) Semiconductor laser
JPS63104494A (en) Semiconductor laser device