JPH0251269B2 - - Google Patents
Info
- Publication number
- JPH0251269B2 JPH0251269B2 JP9219084A JP9219084A JPH0251269B2 JP H0251269 B2 JPH0251269 B2 JP H0251269B2 JP 9219084 A JP9219084 A JP 9219084A JP 9219084 A JP9219084 A JP 9219084A JP H0251269 B2 JPH0251269 B2 JP H0251269B2
- Authority
- JP
- Japan
- Prior art keywords
- semiconductor layer
- layer
- semiconductor
- current
- inp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000010410 layer Substances 0.000 claims description 69
- 239000004065 semiconductor Substances 0.000 claims description 51
- 239000000758 substrate Substances 0.000 claims description 20
- -1 indium-phosphorus compound Chemical class 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011574 phosphorus Substances 0.000 claims description 2
- 239000002356 single layer Substances 0.000 claims description 2
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 description 45
- 230000003287 optical effect Effects 0.000 description 12
- 230000007423 decrease Effects 0.000 description 8
- 238000004891 communication Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000012535 impurity Substances 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 229910000530 Gallium indium arsenide Inorganic materials 0.000 description 4
- 239000013078 crystal Substances 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000003776 cleavage reaction Methods 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000010355 oscillation Effects 0.000 description 2
- 230000007017 scission Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 229910000980 Aluminium gallium arsenide Inorganic materials 0.000 description 1
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 1
- 240000001973 Ficus microcarpa Species 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hcl hcl Chemical compound Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 150000003018 phosphorus compounds Chemical class 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
- H01S5/2237—Buried stripe structure with a non-planar active layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/24—Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a grooved structure, e.g. V-grooved, crescent active layer in groove, VSIS laser
Landscapes
- Semiconductor Lasers (AREA)
- Led Devices (AREA)
Description
【発明の詳細な説明】
(a) 発明の技術分野
本発明は半導体発光装置、特にInP/InGaAsP
又はInGaAs系半導体を用いてストライプ溝内に
活性層等が埋込まれる構造を有して、直線性及び
閾値電流等が特に高温において大きく改善される
半導体発光装置に関する。[Detailed Description of the Invention] (a) Technical Field of the Invention The present invention relates to semiconductor light emitting devices, particularly InP/InGaAsP
The present invention also relates to a semiconductor light emitting device that has a structure in which an active layer and the like are buried in striped grooves using an InGaAs semiconductor, and whose linearity, threshold current, etc. are greatly improved, especially at high temperatures.
(b) 技術の背景
光を情報信号の媒体とする光通信システムは情
報化社会を担う主要な柱として顕著な進展を続け
ている。光通信等の光を媒体とするシステムにお
いては半導体発光装置は最も重要な構成要素であ
つて、例えば要求される波長帯域の実現、安定し
た単一の基本横モード発振、単一の縦モード発
振、量子効率の向上、電流−光出力特性の直線性
の向上、出力の増大などの諸特性の改善が重ねら
れて、システムの進展に寄与している。(b) Technical background Optical communication systems, which use light as the medium for information signals, continue to make remarkable progress as a major pillar of the information society. Semiconductor light-emitting devices are the most important components in systems that use light as a medium, such as optical communications. , improvements in various characteristics such as improved quantum efficiency, improved linearity of current-light output characteristics, and increased output have contributed to the advancement of systems.
(c) 従来技術と問題点
先に述べた如き研究開発の結果により半導体発
光装置について既に多数の構造が提供されてい
る。その中で石英系フアイバによる伝送に適する
波長1.1乃至1.7μm程度の帯域の半導体レーザと
して、インジウム・燐/インジウム・ガリウム・
砒素・燐(InP/InGaAsP)化合物半導体を用い
たVSB(V−grooved Substrate Buried double
heterostructure)レーザが知られている。(c) Prior Art and Problems As a result of the research and development described above, many structures for semiconductor light emitting devices have already been provided. Among them, indium-phosphorus/indium-gallium-
VSB (V-grooved Substrate Buried double) using arsenic/phosphorus (InP/InGaAsP) compound semiconductor
heterostructure) lasers are known.
第1図はInP/InGaAsP系VSBレーザの一例
を示す断面図である。本従来例のVSBレーザを
製造するに当たつては、n型InP単結晶の(100)
面を上面とする基板1上にp型InP層2を成長し
て、<011>方向に延伸するストイプ溝を塩酸
(HCl)系エツチング液を用いて、p型InP層2を
貫通する深さに形成する。このストライプ溝は、
InP単結晶の(111)B面を表出するV字型の断
面形状となる。 FIG. 1 is a sectional view showing an example of an InP/InGaAsP VSB laser. In manufacturing the VSB laser of this conventional example, an n-type InP single crystal (100)
A p-type InP layer 2 is grown on a substrate 1 with the surface facing up, and a striped groove extending in the <011> direction is formed using a hydrochloric acid (HCl)-based etching solution to a depth that penetrates the p-type InP layer 2. to form. This stripe groove is
It has a V-shaped cross section that exposes the (111)B plane of the InP single crystal.
このストライプ溝内にn型InP閉じ込め層3、
InGaAsP活性層4、p型InP閉じ込め層5よりな
るヘテロ接合構造を液相エピタキシヤル成長方法
等によつて成長する。この際にn型InP層3a及
びInGaAsP層4aがそれぞれ閉じ込め層3及び
活性層4と同時に成長し、またp型InP閉じ込め
層5はストライプ溝を埋めて溝外に拡がるまで成
長させる。なお更に連続してp型InGaAsP層6
を成長する。また7はp側電極、8はn側電極で
ある。本従来例のVSBレーザの光共振器は第1
図の断面に平行な2面の劈開面を反射鏡面とする
フアブリー・ペロー型であつて、共振器内で最大
の利得を持つ波長の近傍において利得と損失とが
つり合つてレーザ発振が行われる。この閾値電流
は共振器長Lが短いほど少ない。 In this stripe groove, an n-type InP confinement layer 3,
A heterojunction structure consisting of an InGaAsP active layer 4 and a p-type InP confinement layer 5 is grown by a liquid phase epitaxial growth method or the like. At this time, the n-type InP layer 3a and the InGaAsP layer 4a are grown at the same time as the confinement layer 3 and the active layer 4, respectively, and the p-type InP confinement layer 5 is grown until it fills the stripe trench and extends outside the trench. Further, a p-type InGaAsP layer 6 is continuously formed.
grow. Further, 7 is a p-side electrode, and 8 is an n-side electrode. The optical cavity of the VSB laser in this conventional example is the first
It is a Fabry-Perot type in which the two cleavage planes parallel to the cross section shown in the figure serve as reflecting mirror surfaces, and laser oscillation occurs when gain and loss are balanced in the vicinity of the wavelength that has the maximum gain within the resonator. . This threshold current decreases as the resonator length L becomes shorter.
また、半導体レーザの微分量子効率ηは一般的
に、その共振器長をL〔cm〕、共振器端面の反射率
をR、共振器内の損失係数をα〔cm-1〕とすると
き、半導体基板によつて定まるη0を用いて、
η=η01/Lln1/R/α+1/Lln1/R
で表わされて、共振器長Lを短くすることによつ
て損失の影響を相対的に少なくし、微分量子効率
ηを大きくすることができる。 In addition, the differential quantum efficiency η of a semiconductor laser is generally expressed as follows, where the cavity length is L [cm], the reflectance of the cavity end face is R, and the loss coefficient within the cavity is α [cm -1 ]. Using η 0 determined by the semiconductor substrate, it is expressed as η=η 0 1/Lln1/R/α+1/Lln1/R, and by shortening the resonator length L, the influence of loss can be relatively reduced. , and the differential quantum efficiency η can be increased.
これらの理由によつて従来のInP/InGaAsP系
VSBレーザにおいては共振器長Lを200μm程度
としている。第2図は共振器長L≒200μmの
InP/InGaAsP−VSBレーザの電流−光出力特
性の一例を示す図であり、温度25℃と70℃の場合
について、1端面あたりの光出力〔mw〕を示し
ている。 For these reasons, the conventional InP/InGaAsP system
In the VSB laser, the cavity length L is approximately 200 μm. Figure 2 shows the resonator length L≒200μm.
It is a diagram showing an example of the current-light output characteristics of an InP/InGaAsP-VSB laser, and shows the light output [mw] per end facet at temperatures of 25°C and 70°C.
これらの特性曲線を検討するに、温度25℃の場
合についても電流の増加に伴つて微分量子効率η
が減少して特性曲線が湾曲し直線性から外れてい
る。更に温度70℃の場合については閾値電流の増
加及び微分量子効率の減少が著しいことが知られ
る。 Examining these characteristic curves, we can see that even at a temperature of 25°C, the differential quantum efficiency η increases as the current increases.
decreases, the characteristic curve curves and deviates from linearity. Furthermore, it is known that at a temperature of 70° C., the threshold current increases and the differential quantum efficiency decreases significantly.
この様な特性は主として無効電流すなわち活性
層4を流れない洩れ電流によつて支配されてい
る。第1図に示したVSBレーザの電流径路とし
ては破線で示す及び、があげられ、この中
は活性層4に流れて発光を行う電流であるが、
及びは前記の無効電流である。 Such characteristics are mainly controlled by reactive current, that is, leakage current that does not flow through the active layer 4. The current paths of the VSB laser shown in FIG.
and is the above-mentioned reactive current.
電流はp型InP閉じ込め層5→p型InP層2
→n型InP基板1の径路を流れ、その電流値はp
型InP層2とn型InP基板1とによつて形成され
るpn接合の電圧−電流特性に支配される。 Current flows from p-type InP confinement layer 5 to p-type InP layer 2
→Flows through the path of n-type InP substrate 1, and the current value is p
It is governed by the voltage-current characteristics of the pn junction formed by the InP type InP layer 2 and the n-type InP substrate 1.
次にストライプ溝の外側では、(イ)InGaAsP層
6及びInP閉じ込め層5のp型領域、(ロ)InP層3
aのn型領域、(ハ)InP層2のp型領域、(ニ)InP基
板1のn型領域が積層された構造となつており、
n型InP層3aとp型InP層2とによつて形成さ
れるnp逆接合によつて前記電流に相当する電
流は阻止される。しかしながら前記(イ)乃至(ニ)によ
つて両電極間にpnpn接合が構成されており、前
記電流が流れることによつてこれをゲート電流
とするサイリスタとして動作し、アノード電流に
相当する電流がターンオンする場合がある。こ
のサイリスタ動作に対しては、p型InP層2の不
純物濃度が従来例えば5×1017cm-3程度であつた
のに対して2×1018cm-3程度と高くし、この層に
おける電子のライフタイムを短縮することによつ
て、少なくとも常温においてはターンオンに到ら
せない改善が行なわれている。第2図に示した特
性例の25℃の場合についてはpn接合の順方向電
圧−電流特性に支配される洩れ電流の増加が影
響し、また70℃の場合についてはpn接合順方向
電流の温度特性にもとずく電流の増加に前記サ
イリスタ動作による電流も加わつているものと
考えられる。この温度上昇に伴なう特性の劣化は
InP/InGaAsP系レーザでは例えばGaAs/
AlGaAs系レーザに比較して特に顕著である。 Next, outside the stripe groove, (a) the p-type regions of the InGaAsP layer 6 and the InP confinement layer 5, and (b) the InP layer 3.
It has a structure in which the n-type region of a, (c) the p-type region of the InP layer 2, and (d) the n-type region of the InP substrate 1 are stacked.
A current corresponding to the above current is blocked by the np reverse junction formed by the n-type InP layer 3a and the p-type InP layer 2. However, due to (a) to (d) above, a pnpn junction is formed between the two electrodes, and when the current flows, it operates as a thyristor using this as the gate current, and a current corresponding to the anode current is generated. It may turn on. For this thyristor operation, the impurity concentration of the p-type InP layer 2, which was conventionally about 5 x 10 17 cm -3 , is increased to about 2 x 10 18 cm -3 , and electrons in this layer are increased. Improvements have been made by shortening the lifetime of the device to prevent it from reaching turn-on, at least at room temperature. In the characteristic example shown in Figure 2, in the case of 25°C, the increase in leakage current that is controlled by the forward voltage-current characteristics of the pn junction affects the temperature, and in the case of 70°C, the temperature of the forward current of the pn junction It is considered that the current due to the thyristor operation is added to the increase in current based on the characteristics. The deterioration of characteristics due to this temperature rise is
For example, in InP/InGaAsP lasers, GaAs/
This is especially noticeable compared to AlGaAs lasers.
前記例の如き光出力の非直線性、温度上昇に伴
なう閾値電流の増大、微分量子効率の劣化などは
光通信等の光源としては重要な問題であつて、光
通信シソテムの進展のためにその改善が要望され
ている。 Non-linearity of optical output, increase in threshold current due to temperature rise, deterioration of differential quantum efficiency, etc. as mentioned in the example above are important problems for light sources for optical communications, etc., and are important issues for the progress of optical communications systems. Improvements are requested.
(d) 発明の目的
本発明は、InP/InGaAsP又はInGaAs系半導
体材料を用いてストライプ溝内に活性層等が埋め
込み形成される半導体レーザに関して、その漏れ
電流の影響を抑御して前記諸特性を改善すること
を目的とする。(d) Purpose of the Invention The present invention relates to a semiconductor laser in which an active layer, etc. is embedded in a stripe groove using InP/InGaAsP or InGaAs-based semiconductor material, and improves the above-mentioned characteristics by suppressing the influence of leakage current. The purpose is to improve.
(e) 発明の構成
本発明の前記目的は、第1導電型のインジウ
ム・燐化合物半導体基板上に形成された第2導電
型の第1の半導体層と、前記第1の半導体層を貫
通して前記基板に到着する断面がV形を呈するス
トライプ状の溝と、前記溝内部の前記基板及び第
1の半導体層に接して形成された第1導電型の第
2の半導体層と、前記第2の半導体層に接し、か
つ単層であつて前記第2の半導体層より禁制帯幅
が小さいインジウム・ガリウム・砒素、燐化合
物、或いはインジウム・ガリウム・砒素化合物よ
りなる第3の半導体層と、前記第3の半導体層を
埋め込み、かつ前記溝外の第1の半導体層上にま
で延伸する第4の半導体層と、前記第4の半導体
層の前記溝外の第1の半導体層上にまで延伸した
部位と、その下部の第1の半導体層との間に位置
する第1導電型の第5の半導体層とを有する半導
体基体に、前記ストライプ方向に導波される光の
共振器を設け、かつ前記共振器の導波方向の長さ
が300μm以上でかつ400μm以下である半導体発
光装置により達成される。(e) Structure of the Invention The object of the present invention is to provide a first semiconductor layer of a second conductivity type formed on an indium-phosphorus compound semiconductor substrate of a first conductivity type, and a semiconductor layer that penetrates the first semiconductor layer. a striped groove having a V-shaped cross section reaching the substrate; a second semiconductor layer of a first conductivity type formed in contact with the substrate and the first semiconductor layer inside the groove; a third semiconductor layer made of an indium-gallium-arsenic, phosphorous compound, or an indium-gallium-arsenic compound, which is in contact with the second semiconductor layer, is a single layer, and has a narrower bandgap than the second semiconductor layer; a fourth semiconductor layer that embeds the third semiconductor layer and extends onto the first semiconductor layer outside the trench; and a fourth semiconductor layer that extends onto the first semiconductor layer outside the trench of the fourth semiconductor layer. A resonator for light guided in the stripe direction is provided in a semiconductor substrate having a fifth semiconductor layer of the first conductivity type located between the stretched portion and the first semiconductor layer below the stretched portion. , and the length of the resonator in the waveguide direction is 300 μm or more and 400 μm or less.
第3図はInP/InGaAsP系VSBレーザについ
て、その共振器長Lと閾値電流Ith及び閾値電流
密度Jthとの相関の例を示す図であり、第4図は
温度70℃において光出力5mwを得るに必要な電
流の共波器長Lとの相関の例を示す図である。 Figure 3 shows an example of the correlation between the cavity length L, threshold current Ith, and threshold current density Jth for an InP/InGaAsP VSB laser, and Figure 4 shows an optical output of 5 mW at a temperature of 70°C. 2 is a diagram showing an example of the correlation between the current required for the resonator length L and the resonator length L. FIG.
閾値電流Ithは共振器長Lが長くなれば通常増
大する。しかしながら閾値電流密度Jthは共振器
長Lが短い場合に大きく、共振器長Lが長くなる
に伴つて減少した後にほぼ一定となる。これは共
振器長Lが短い場合には発振を生ずるために必要
な利得係数g=α+1/Lln1/Rが大きくなつて電流
密度の閾値Jthが大きいことが必要であり、共振
器長Lが長くなれば前記式の第2項の効果が相対
的に減少することによる。この閾値電流密度Jth
の大小は半導体基板に印加される電圧の高低を意
味しており、閾値電流密度が小さい共振器長Lを
選択することによつて印加電圧を低くすることが
できる。印加電圧を低減すれば先に説明した電流
を支配するp型InP層2とn型InP基板1間の
pn接合に加わる電圧が低下して洩れ電流はpn接
合の順方向特性に従つて減少する。 The threshold current Ith usually increases as the resonator length L increases. However, the threshold current density Jth is large when the resonator length L is short, decreases as the resonator length L becomes longer, and then becomes approximately constant. This is because when the resonator length L is short, the gain coefficient g=α+1/Lln1/R required to generate oscillation becomes large, and the current density threshold Jth needs to be large, and the resonator length L is long. This is because the effect of the second term in the above equation is relatively reduced. This threshold current density Jth
The magnitude of L means the level of voltage applied to the semiconductor substrate, and by selecting a resonator length L with a small threshold current density, the applied voltage can be lowered. If the applied voltage is reduced, the voltage between the p-type InP layer 2 and the n-type InP substrate 1, which dominates the current explained earlier, will decrease.
The voltage applied to the pn junction decreases, and the leakage current decreases in accordance with the forward characteristics of the pn junction.
なお先に述べた如く閾値電流密度Jthは、例え
ば第3図に示す例においては共振器長=350μm
程度以上においては殆ど一定となる。この様に閾
値電流密度Jthの減少の効果がない範囲で振幅器
長Lを増大するならば、電圧低下の効果なしに閾
値電流Ithを徒に増加するのみである。この事情
は第4図に示す例によつても明らかであり、例え
ば温度70℃において光出力5mwを得るに必要な
電流は共振器長Lの増大によつて減少した後に増
加に転ずる。本図示例においては共振器長L≒
350μmにおいて電流値が最小となり、共振器長
Lが300μm乃至400μm程度の範囲が曲線の底部
となつている。 As mentioned earlier, the threshold current density Jth is, for example, in the example shown in Fig. 3, when the resonator length = 350 μm.
Above a certain level, it becomes almost constant. In this way, if the amplitude length L is increased within a range in which there is no effect of reducing the threshold current density Jth, the threshold current Ith will only be increased needlessly without the effect of reducing the voltage. This situation is also clear from the example shown in FIG. 4; for example, the current required to obtain an optical output of 5 mW at a temperature of 70° C. decreases as the resonator length L increases, and then begins to increase. In this illustrated example, the resonator length L≒
The current value is minimum at 350 μm, and the bottom of the curve is in the range where the resonator length L is about 300 μm to 400 μm.
InP/InGaAsP系半導体材料による溝内埋め込
み構造のレーザにおいては構成に相違があつても
共振器長Lに関して同様の特性を示し、共振器長
Lを300μm乃至400μmに設定することによつて
量子効率を最高にすることができ、後に例示する
如く本発明の目的とする特性の改善が実現され
る。 Lasers with a trench-embedded structure made of InP/InGaAsP semiconductor materials exhibit similar characteristics with respect to the cavity length L even if their configurations are different, and by setting the cavity length L between 300 μm and 400 μm, the quantum efficiency can be improved. can be maximized, and as will be exemplified later, the objective of the present invention is to improve the characteristics.
(f) 発明の実施例
以下本発明の実施例によつて更に具体的に説明
する。(f) Examples of the invention The present invention will be explained in more detail below using examples.
本発明の実施例として、先に第1図に示した断
面構造を有するVSBレーザを下記の如く製造す
る。 As an example of the present invention, a VSB laser having the cross-sectional structure shown in FIG. 1 was manufactured as follows.
本実施例のn型InP基板1は例えば不純物濃度
2×1018cm-3、p型InP層2は例えば不純濃度2
×1018cm-3、厚さ1.5μm、n型InP閉じ込め層3
は例えば不純物濃度5×1017cm-3、InGaAsP活性
層4は例えばルミネセンス波長1.3μm、中心線上
の厚さ0.15μm、p型InP閉じ込め層5は例えば不
純物濃度5×1017cm-3、p型InGaAsP層6は例え
ば不純物濃度1×1019cm-3とする。 The n-type InP substrate 1 of this embodiment has an impurity concentration of, for example, 2×10 18 cm -3 , and the p-type InP layer 2 has an impurity concentration of, for example, 2
×10 18 cm -3 , thickness 1.5 μm, n-type InP confinement layer 3
For example, the impurity concentration is 5×10 17 cm -3 , the InGaAsP active layer 4 has a luminescence wavelength of 1.3 μm, the thickness on the center line is 0.15 μm, and the p-type InP confinement layer 5 has an impurity concentration of 5×10 17 cm −3 , for example. For example, the p-type InGaAsP layer 6 has an impurity concentration of 1×10 19 cm −3 .
本実施例の共振器はその長さLを約350μmと
し、両端面は劈開面である。本実施例の電流−光
出力特性を第5図に例示する。図において実線は
本実施例を示し、破線は先に第2図に示した共振
器長L≒200μmの従来例を示す。なお温度25℃
及び70℃の2つの場合について、1端面あたりの
光出力〔mw〕を表示する。 The resonator of this embodiment has a length L of about 350 μm, and both end faces are cleavage planes. The current-light output characteristics of this example are illustrated in FIG. In the figure, the solid line indicates this embodiment, and the broken line indicates the conventional example with the resonator length L≈200 μm shown in FIG. 2 earlier. The temperature is 25℃
The light output [mw] per end face is displayed for the two cases of temperature and 70°C.
まず温度25℃においては閾値電流は先に述べた
如く本実施例はL≒200μmの場合より増加して
いる。しかしながら本実施例は微分量子効率が増
大して直線性が改善され、特性曲線が交叉してこ
の値以上の電流では量子効率も本実施例が従来例
より大きくなる。 First, at a temperature of 25.degree. C., the threshold current in this embodiment is increased compared to the case where L≈200 .mu.m, as described above. However, in this embodiment, the differential quantum efficiency increases and the linearity is improved, and the characteristic curves intersect, and at a current above this value, the quantum efficiency of this embodiment becomes larger than that of the conventional example.
温度70℃においては本発明の効果は顕著であ
る。すなわち閾値電流、微分量子効率がともに改
善されており、例えば光出力5mwを得るために
必要な電流は、L≒200μmの場合の約127mAか
らL≒350μmの場合には約80mAに大幅に低減
されている。温度特性が大きい問題点である
InP/InGaAsP系レーザにおいてはこの温度特性
の改善は特に効果が大きいが、漏れ電流が減少
し、これに伴なつて発熱量が減少して半導体基板
の温度上昇が減少するという相乗効果がこの大き
い効果を生じている。 The effect of the present invention is remarkable at a temperature of 70°C. In other words, both the threshold current and differential quantum efficiency have been improved; for example, the current required to obtain an optical output of 5 mW is significantly reduced from approximately 127 mA when L≒200 μm to approximately 80 mA when L≒350 μm. ing. Temperature characteristics are a major problem.
This improvement in temperature characteristics is particularly effective for InP/InGaAsP lasers, but the synergistic effect of reducing leakage current, which in turn reduces heat generation, and reduces the temperature rise of the semiconductor substrate is significant. It is having an effect.
以上の説明はストライプ溝の断面形状がV字形
をなすVSBレーザを対象としているが、本発明
は溝の断面形状、結晶方位等にかかわりなく、任
意のストライプ溝内に活性層等を形成するInP/
InGaAsP系レーザに適用することができる。ま
た活がInGaAsによつて形成されるレーザについ
ても同様に適用することができる。 Although the above explanation is directed to a VSB laser in which the cross-sectional shape of the stripe groove is V-shaped, the present invention is applicable to an InP laser that forms an active layer, etc. in any stripe groove, regardless of the cross-sectional shape of the groove, crystal orientation, etc. /
It can be applied to InGaAsP lasers. Further, the present invention can be similarly applied to a laser whose active layer is made of InGaAs.
(g) 発明の効果
以上説明した如く本発明によれば、InP/
InGaAsPまたはInGaAs系の溝埋め込み溝造のレ
ーザについて、従来InP/InGaAsP系レーザにお
いて大きい問題であつた高温における閾値電流、
微分量子効率すなわち直線性等の劣化が大幅に改
善され、また常温においても直線性が改善され
る。(g) Effect of the invention As explained above, according to the present invention, InP/
Regarding InGaAsP or InGaAs-based trench-filling lasers, the threshold current at high temperatures, which was a major problem with conventional InP/InGaAsP-based lasers,
Deterioration in differential quantum efficiency, ie linearity, etc., is significantly improved, and linearity is also improved even at room temperature.
この結果光通信システムにおいて、従来より広
い環境条件への適応、信頼性の向上が可能とな
り、或いは光源の光出力を増大して中継間隔の延
長が可能となるなど、その進展に寄与することが
できる。 As a result, optical communication systems can adapt to wider environmental conditions than before, improve reliability, or increase the optical output of the light source and extend the relay interval, contributing to the advancement of optical communication systems. can.
また半導体レーザのアレイ化、或いは他の電子
素子との集積化などについても熱的条件について
の自由度が拡大されて更にシステムの発展を推進
することができる。 Furthermore, the degree of freedom regarding thermal conditions is expanded for arraying semiconductor lasers or integrating them with other electronic elements, thereby further promoting the development of the system.
第1図はVSBレーザの1例を示す断面図、第
2図は電流−光出力特性の従来例を示す図、第3
図は閾値電流及びその密度と共振器長との相関の
例を示す図、第4図はドライブ電流と共振器長と
の相関の例を示す図、第5図は電流−光出力特性
について本発明の実施例と従来例との比較を示す
図である。
図において、1はn型InP基板、2はp型InP
層、3はn型InP閉じ込め層、4はInGaAsP活性
層、5はp型InP閉じ込め層、6はp型InGaAsP
層、7はp側電極、8はn側電極を示す。
Figure 1 is a cross-sectional view showing an example of a VSB laser, Figure 2 is a diagram showing a conventional example of current-light output characteristics, and Figure 3 is a diagram showing a conventional example of the current-light output characteristics.
The figure shows an example of the correlation between the threshold current and its density and the resonator length. Figure 4 shows an example of the correlation between the drive current and the resonator length. Figure 5 shows the current-light output characteristics. FIG. 3 is a diagram showing a comparison between an embodiment of the invention and a conventional example. In the figure, 1 is an n-type InP substrate, 2 is a p-type InP substrate
layers, 3 is n-type InP confinement layer, 4 is InGaAsP active layer, 5 is p-type InP confinement layer, 6 is p-type InGaAsP
7 indicates a p-side electrode, and 8 indicates an n-side electrode.
Claims (1)
板上に形成された第2導電型の第1の半導体層
と、 前記第1の半導体層を貫通して前記基板に到達
する断面がV形を呈するストライプ状の溝と、 前記溝内部の前記基板及び第1の半導体層に接
して形成された第1導電型の第2の半導体層と、 前記第2の半導体層に接し、かつ単層であつて
前記第2の半導体層より禁制帯幅が小さいインジ
ウム・ガリウム・砒素・燐化合物、或いはインジ
ウム・ガリウム・砒素化合物よりなる第3の半導
体層と、 前記第3の半導体層を埋め込み、かつ前記溝外
の第1の半導体層上にまで延伸する第4の半導体
層と、 前記第4の半導体層の前記溝外の第1の半導体
層上にまで延伸した部位と、その下部の第1の半
導体層との間に位置する第1導電型の第5の半導
体層とを有する半導体基体に、 前記ストライプ方向に導波される光の共振器を
設け、かつ前記共振器の導波方向の長さが、
300μm以上でかつ400μm以下であることを特徴
とする半導体発光装置。[Scope of Claims] 1: a first semiconductor layer of a second conductivity type formed on an indium-phosphorus compound semiconductor substrate of a first conductivity type; and a semiconductor layer that penetrates the first semiconductor layer to reach the substrate. a striped groove having a V-shaped cross section; a second semiconductor layer of a first conductivity type formed in contact with the substrate and the first semiconductor layer inside the groove; and a second semiconductor layer of a first conductivity type formed in contact with the second semiconductor layer. , and a third semiconductor layer made of an indium-gallium-arsenic-phosphorus compound or an indium-gallium-arsenic compound that is a single layer and has a narrower band gap than the second semiconductor layer; and the third semiconductor layer. a fourth semiconductor layer that embeds and extends onto the first semiconductor layer outside the trench; a portion of the fourth semiconductor layer that extends onto the first semiconductor layer outside the trench; A resonator for light guided in the stripe direction is provided in a semiconductor substrate having a fifth semiconductor layer of a first conductivity type located between a lower first semiconductor layer, and a resonator for light guided in the stripe direction; The length in the waveguide direction is
A semiconductor light emitting device characterized by having a diameter of 300 μm or more and 400 μm or less.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59092190A JPS60235484A (en) | 1984-05-09 | 1984-05-09 | Semiconductor light-emitting device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59092190A JPS60235484A (en) | 1984-05-09 | 1984-05-09 | Semiconductor light-emitting device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS60235484A JPS60235484A (en) | 1985-11-22 |
JPH0251269B2 true JPH0251269B2 (en) | 1990-11-06 |
Family
ID=14047514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59092190A Granted JPS60235484A (en) | 1984-05-09 | 1984-05-09 | Semiconductor light-emitting device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS60235484A (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62283686A (en) * | 1986-05-31 | 1987-12-09 | Mitsubishi Electric Corp | Manufacture of semiconductor laser |
JPS63211788A (en) * | 1987-02-27 | 1988-09-02 | Mitsubishi Electric Corp | Semiconductor laser and manufacture thereof |
US4929571A (en) * | 1987-02-27 | 1990-05-29 | Mitsubishi Denki Kabushiki Kaisha | Method of making a buried crescent laser with air gap insulator |
JPH0797661B2 (en) * | 1987-09-29 | 1995-10-18 | 沖電気工業株式会社 | Light emitting diode and manufacturing method thereof |
-
1984
- 1984-05-09 JP JP59092190A patent/JPS60235484A/en active Granted
Non-Patent Citations (3)
Title |
---|
APPLIED PHYSICS LETTERS=1981 * |
APPLIED PHYSICS LETTERS=1982 * |
APPLIED PHYSICS LETTERS=1983 * |
Also Published As
Publication number | Publication date |
---|---|
JPS60235484A (en) | 1985-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4635268A (en) | Semiconductor laser device having a double heterojunction structure | |
US4928285A (en) | Impurity-doped semiconductor laser device for single wavelength oscillation | |
EP1750336B1 (en) | Semiconductor optical device and a method of fabricating the same | |
US4845725A (en) | Window laser with high power reduced divergence output | |
JP3129779B2 (en) | Semiconductor laser device | |
JP2857256B2 (en) | Vertical semiconductor laser | |
JPH0251269B2 (en) | ||
US4077019A (en) | Transverse mode control in double-heterostructure lasers utilizing substrate loss | |
US4841535A (en) | Semiconductor laser device | |
KR19990037200A (en) | Semiconductor laser and manufacturing method | |
JP2679974B2 (en) | Semiconductor laser device | |
JP3241002B2 (en) | Manufacturing method of semiconductor laser | |
US20040119080A1 (en) | Semiconductor optical device | |
JP2723924B2 (en) | Semiconductor laser device | |
JP2680804B2 (en) | Semiconductor laser | |
JP3084264B2 (en) | Semiconductor laser device | |
JP3046454B2 (en) | Quantum well semiconductor light emitting device | |
JP2529854B2 (en) | Infrared semiconductor laser | |
JPS6124839B2 (en) | ||
JPH0325037B2 (en) | ||
JP2003060309A (en) | Semiconductor laser | |
JP2006100626A (en) | Semiconductor light emitting device | |
JP2683092B2 (en) | Semiconductor laser device | |
JP2923235B2 (en) | Semiconductor laser device | |
JPH041514B2 (en) |