JPS6190489A - Semiconductor laser device and manufacture thereof - Google Patents

Semiconductor laser device and manufacture thereof

Info

Publication number
JPS6190489A
JPS6190489A JP21353784A JP21353784A JPS6190489A JP S6190489 A JPS6190489 A JP S6190489A JP 21353784 A JP21353784 A JP 21353784A JP 21353784 A JP21353784 A JP 21353784A JP S6190489 A JPS6190489 A JP S6190489A
Authority
JP
Japan
Prior art keywords
layer
active layer
active
refractive index
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21353784A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Takashi Sugino
隆 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21353784A priority Critical patent/JPS6190489A/en
Publication of JPS6190489A publication Critical patent/JPS6190489A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enable laser beams and carriers to be effectively confined in both directions vertical to and parallel with the active layer, by a method wherein the refractive index of clad layers sandwiching the active layer is decreased with distances from the center of the active region. CONSTITUTION:The active layer 7 and a multilayer thin film including a double- hetero structure are formed on a substrate 5 having the groove part, and the refractive index of a clad layer 6 sandwiching the active layer 7 decreases with distances from the center of an active region 11. For example, on the substrate 5 having the groove part, an n type Ga1-xAlxAs clad layer 6 is epitaxially grown 1.5mum at the flat part, the Ga1-yAlyAs active layer 7 0.05mum, a p type Ga1-zAlzAs clad layer 8 1.2mum at the flat part, and an n type GaAs current block layer 9 0.5mum. At this time, the mixed crystal ratio in the layer of the n type Ga1-xAlxAs clad layer 6 is made smaller toward the active layer; therefore, this device is produced so that the refractive index may be larger toward the active layer. Thereafter, a p type GaAs region 10 is formed by Zn diffusion, and ohmic electrodes 13 and 12 are prepared on the p side and n side, respectively.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種電子機器、光学機器の光源として用いられ
る半導体レーザ装置およびその製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser device used as a light source for various electronic devices and optical devices, and a method for manufacturing the same.

従来例の構成とその問題点 電子機器、光学機器のコヒーレント光源とじて半導体レ
ーザに要求される重要な性能に、低電流動作、単−横モ
ード発振があげられる。これらを実現するためにはレー
ザ光が伝播する活性領域付近にレーザ光を有効に閉じ込
め、かつレーザ素子中を流れる電流を集中するようにそ
の拡がりを抑制する必要がある。こめ構造を備えたレー
ザを通常ストライプ型半導体レーザと呼んでいる。
Conventional Structures and Problems The important performances required of semiconductor lasers as coherent light sources for electronic and optical equipment include low current operation and single-transverse mode oscillation. In order to achieve these, it is necessary to effectively confine the laser light near the active region where the laser light propagates, and to suppress its spread so as to concentrate the current flowing through the laser element. A laser with a convex structure is usually called a striped semiconductor laser.

比較的簡単なストライプ化の方法に、電流狭さくだけを
用いるものがある。具体的には、プレーナ型半導体レー
ザにプロトン照射を施したもの、Zn拡散を施したもの
、酸化膜などの絶縁膜を形成したもの、結晶成長等によ
り内部に電流狭さく領域をつくりつけたものが挙げられ
る。しかしながらこれらの方法ではし゛−ザ光の閉じ込
めが弱く、電流は、その拡がりは迎えられるものの、活
性層内に有効にキャリアが閉じ込められているとは言い
難い。
A relatively simple striping method uses only current constriction. Specifically, planar semiconductor lasers that have been subjected to proton irradiation, those that have been subjected to Zn diffusion, those that have an insulating film such as an oxide film formed, and those that have a current confinement region created inside by crystal growth etc. Can be mentioned. However, in these methods, the confinement of the laser light is weak, and although the current can spread, it cannot be said that the carriers are effectively confined within the active layer.

また、従来プレーナ型半導体レーザの活性層をはさむク
ラッド層中で屈折率およびエネルギーギャップを変えて
光とキャリアを有効に閉じ込め、低電流動作を実現した
グリンレーザ(グレイデソドインデノクスレーザ)の例
かあるが、活性層に平行な方向での光の閉じ込めという
点では不十分であった。
Also, an example of a green laser (gray desode indenox laser) that effectively confines light and carriers by changing the refractive index and energy gap in the cladding layers that sandwich the active layer of a conventional planar semiconductor laser, achieving low current operation. However, it was insufficient in terms of light confinement in the direction parallel to the active layer.

発明の目的 本発明は上記欠点に鑑み、活性層に垂直および平行な両
方向にレーザ光とキャリアを有効に閉じ込める構造を持
つ半導体レーザ装置およびその製造方法を与えることを
目的とする。
OBJECTS OF THE INVENTION In view of the above drawbacks, it is an object of the present invention to provide a semiconductor laser device having a structure that effectively confines laser light and carriers in both directions perpendicular and parallel to the active layer, and a method for manufacturing the same.

発明の構成 この目的を達成するために本発明の半導体レーザ装置は
、溝部を有する基板上に活性層と二重ヘテロ構造を含む
多層薄膜が設けられ、前記活性層をはさむクラッド層の
屈折率か、活性領域の中心から離れるに従い減少するよ
うに構成されている。
Structure of the Invention To achieve this object, the semiconductor laser device of the present invention includes a multilayer thin film including an active layer and a double heterostructure provided on a substrate having a groove, and a refractive index of the cladding layer sandwiching the active layer. , is configured such that it decreases as it moves away from the center of the active region.

この構成により内部に強い電流狭さくストライプを設け
、しかもレーザ光は屈折率変化で、キャリアはエネルギ
ーギャップの変化で、有効に活性領域内に閉じ込めるこ
とができ、低電流動作、単−横モード発振、高い微分量
子効率での発振が実現される。
With this configuration, a strong current narrowing stripe is provided inside, and the laser light can be effectively confined within the active region by changing the refractive index and the carriers by changing the energy gap, resulting in low current operation, single-transverse mode oscillation, Oscillation with high differential quantum efficiency is realized.

また、本発明の半導体レーザ装置の製造方法は、溝部を
有する基板上に、有機金属気相エピタキシャル成長法に
よりクラッド層を形成する工程を含むことを特徴とする
Furthermore, the method for manufacturing a semiconductor laser device of the present invention is characterized by including a step of forming a cladding layer on a substrate having a groove by metal organic vapor phase epitaxial growth.

実施例の説明 本発明の半導体レーザ装置の一実施例について図を用い
て具体的に説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the semiconductor laser device of the present invention will be specifically described with reference to the drawings.

一例として、導電性基板にn型GaAg基板(キャリア
濃度〜1018(”ff1−3程度)を用いる。第1図
に示すようにこのn型GaAs基板1の(1oo)面上
に〈oll〉方向に平向に250μmピッチで幅6μm
のストライプをフォトレジスト膜により形成し、化学エ
ツチングにより深さ2μmの溝部を作る。第2図に溝部
を有する基板5の断面形状を示す。この基板6上に有機
金属気相エピタキシャル成長法(以下MOCVD法とす
る。)Kより、第3図に示すようにn型Ga1xAex
Asクラッド層6を平坦部で1.5 μm 、 Ha、
 yAeyAs活性層7(0≦y(x 、 y(z )
を0.05μm。
As an example, an n-type GaAg substrate (carrier concentration ~1018 (approximately ff1-3)) is used as the conductive substrate.As shown in FIG. Width 6μm with a pitch of 250μm in the horizontal direction
Stripes are formed using a photoresist film, and grooves with a depth of 2 μm are created by chemical etching. FIG. 2 shows a cross-sectional shape of the substrate 5 having a groove. On this substrate 6, as shown in FIG.
The As cladding layer 6 has a thickness of 1.5 μm on the flat part, Ha,
yAeyAs active layer 7 (0≦y(x, y(z)
0.05 μm.

p型Ga+−zAA’z”クラッド層8を平坦部で1.
2plJn型GaAs電流i止層9を0.5趨エピタキ
シヤル成長させた。ただし、この時、n型G”1−XA
lxムSクラッド層6の層中の混晶比は、活性層に近く
なるにつれ小さくし、従って屈折率は、活性層に近いほ
ど大きくなる様に作製した。その屈折率プロファイルは
、第3図に示す0を原点とし、3’RI7LIX方向は
それぞれ第4図又は第5図に示す様にした。通常のクラ
ッド層中の混晶比を変えず、従って屈折率変化をもたせ
ない例は第6図に示す。第4図、第6図のプロファイル
は第6図に比べ、yRlyL、x方向にキャリアを活性
層に閉じ込める。
The p-type Ga+-zAA'z" cladding layer 8 is 1.
A 2plJn type GaAs current i-stop layer 9 was epitaxially grown with 0.5 strands. However, at this time, n-type G"1-XA
The mixed crystal ratio in the lxmuS cladding layer 6 was made to decrease as it got closer to the active layer, and therefore the refractive index was made to increase as it got closer to the active layer. The refractive index profile had its origin at 0 shown in FIG. 3, and the 3'RI7LIX direction was set as shown in FIG. 4 or FIG. 5, respectively. An example in which the mixed crystal ratio in the normal cladding layer is not changed and therefore the refractive index is not changed is shown in FIG. Compared to FIG. 6, the profiles in FIGS. 4 and 6 confine carriers in the yRlyL and x directions in the active layer.

ばかりかレーザ光も有効に閉じ込めることができる。な
お、MOCVD法による結晶成長の条件の一例をあげる
と、成長温度770’C,成長速度8μm/時、1族元
素に対する■族元素の供給モル比60、全ガス流量は6
(1/分である。その後、第3図に示す様にZn拡散を
行ない、p型GaAs  領域10を形成した。p側お
よびn側にそれぞれオーミック電極10.12を作製し
た。
Not only that, laser light can also be effectively confined. In addition, to give an example of the conditions for crystal growth by the MOCVD method, the growth temperature is 770'C, the growth rate is 8 μm/hour, the molar ratio of the Group Ⅰ element to the Group 1 element is 60, and the total gas flow rate is 6.
(1/min.) Thereafter, as shown in FIG. 3, Zn was diffused to form a p-type GaAs region 10.Ohmic electrodes 10 and 12 were formed on the p-side and n-side, respectively.

電流注入を行なったところ、25 mA〜30m Aの
低しきい値で単−横モード発振した。共振器両面での外
郭量子微分効率も80%以上の高い値が得られた。
When current was injected, single-transverse mode oscillation occurred at a low threshold of 25 mA to 30 mA. A high value of 80% or more was also obtained for the outer quantum differential efficiency on both sides of the resonator.

クラッド層中で混晶比を変えることにより、エネルギー
ギャップと屈折率にキャリアとレーザ光の閉じ込めに有
効なプロファイルを与え得ることが実験により実証され
た。
Experiments have demonstrated that by changing the mixed crystal ratio in the cladding layer, it is possible to give the energy gap and refractive index a profile that is effective for confining carriers and laser light.

さらに活性層7上のp型GaA/Asクラッド層8中で
も同様に屈折率変化をもたせてもよい。
Further, the p-type GaA/As cladding layer 8 on the active layer 7 may also have a similar refractive index change.

本実施例ではGaAs系、 GaAlAs系半導体レー
ザについて述べたが、InP系や他の多元混晶を含む化
合物半導体を材料とする半導体レーザについても同様に
本発明を適用することが可能である。結晶成長法に他の
LPIC法やMBE法を併用してもよい。
In this embodiment, GaAs-based and GaAlAs-based semiconductor lasers have been described, but the present invention can be similarly applied to semiconductor lasers made of compound semiconductors including InP-based and other multi-component mixed crystals. Other LPIC methods or MBE methods may be used in combination with the crystal growth method.

発明の効果 以上のように、本発明の半導体レーザ装置およびその製
造方法は、高効率、低電流動作で単−横モード発振する
半導体レーザ装置を提供するものであり、その実用的効
果は著しい。
Effects of the Invention As described above, the semiconductor laser device and the manufacturing method thereof of the present invention provide a semiconductor laser device that oscillates in a single transverse mode with high efficiency and low current operation, and its practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図は、本実施例で述べた半導体レ
ーザ装置の製造方法の過程を示す図、第4図、第5図は
、本実施例でのクラッド層中の屈折率プロファイルを示
す図、第6図は、従来の半導体レーザ装置の屈折率プロ
ファイルを示す図である。 1・・・・・・GaAs基板(ool)面、2・・・・
・・ストライプ、3・・・・・(oll)面、4・・・
・・・(Qll)面、6・・・・・・n型GaAS基板
、6・・・・・・n型Ga、−エAj7xAsクラッド
層、7・・・・・・Ga、 、A%As活性層、8・・
・・・・p型Ga1−2AlzASクラッド層、9−・
−・n型GaAs電流阻止層、1o・・・・・・Zn拡
散によるp型GaAs領域、11・・・・・・活性領域
、12・・・・・・n側オーミック電極、13・・・・
・・p側オーミック電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 第4図 第5図
1, 2, and 3 are diagrams showing the process of manufacturing the semiconductor laser device described in this example, and FIGS. 4 and 5 are diagrams showing the refraction in the cladding layer in this example. FIG. 6 is a diagram showing a refractive index profile of a conventional semiconductor laser device. 1...GaAs substrate (ool) surface, 2...
...Stripe, 3...(oll) side, 4...
...(Qll) plane, 6...n-type GaAS substrate, 6...n-type Ga, -Aj7xAs cladding layer, 7...Ga, , A%As Active layer, 8...
...p-type Ga1-2AlzAS cladding layer, 9-.
- N-type GaAs current blocking layer, 1o...p-type GaAs region by Zn diffusion, 11... active region, 12... n-side ohmic electrode, 13...・
...p-side ohmic electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 4 Figure 5

Claims (2)

【特許請求の範囲】[Claims] (1)溝部を有する基板上に活性層と二重ヘテロ構造を
含む多層薄膜が形成され、前記活性層をはさむクラッド
層の屈折率が、活性領域の中心から離れるに従い減少し
ていることを特徴とする半導体レーザ装置。
(1) A multilayer thin film including an active layer and a double heterostructure is formed on a substrate having a groove, and the refractive index of the cladding layer sandwiching the active layer decreases as it moves away from the center of the active region. Semiconductor laser device.
(2)溝部を有する基板上に、有機金属気相エピタキシ
ャル成長法によりクラッド層を形成する工程を含むこと
を特徴とする半導体レーザ装置の製造方法。
(2) A method for manufacturing a semiconductor laser device, comprising the step of forming a cladding layer on a substrate having a groove by metal organic vapor phase epitaxial growth.
JP21353784A 1984-10-11 1984-10-11 Semiconductor laser device and manufacture thereof Pending JPS6190489A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21353784A JPS6190489A (en) 1984-10-11 1984-10-11 Semiconductor laser device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21353784A JPS6190489A (en) 1984-10-11 1984-10-11 Semiconductor laser device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6190489A true JPS6190489A (en) 1986-05-08

Family

ID=16640828

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21353784A Pending JPS6190489A (en) 1984-10-11 1984-10-11 Semiconductor laser device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6190489A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563297A (en) * 1991-09-03 1993-03-12 Mitsubishi Electric Corp Semiconductor laser device
JPH11233883A (en) * 1998-02-18 1999-08-27 Mitsubishi Electric Corp Semiconductor laser
JP2008219050A (en) * 2008-06-13 2008-09-18 Mitsubishi Electric Corp Semiconductor laser

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0563297A (en) * 1991-09-03 1993-03-12 Mitsubishi Electric Corp Semiconductor laser device
JP2827605B2 (en) * 1991-09-03 1998-11-25 三菱電機株式会社 Semiconductor laser device
JPH11233883A (en) * 1998-02-18 1999-08-27 Mitsubishi Electric Corp Semiconductor laser
JP2008219050A (en) * 2008-06-13 2008-09-18 Mitsubishi Electric Corp Semiconductor laser

Similar Documents

Publication Publication Date Title
JPH0243351B2 (en)
EP0589727A2 (en) Semiconductor laser device
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPH02156588A (en) Semiconductor laser and its manufacture
JPH02116187A (en) Semiconductor laser
JPS61236189A (en) Semiconductor laser element
JP3108183B2 (en) Semiconductor laser device and method of manufacturing the same
JP3639654B2 (en) Semiconductor laser and manufacturing method thereof
JPS59145590A (en) Semiconductor laser device
WO2023281741A1 (en) Semiconductor optical element
JPS62296490A (en) Semiconductor laser device
JPS60132381A (en) Semiconductor laser device
JPH0410705Y2 (en)
JPS59200484A (en) Semiconductor laser
JPH0728093B2 (en) Semiconductor laser device
JPS60126884A (en) Semiconductor laser device
JPS6197986A (en) Semiconductor laser
JPS6191990A (en) Semiconductor laser and manufacture thereof
JPS60257583A (en) Semiconductor laser device
JPS61101092A (en) Semiconductor laser device and manufacture thereof
JPS61137386A (en) Double hetero-structure semiconductor laser
JPS58220488A (en) Semiconductor laser device
JPS609187A (en) Semiconductor light-emitting device
JPH02240988A (en) Semiconductor laser
JPH06342957A (en) Semiconductor laser and manufacture thereof