JPS609187A - Semiconductor light-emitting device - Google Patents

Semiconductor light-emitting device

Info

Publication number
JPS609187A
JPS609187A JP58117369A JP11736983A JPS609187A JP S609187 A JPS609187 A JP S609187A JP 58117369 A JP58117369 A JP 58117369A JP 11736983 A JP11736983 A JP 11736983A JP S609187 A JPS609187 A JP S609187A
Authority
JP
Japan
Prior art keywords
layer
type
semiconductor layer
semiconductor
pbte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58117369A
Other languages
Japanese (ja)
Inventor
Koji Shinohara
篠原 宏爾
Yoshito Nishijima
西嶋 由人
Hirokazu Fukuda
福田 広和
Kosaku Yamamoto
山本 功作
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP58117369A priority Critical patent/JPS609187A/en
Publication of JPS609187A publication Critical patent/JPS609187A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/32Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
    • H01S5/3222Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIVBVI compounds, e.g. PbSSe-laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/18Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities
    • H01S5/183Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL]
    • H01S5/18308Surface-emitting [SE] lasers, e.g. having both horizontal and vertical cavities having only vertical cavities, e.g. vertical cavity surface-emitting lasers [VCSEL] having a special structure for lateral current or light confinement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)
  • Led Devices (AREA)

Abstract

PURPOSE:To reduce threshold currents, to improve efficiency and to stabilize a mode by forming a refractive-index guiding to a surface light-emission semiconductor light-emitting device. CONSTITUTION:A P type PbSnTe layer 2 as an active layer and an N type PbTe layer 3 as a second clad layer are grown on a P type PbTe substrate 1 using a (100) face as a main surface in succession. Mesa etching through which an active region is left in a shape such as a circle is executed up to depth reaching to the PbTe substrate 1. An N type PbTe layer 4 and a P type PbTe layer 5 are grown on a surface to be etched in succession, and an N type PbTe layer 6 is grown on the whoel surface. The N type PbTe layer 6 functions as a contact layer for an N side electrode while also serving as a window layer, but the layer 6 grows on the whole surface of a base body when a growth onto the P type PbTe layer 5 progresses and the layer 6 reaches to a growing surface or the height of the upper surface of the N type PbTe layer 3. N side electrodes 7 and a P side electrode 8 are disposed by using a gold group material. The P side electrode 8 functions as one electrode while serving as a reflecting film.

Description

【発明の詳細な説明】 (a) 発明の技術分野 本発明は半導体発光装置、特にその活性領域に屈折率ガ
イディングが設けられて特性が向上した面発光半導体発
光装置に関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a semiconductor light emitting device, and particularly to a surface emitting semiconductor light emitting device whose characteristics are improved by providing refractive index guiding in its active region.

(b) 技術の背景 光を情報信号の媒体とするシステムが広い分野にわたっ
て開発されているが、これらの7ステムの光源として半
導体レーザが多く用いられている。
(b) Technical background Systems that use light as an information signal medium have been developed in a wide range of fields, and semiconductor lasers are often used as light sources for these seven stems.

半導体レーザはその出射光の波長を制御することが可能
であること、小形で量産性があり、電流を流すだけで高
効率で発振するために容易に使用できることなどの特徴
によって最も将来性を有し要求される波長帯域及び発振
モードの実現、効率及び出力の増大などの諸物件の向上
について多くの努力が重ねられている。
Semiconductor lasers have the most future potential due to their characteristics such as being able to control the wavelength of the emitted light, being compact and mass-producible, and being easy to use to oscillate with high efficiency just by passing a current through them. Many efforts have been made to improve various properties, such as realizing the required wavelength band and oscillation mode, and increasing efficiency and output.

(C) 従来技術と問題点 前記の如く現在までに数多くの半導体レーザの構造が提
案されているが、その多くはファプIJ−ペロー光共振
器を半導体基体面に平行なストライプ状に配置して、そ
の鏡面を半導体結晶の骨間等によって形成する構造であ
る。この骨間による端面形成は、レーザチップの形状寸
法を制約し、生産性向上の阻害要因であシ、また共振器
長の短縮従って軸モード制御を困難とし、レーザを含む
集積回路の形成を困難にする。
(C) Prior art and problems As mentioned above, many semiconductor laser structures have been proposed to date, but most of them have FAP IJ-Perot optical resonators arranged in stripes parallel to the semiconductor substrate surface. This is a structure in which the mirror surface is formed between the bones of semiconductor crystals, etc. This end face formation by the interosseous space restricts the shape and dimensions of the laser chip and is an impediment to improving productivity.It also shortens the cavity length, making it difficult to control the axial mode, making it difficult to form integrated circuits including lasers. Make it.

更にこの構造の半導体レーザは一般に光出射面積が小さ
く出射光の発散角が増大するの与ならずレーザ光の面密
度が増大することによって弁開面の劣化或いは破壊が促
進されて、信頼度の低下或いは出力の制限を招いていふ
Furthermore, semiconductor lasers with this structure generally have a small light emitting area, which increases the divergence angle of the emitted light, and increases the areal density of the laser light, which promotes deterioration or destruction of the valve opening surface, which reduces reliability. This may result in a reduction in output or a restriction in output.

これらの問題点に対処する半導体レーザの構造の一つと
して面発光レーザが知られている。面発光レーザはレー
ザ光を半導体基体の主面に垂直な方向に出射する半導体
レーザであって、−光共振器は通常エピタキシャル成長
させた結晶の表面を反射面とし−C構成される。
A surface emitting laser is known as one type of semiconductor laser structure that addresses these problems. A surface-emitting laser is a semiconductor laser that emits laser light in a direction perpendicular to the main surface of a semiconductor substrate, and the -optical resonator usually has a -C configuration in which the surface of an epitaxially grown crystal is used as a reflective surface.

面発光レーザd、この様な構造であるために、(イ)光
出射面積を広くすることが容易で、光出方を増大し、光
出射角を狭くすることが可能となる。(ロ)光共振器長
を短くすることが容易で軸モードの単一化などが可能と
なる。G−92次元レーザアレイモノリシック光集積回
路などの構成に適する。などの優れた特徴を有している
Since the surface emitting laser d has such a structure, (a) it is easy to widen the light emission area, increase the direction of light emission, and narrow the light emission angle. (b) It is easy to shorten the optical resonator length, making it possible to unify the axial mode. Suitable for configurations such as G-9 two-dimensional laser array monolithic optical integrated circuits. It has excellent characteristics such as:

他方光に述べた半導体基体面に平行なストライプ構造を
備えた半導体レーザには、閾値電流の低減、効率の向上
、横モードの制御などを目的とする多くの手段が既に提
供されている。
On the other hand, many means have already been provided for the purpose of reducing the threshold current, improving the efficiency, controlling the transverse mode, etc. for the semiconductor laser having the stripe structure parallel to the semiconductor substrate surface mentioned above.

その1例をあげれば、活性層にストライプ状の光導波路
を形成するために、活性層の上下方向についてはダブル
へテロ構造によってクラッド層を設け、横方向について
は電流集中による利得ガイディングより効果の大きい屈
折率ガイディングを埋込み構造、不純物ドーピングの差
など種々の手段によって行なっている。この、様に横方
向について屈折率ガイディングを設けることによって横
モード制御が行なわれて単一の基本零次横モー、ド発振
などが実現されている。
For example, in order to form a striped optical waveguide in the active layer, a cladding layer is provided using a double heterostructure in the vertical direction of the active layer, and in the lateral direction, gain guiding by current concentration is more effective. A large refractive index guiding is achieved by various means such as a buried structure and a difference in impurity doping. By providing refractive index guiding in the lateral direction in this way, transverse mode control is performed, and a single fundamental zero-order transverse mode, deoscillation, etc. are realized.

まだ電流狭窄についても例えばストライプ領域外にはp
n逆接合を設けるなどの手段がとられている。
Regarding current confinement, for example, there is a p
Measures such as providing an n-reverse junction have been taken.

これに対して面発光レーザにおいては従来光共振器の横
方向のガイディングは利得ガイディングであり、また電
流狭窄も不充分でろるなど改善すベキ点が多く残されて
いる。先に述べた面発光レーザの優れた特徴は将来の半
導体レーザとして要望されている特徴であり、取残され
た点が改善されることは半導体レーザの応用分野に大き
い効果を与える。
On the other hand, in surface emitting lasers, the lateral guiding of the conventional optical resonator is gain guiding, and there are still many points to be improved, such as insufficient current confinement. The above-mentioned excellent features of the surface emitting laser are features that are desired for future semiconductor lasers, and improvement of the remaining points will have a great effect on the application field of semiconductor lasers.

(a) 発ψJの目的 本発明は半導体発光装置、特に面発光レーザについて、
屈折率ガイディングによって光とじこめが効果的Vこ行
なわれるなどの改善によって優れた特性が得られる構造
を提供することを目的とする。
(a) Purpose of emission ψJ The present invention relates to semiconductor light emitting devices, particularly surface emitting lasers,
The object of the present invention is to provide a structure in which excellent characteristics can be obtained through improvements such as effective light confinement through refractive index guiding.

(0) 発明の構成 本発明の前記目的は、第1導電型の第1の半導体層と、
該第1の半導体層より屈折率が大きくかつ禁制帯幅が小
さく光子の放出が行なわれる第2の半導体層と、該第2
の半導体ノーより屈折率が小さくかつ禁制帯幅が大きい
第2導電減の第3の半導体層とが順次積層して設けられ
、前記第2の半導体層より屈折率が小さくかつ禁制帯幅
が大きく該第2の半導体層が終端する側面に接する第4
の半導体層を備えて、前記第2の半導体ノーの前記第1
又は第3の半導体層との界面に垂直な方向に光が出射さ
れる半導体発光装置により達成される、特に前記第4の
半導体層が第2導電型を有して前記第1の半導体層に接
し、該第4の半導体層上に第1導電型の第5の半導体層
を備えることによって1発光領域の周囲にこれとは逆の
pn接合が形成されて電流狭窄が行なわれる。
(0) Structure of the Invention The object of the present invention is to provide a first semiconductor layer of a first conductivity type;
a second semiconductor layer having a larger refractive index and a smaller forbidden band width than the first semiconductor layer, and from which photons are emitted;
A third semiconductor layer having a lower conductivity and a second semiconductor layer having a smaller refractive index and a larger forbidden band width than the semiconductor layer No. are sequentially stacked, and a third semiconductor layer having a smaller refractive index and a larger forbidden band width than the second semiconductor layer. a fourth layer in contact with the side surface where the second semiconductor layer terminates;
the first semiconductor layer of the second semiconductor layer;
Or achieved by a semiconductor light emitting device in which light is emitted in a direction perpendicular to an interface with a third semiconductor layer, in particular, the fourth semiconductor layer has a second conductivity type and is connected to the first semiconductor layer. By providing a fifth semiconductor layer of the first conductivity type on and in contact with the fourth semiconductor layer, a pn junction opposite to this is formed around one light emitting region, and current confinement is performed.

前記の本発明の半導体発光装置は、活性層及びクラッド
層等をエピタキシャル成長した半導体基体に対して、活
性領域をメサ形に残す選択的エツチングを行ない、この
エツチングによって形成された面上にとじこめ効果を有
する半導体層を成長させることによって容易に製造する
ことができる。
In the semiconductor light emitting device of the present invention, selective etching is performed on a semiconductor substrate on which an active layer, a cladding layer, etc. are epitaxially grown, leaving an active region in a mesa shape, and a confining effect is produced on the surface formed by this etching. It can be easily manufactured by growing a semiconductor layer having the following properties.

特にテルル化鉛(PbTo)、テルル化鉛錫(PbSn
Te)など多くの半導体材料について、半導体基板の主
面を(100’)面とし、メサエッチング後の半導体層
の成長を液相エピタキシャル成長方法によって行なうと
き、この半導体層成長速度の基板結晶の面方位に対する
依存性が有効に利用される。
In particular, lead telluride (PbTo), lead tin telluride (PbSn)
For many semiconductor materials such as Te), when the main surface of the semiconductor substrate is the (100') plane and the semiconductor layer is grown by the liquid phase epitaxial growth method after mesa etching, the plane orientation of the substrate crystal at this semiconductor layer growth rate is Dependencies on are used effectively.

(f) 発明の実施例 以下本発明を実施例t′こより図面を参照して具体的に
説明する。第1図乃至第4図は波長数〔μm〕乃至20
〔μm′J程鹿の赤外半導体レーザーで:かかる本発明
の実施例についで、その主要製造工程における状態を示
す断面図である。
(f) Embodiments of the Invention The present invention will now be described in detail from embodiment t' with reference to the drawings. Figures 1 to 4 show wavelength numbers [μm] to 20
[μm'J Hodoka's infrared semiconductor laser: This embodiment of the present invention is a sectional view showing the state of the main manufacturing process.

第1図参照 (100)面を主面とする↓)型I) b T e基板
1上しこ活性層とするp型Pb5nTe層2を厚さ例え
ば1乃至2〔μm〕程度に、第2のクシノドッとするn
型PbTe層3を厚さ例えば2〔μJrI〕程度に。
Refer to Fig. 1. A p-type Pb5nTe layer 2 with a (100) plane as its main surface as a main surface is formed on the b Te substrate 1 to a thickness of, for example, about 1 to 2 [μm], and a second 's Kushinodotsuru n
The thickness of the type PbTe layer 3 is, for example, about 2 [μJrI].

順次液相エピタキシャルJ成長方法1)1こよって成長
する。
Sequential liquid phase epitaxial growth method 1) 1) Growth is performed.

第2図参照 活性領域を例えば円形に残すメサエッテングをPbTe
基板1に達する深さl″c′c′実施このエツチング処
理は例えば臭酸(HBr)に臭素(Br2)を5〔チ〕
程度添加したエツチング液によって実施することができ
る。
Refer to Figure 2. PbTe
This etching process is carried out to a depth of l″c′c′ reaching the substrate 1.
This can be carried out using an etching solution added to a certain degree.

第3図参照 液相エピタキシャル成長方法によって、前記エツチング
面上にn型PbTe層4+p型PbTe層5を順次成長
し、更に全面にn型PbTe層6を成長する。n型Pb
Te層4はPb5nTe活性層2が終端する側面に接し
て成長し、6.2乃至6.5程度の屈折率を有するPb
5nTe 活性層2に対して屈折率が約6.0と低いた
めに、Pb5nTe活性層2とPbTe基板1又はPb
Teクラッド層3とのへテロが1 接合界面に垂直方向の光に対して屈折率がダディPbT
e第2クラッド層3からPb5nTθ活性層2を経てp
fflPbTθ基板IK至る電流に対する逆接合を形成
し1これによって電流が狭窄される。
Referring to FIG. 3, by a liquid phase epitaxial growth method, an n-type PbTe layer 4+p-type PbTe layer 5 are sequentially grown on the etched surface, and an n-type PbTe layer 6 is further grown on the entire surface. n-type Pb
The Te layer 4 is grown in contact with the side surface where the Pb5nTe active layer 2 terminates, and has a refractive index of about 6.2 to 6.5.
Since the refractive index of the 5nTe active layer 2 is as low as about 6.0, the Pb5nTe active layer 2 and the PbTe substrate 1 or the Pb
The heterogeneity with the Te cladding layer 3 is 1. The refractive index is daddy for light in the direction perpendicular to the junction interface.
e from the second cladding layer 3 through the Pb5nTθ active layer 2
fflPbTθ forms a reverse junction for the current to the substrate IK1, thereby confining the current.

以上のn型PbTe層4及びn型PbTe層5の成長は
、先に述べた如く液相エピタキシャル成長の際の基板結
晶回方位に対する依存性によって。
The growth of the n-type PbTe layer 4 and the n-type PbTe layer 5 described above is due to the dependence on the crystal orientation of the substrate during liquid phase epitaxial growth, as described above.

(100)面であるPbTθ第2クラッド層3の上表面
上への成長を伴なうことな〈実施することができる。
This process can be carried out without growing on the upper surface of the PbTθ second cladding layer 3, which is a (100) plane.

n型PbTe層、6idn側電極のコンタクト層である
とともにウィンド層でもあるが、p型PbTe層5上へ
の成長が進んで成長面かn型PbTe層3の上衣面の高
さに達すれば、その成長は基体全面で行なわれる。
The n-type PbTe layer is a contact layer for the 6idn side electrode as well as a window layer, but if the growth on the p-type PbTe layer 5 progresses and the growth surface reaches the height of the upper layer of the n-type PbTe layer 3, The growth takes place over the entire surface of the substrate.

第4図参照 ngR電極7及びp側電極8を金(Au係材料を用いて
配設する。但し本実施例においては、n型PbTe層6
上のn側電極7には光の出射口を設けるとともに、Pb
Te基板1上のp側電極8は、活性領域に対応する位置
において基板1を裏面からエツチングしてこの部分の厚
さを100〔μm〕程度以下、30乃至50〔μm〕程
度とした面上に図に示く如く設けている。このp側電極
8は一方の電極であるとともをで反射膜として機能する
Refer to FIG. 4, the ngR electrode 7 and the p-side electrode 8 are provided using a gold (Au-based material). However, in this embodiment, the n-type PbTe layer 6
The upper n-side electrode 7 is provided with a light exit port, and Pb
The p-side electrode 8 on the Te substrate 1 is formed by etching the substrate 1 from the back surface at a position corresponding to the active region so that the thickness of this part is about 100 [μm] or less, about 30 to 50 [μm]. are installed as shown in the figure. This p-side electrode 8 is one electrode and also functions as a reflective film.

以上説明した如き製造方法によって本発明による半導体
発光素子を製造することができる。本発明による発光素
子においては活性層はこれより屈折率が小さくかつ禁制
帯幅が大きい半導体層によって完全に包囲されてお如、
活性層で発生した光は基板の主面に垂直な方向に共振し
、活性層の側面に屈折率ガイディングが設けられている
ためにこの方向については光とじこめが効果的に行なわ
れる。また本実施例の如(、pl’l逆接合を設けるこ
とによって電流狭窄が可能であり、更に一方の電極を光
共振器の金属反射面とすることが可能であって、閾値電
流を低く、効率を高くかつモードを安定することができ
る2 なお先に説明した実施例は長波長赤外レーザを対象とし
ているが8本発明はこれと異なる半導体材料を用いる面
発光半導体発光装置についても適用することができる。
The semiconductor light emitting device according to the present invention can be manufactured by the manufacturing method as explained above. In the light emitting device according to the present invention, the active layer is completely surrounded by a semiconductor layer having a smaller refractive index and a larger forbidden band width than the active layer.
Light generated in the active layer resonates in a direction perpendicular to the main surface of the substrate, and since refractive index guiding is provided on the side surface of the active layer, light is effectively confined in this direction. In addition, as in this embodiment, current confinement is possible by providing a pl'l reverse junction, and furthermore, it is possible to use one electrode as a metal reflective surface of the optical resonator, so that the threshold current can be lowered. The efficiency can be high and the mode can be stabilized.2 Although the above-described embodiments are directed to long-wavelength infrared lasers,8 the present invention can also be applied to surface-emitting semiconductor light-emitting devices using different semiconductor materials. I can do it.

(gl 発明の詳細 な説明した如く本発明によれば1面発光半導体発光装置
に容易にかつ効果的に屈折率ガイディングが設けられて
、閾値電流の低減、効率の向上及びモードの安定など1
%性が改善された面発光半導体発光装置が提供される。
(gl) As described in detail, according to the present invention, refractive index guiding can be easily and effectively provided in a single surface emitting semiconductor light emitting device, thereby reducing threshold current, improving efficiency, stabilizing the mode, etc.
A surface-emitting semiconductor light-emitting device with improved % performance is provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の実施例について。 主要製造工程における状態を示す断面図である。 図において、1はp型PbTe基板、2はp型Pb5n
Te活性層、3はn型PbTe層、4はn型PbTe層
、5はp型pbTe/1.6はn型P ’b T e層
7 &:l: n側電極、8はp側電極を示す。 芋 1 区 手 2 図
FIGS. 1 to 4 show embodiments of the present invention. FIG. 3 is a cross-sectional view showing the state in the main manufacturing process. In the figure, 1 is a p-type PbTe substrate, 2 is a p-type Pb5n
Te active layer, 3 is n-type PbTe layer, 4 is n-type PbTe layer, 5 is p-type pbTe/1.6 is n-type P 'b Te layer 7 &:l: n-side electrode, 8 is p-side electrode shows. Potato 1 Kute 2 Diagram

Claims (2)

【特許請求の範囲】[Claims] (1)第1導電型の第1の半導体層と、該第1の半導体
層より屈折率が大きくかつ禁制帯幅が小さく光子の放出
が行なわれる第2の半導体層と、該第2の半導体層より
屈折率が小さくかつ禁制帯幅が大きい第2導電型の第3
の半導体層とが順次積層して設けられ、前記第2の半導
体層より屈折率が小さくかつ禁制帯幅が大きく、該第2
の半導体層が終端する側面に接する第4の半導体層を備
えて前記第2の半導体層の前記第1又は第3の半導体層
との界面に垂直な方向に光が出射されることを特徴とす
る半導体発光装置。
(1) A first semiconductor layer of a first conductivity type, a second semiconductor layer having a larger refractive index and a smaller forbidden band width than the first semiconductor layer and emitting photons, and the second semiconductor layer. The third layer of the second conductivity type has a smaller refractive index and a larger forbidden band width than the third layer.
semiconductor layers are sequentially stacked and have a smaller refractive index and a larger forbidden band width than the second semiconductor layer;
A fourth semiconductor layer is provided in contact with a side surface where the semiconductor layer terminates, and light is emitted in a direction perpendicular to the interface between the second semiconductor layer and the first or third semiconductor layer. Semiconductor light emitting device.
(2)前記第4の半導体層が第2導電型を有して前記第
1の半導体層に接し、該第4の半導体層上に第1導電型
の第5の半導体層を備えてなることを特徴とする特許請
求の範囲第1項記載の半導体発光装置。
(2) The fourth semiconductor layer has a second conductivity type and is in contact with the first semiconductor layer, and a fifth semiconductor layer of the first conductivity type is provided on the fourth semiconductor layer. A semiconductor light emitting device according to claim 1, characterized in that:
JP58117369A 1983-06-29 1983-06-29 Semiconductor light-emitting device Pending JPS609187A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58117369A JPS609187A (en) 1983-06-29 1983-06-29 Semiconductor light-emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58117369A JPS609187A (en) 1983-06-29 1983-06-29 Semiconductor light-emitting device

Publications (1)

Publication Number Publication Date
JPS609187A true JPS609187A (en) 1985-01-18

Family

ID=14709951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58117369A Pending JPS609187A (en) 1983-06-29 1983-06-29 Semiconductor light-emitting device

Country Status (1)

Country Link
JP (1) JPS609187A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170839A2 (en) * 2000-07-07 2002-01-09 Lucent Technologies Inc. Mesa geometry semiconductor light emitter having chalcogenide dielectric coating
EP2802046A1 (en) * 2013-05-08 2014-11-12 Camlin Technologies (Switzerland) Limited Light guiding for vertical external cavity surface emitting laser

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1170839A2 (en) * 2000-07-07 2002-01-09 Lucent Technologies Inc. Mesa geometry semiconductor light emitter having chalcogenide dielectric coating
EP1170839A3 (en) * 2000-07-07 2002-04-03 Lucent Technologies Inc. Mesa geometry semiconductor light emitter having chalcogenide dielectric coating
EP2802046A1 (en) * 2013-05-08 2014-11-12 Camlin Technologies (Switzerland) Limited Light guiding for vertical external cavity surface emitting laser
WO2014180751A1 (en) * 2013-05-08 2014-11-13 Camlin Technologies (Switzerland) Limited Light guiding for vertical external cavity surface emitting laser
JP2016518031A (en) * 2013-05-08 2016-06-20 カムリン・テクノロジーズ・(スウィッツァランド)・リミテッドCamlin Technologies (Switzerland) Limited Light guiding for vertical external cavity surface emitting lasers
US9859686B2 (en) 2013-05-08 2018-01-02 Camlin Technologies (Switzerland) Limited Light guiding for vertical external cavity surface emitting laser

Similar Documents

Publication Publication Date Title
US4329660A (en) Semiconductor light emitting device
JPS5940592A (en) Semiconductor laser element
US5949809A (en) Semiconductor laser device and method for manufacturing the same
US4636821A (en) Surface-emitting semiconductor elements
US4759025A (en) Window structure semiconductor laser
US4377865A (en) Semiconductor laser
US4821278A (en) Inverted channel substrate planar semiconductor laser
JPS609187A (en) Semiconductor light-emitting device
JPH0114717B2 (en)
US4841535A (en) Semiconductor laser device
JPH0478036B2 (en)
JPS58225681A (en) Semiconductor laser element
JPH0671121B2 (en) Semiconductor laser device
JPH0325037B2 (en)
JPS6342867B2 (en)
JPS60132381A (en) Semiconductor laser device
JPH0311689A (en) Surface light-emitting type wavelength-control dbr laser
JPH0423378A (en) Semiconductor laser
JPS6148277B2 (en)
JPH0410705Y2 (en)
EP0144205B1 (en) Semiconductor laser
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS6358390B2 (en)
JPS6234473Y2 (en)
JPS60257583A (en) Semiconductor laser device