JPS6197986A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6197986A
JPS6197986A JP21951084A JP21951084A JPS6197986A JP S6197986 A JPS6197986 A JP S6197986A JP 21951084 A JP21951084 A JP 21951084A JP 21951084 A JP21951084 A JP 21951084A JP S6197986 A JPS6197986 A JP S6197986A
Authority
JP
Japan
Prior art keywords
layer
type
clad layer
active
active layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21951084A
Other languages
Japanese (ja)
Inventor
Akio Yoshikawa
昭男 吉川
Takashi Sugino
隆 杉野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP21951084A priority Critical patent/JPS6197986A/en
Publication of JPS6197986A publication Critical patent/JPS6197986A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)

Abstract

PURPOSE:To enable to oscillate a single transverse mode with high efficiency and in low operating current in a semiconductor laser by a method wherein the laser is constituted in the structure, wherein the clad layer on the active layer has a protruded part, and at the same time, the refractive index in the clad layer reduces as going away from the center of the active region. CONSTITUTION:An N type GaAs buffer layer 2, an N type Ga1-xAlxAs clad layer 3, a P type Ga1-yAlyAs active layer 4 and a P type Ga1-zAlzAs clad layer 5 are made to grow on the (100) plane of an N type GaAs substrate 1. Provided that, the mixed crystal ratio in the N type Ga1-xAlxAs clad layer 3 is made smaller as becoming nearer the center of the active layer. Then, a stripe is formed of a photo resist film 7 in parallel to the <011> direction of the surface 6 of an epitaxial layer and an etching is performed on the P type Ga1-zAlzAs clad layer 5. Moreover, a P type Ga1-z'Alz'As clad layer 8 and an N type GaAs current stopping layer 9 are made to grow. The P type Ga1-z'Alz'As clad layer 8 is made to grow in such a way that the refractive index in the layer 8 becomes smaller as going away from the center of the active layer and a diffusion of Zn is performed on a part thereof to form a P type GaAs region 12.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種電子機器、光学機器の光源として用いられ
る半導体レーザ装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor laser device used as a light source for various electronic devices and optical devices.

従来例の構成とその問題点 電子機器、光学機器のコヒーレント光源として半導体レ
ーザに要求される重要な性能に低電流動作、単−横モー
ド発振があげられる。これらを実現するためには、レー
ザ光が伝播する活性領域付近にレーザ光を有効に閉じ込
め、かつレーザ素子中を流れる電流を集中するようにそ
の拡がりを抑制する必要がある。この構造を備えたレー
ザを通常ストライプ型半導体レーザと呼んでいる。
Conventional Structures and Problems Low current operation and single-transverse mode oscillation are important performances required of semiconductor lasers as coherent light sources for electronic and optical equipment. In order to achieve these, it is necessary to effectively confine the laser light near the active region where the laser light propagates, and to suppress its spread so as to concentrate the current flowing through the laser element. A laser with this structure is usually called a striped semiconductor laser.

比較的簡単なストライプ化の方法に電流狭さくだけを用
いるものがある、具体的にはプレーナ型半導体レーザに
プロトン照射を施したもの、Zn拡散を施しだもの、酸
化膜などの絶縁膜を形成したもの、結晶成長等により内
部に電流狭さく領域をつくシつけたものが挙けられる。
There are relatively simple striping methods that use only current narrowing, specifically those that apply proton irradiation to a planar semiconductor laser, those that perform Zn diffusion, and those that form an insulating film such as an oxide film. Examples include those that have an internal current constriction region formed by crystal growth, etc.

しかしながら、これらの方法ではレーザ光の閉じ込めか
弱く、電流はその拡がりは抑えられるが、電流圧入によ
って活性層内に有効にキャリアが閉じ込められていると
は言い難い。
However, in these methods, although the confinement of laser light is weak and the spread of current is suppressed, it is difficult to say that carriers are effectively confined within the active layer by current injection.

また、従来プレーナ型半導体レーザの活性層をはさむク
ラッド層中で屈折率およびエイ・ルギーギャノプを変え
て、光とキャリアを有効に閉じ込め、低電流動作を実現
した(、RIMレーザ(タレイブノドインデックスレー
ザ)の例があるが、活性層に平行な方向での光の閉じ込
めという点では不十分である。
In addition, by changing the refractive index and A-Lugieganop in the cladding layers that sandwich the active layer of a conventional planar semiconductor laser, we have effectively confined light and carriers and achieved low-current operation (RIM laser (Talaib node index laser)). ), but it is insufficient in terms of light confinement in the direction parallel to the active layer.

発明の目的 本発明は上記欠点に鑑み、電流狭さく用ストライプ構造
をそなえ、さらに活性層に垂直および平行な両方向にレ
ーザ光とキャリアを有効に閉じ込める構造を持つ半導体
レーザ装置を与えることを目的とする。
OBJECTS OF THE INVENTION In view of the above drawbacks, it is an object of the present invention to provide a semiconductor laser device having a stripe structure for current confinement and further having a structure that effectively confines laser light and carriers in both directions perpendicular and parallel to the active layer. .

発明の構成 この目的を達成するために本発明の半導体レーザ装置は
、基板上に活性層を含む二重ヘテロ構造を形成する多層
薄膜がらり、活性層直上のクラッド層の一部が凸状をな
し、前記活性層上のクラッド層中の屈折率が活性領域の
中心から離れるに従い弔詞に減少することによシ構成さ
れる。この構成により、レーザ光は屈折率変化で、キャ
リアはエネルギーギャップの変化で有効に活性領域内に
閉じ込めることができ、低電流動作、単−横モード発振
、高効率発振が実現される。
Structure of the Invention To achieve this object, the semiconductor laser device of the present invention includes a multilayer thin film forming a double heterostructure including an active layer on a substrate, and a part of the cladding layer directly above the active layer has a convex shape. , the refractive index in the cladding layer above the active layer decreases with increasing distance from the center of the active region. With this configuration, laser light can be effectively confined within the active region by changing the refractive index and carriers can be effectively confined within the active region by changing the energy gap, thereby achieving low current operation, single-transverse mode oscillation, and highly efficient oscillation.

実施例の説明 本発明の半導体レーザ装置の一実施例について図を用い
て具体的に説明する。
DESCRIPTION OF EMBODIMENTS An embodiment of the semiconductor laser device of the present invention will be specifically described with reference to the drawings.

一例として基板にn q Ga As基板 (キャリア
濃度〜101801n、−3程度)を用いる。n型Ga
 As基板1の(100)面上に有機金属気相エピタキ
シャル成長法(以下Mocvn法とする。)により、第
1図に示す様にn型Ga Asバッファ層2を0.6p
 m + n m Ga、−xA、5xAsクラッド層
3を11−57−(。
As an example, an n q Ga As substrate (carrier concentration ~101801n, about -3) is used as the substrate. n-type Ga
As shown in FIG. 1, an n-type GaAs buffer layer 2 of 0.6p was formed on the (100) plane of the As substrate 1 by metal organic vapor phase epitaxial growth (hereinafter referred to as Mocvn method).
m + nm Ga, -xA, 5xAs cladding layer 3 11-57-(.

Ga 1− y Aly As活性層4(0≦y<x;
y<z)を0.05μm、p型Ga、−2A12Asク
ラッド層5を0.5μm成長させた。たたし、この時、
n型G2L1−xAlxAsクラッド層30腹中の混晶
比は、活性層に近くなるにつれ小さくし、従って屈折率
は活性層に近いほど大きくなる様に作製した。
Ga1-yAlyAs active layer 4 (0≦y<x;
y<z) was grown to 0.05 μm, and the p-type Ga, -2A12As cladding layer 5 was grown to 0.5 μm. However, at this time,
The mixed crystal ratio in the n-type G2L1-xAlxAs cladding layer 30 was made smaller as it got closer to the active layer, and therefore the refractive index was made larger as it got closer to the active layer.

次に前記エビ層表面6を洗浄処理し、<011>方向に
平行に250μmピッチ、幅2μmのストライプをフォ
トレジスト膜7により形成した。
Next, the shrimp layer surface 6 was subjected to a cleaning treatment, and stripes with a pitch of 250 μm and a width of 2 μm were formed using a photoresist film 7 parallel to the <011> direction.

H2SO4系エツチング2夜により、p型Ga 、 −
z k12Asクラッド層5の第2図での膜厚h2が0
.2μmになるまでエツチングを行なった。
By H2SO4 etching for 2 nights, p-type Ga, -
z The film thickness h2 of the k12As cladding layer 5 in FIG. 2 is 0.
.. Etching was performed until the thickness was 2 μm.

さらに前記エツチング処理した基板上のエビ層上にmo
cvD法により、第3図に示す様にpzGa、 −2/
 k12t Asクラッド層s (z≦z′)を第3図
の膜厚h2が1.2μrll n型Ga As電流阻止
層を膜1早h3が0.8μm、膜厚h4がo、4μmと
なる様にエピタキシャル成長させた。この時p型Cr&
1−2tk12tAs 層8中の混晶比は、活性層から
離れるに従い大きくなるように成長し、従って屈折率は
、活性層から離れるに従い小さくなる様に成長した。
Further, on the shrimp layer on the etched substrate, mo
By the cvD method, as shown in Figure 3, pzGa, -2/
k12t As cladding layer s (z≦z') in Figure 3, film thickness h2 is 1.2 μm, n-type GaAs current blocking layer is film 1, h3 is 0.8 μm, film thickness h4 is o, 4 μm. was grown epitaxially. At this time, p-type Cr&
The mixed crystal ratio in the 1-2tk12tAs layer 8 grew to increase as it moved away from the active layer, and therefore the refractive index grew to decrease as it moved away from the active layer.

そのうえに、第3図に示す様にZn拡散を行ないp型G
a AS領域12を形成した。
Furthermore, as shown in Figure 3, Zn is diffused to form a p-type G.
a AS region 12 was formed.

上記半導体レーザの活性領域13付近の屈折率プロファ
イルは、第3図に示す○を原点とし、yR9yL、x+
、x一方向それぞれ第6図、又は第7図に示す様にした
。通常の半導体レーザの屈折率プロファイルを第4図に
、GR工Nレーザの屈折率10フアイルを第5図に示す
。本実施例は、第4図及び第5図に示す屈折率プロファ
イルを持つ半導体レーザに比べて、X方向は同等以上に
、X方向に垂直なyR1yL方向にも、キャリアは、エ
ネルギーギャップ差で、レーザ光は屈折率差で有効に閉
じ込めることができる。なお、MOCVD法による結晶
成長条件の一例をあげると、成長温度770°C1成長
速度8μm/時、■族元素に対する■族元素の供給モル
比50、全ガス流量は5β/分である。
The refractive index profile in the vicinity of the active region 13 of the semiconductor laser has an origin of ○ shown in FIG. 3, yR9yL, x+
, x in one direction as shown in FIG. 6 or FIG. 7, respectively. The refractive index profile of a normal semiconductor laser is shown in FIG. 4, and the refractive index 10 file of a GR N laser is shown in FIG. In this example, compared to the semiconductor laser having the refractive index profiles shown in FIGS. 4 and 5, the carriers are equal to or better in the X direction and also in the yR1yL direction perpendicular to the X direction due to the energy gap difference. Laser light can be effectively confined by a difference in refractive index. An example of crystal growth conditions for the MOCVD method is a growth temperature of 770° C., a growth rate of 8 μm/hour, a supply molar ratio of the group Ⅰ element to the group Ⅰ element of 50, and a total gas flow rate of 5β/min.

p側およびn側にそれぞれオーミック電極11゜10を
作製した。
Ohmic electrodes 11° and 10 were fabricated on the p-side and n-side, respectively.

電流注入を行なったところ、25mA〜30m Aの低
しきい値で単−横モード発振した。レーザ共儀器両面で
の外部微分量子効率は50%程度の高い須が得られた。
When current was injected, single-transverse mode oscillation occurred at a low threshold of 25 mA to 30 mA. A high external differential quantum efficiency of about 50% was obtained on both sides of the laser symmetry device.

クラット密生で混晶比を変えることにより、エネルギー
ギャップと屈折率に、キャリアとレーザ光の閉じ込めに
有効なプロファイ)Vを与え得ることが実験により実証
された。
It has been experimentally demonstrated that by changing the mixed crystal ratio with dense crat formation, it is possible to give the energy gap and refractive index a profile (V) that is effective for confining carriers and laser light.

本実施例ではGa As系、GaJUAs系半4体レー
ザについて述べたが、InP糸や他の多元混晶を含む化
合物半導体を材料とする半4体レーザについても同様に
本発明を通用1−ることか可能である。
In this embodiment, GaAs-based and GaJUAs-based semi-4 body lasers have been described, but the present invention is also applicable to semi-4 body lasers made of compound semiconductors containing InP threads and other multi-component mixed crystals. It is possible.

結晶成長方法にMOCVD法以外の、LPE法やMBE
法を用いてもよい。
Crystal growth methods other than MOCVD, such as LPE and MBE
You may also use the law.

発明の効果 以上のように本発明の半導体レーザ装置は、活性層上の
クラッド層が凸部を有するとともに、前記クラッド層中
の屈折率が活性領域の中・Uから離れるに従い減少する
構成により高効率、低電流動作で単−横モード発振する
ことができ、その実用的効果は著しい。
Effects of the Invention As described above, the semiconductor laser device of the present invention has a structure in which the cladding layer on the active layer has a convex portion and the refractive index in the cladding layer decreases as it moves away from the active region and from U. It can perform single-transverse mode oscillation with high efficiency and low current operation, and its practical effects are remarkable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図は、本発明の実施例の半導体レ
ーザ装置の製造方法の過程を示す図、第4図、第5図は
従来の半導体レーザ装置のクラッド層の屈折率プロファ
イルを示す図、第6図、第7図は本実施例での半導体レ
ーザ装置のクラッド層中の屈折率プロファイルを示す図
である。 1・・・・・n型Ga As基板、2・・・・・・n型
Ga Asバツアア層、3・・・・・・n型Ga 、 
−x klxAsクラッド層、4・・−・・Ga 、 
−y A% As活性層、5・・・・・・p型(ra、
−2Ad2Asクラッド層、6−・・pgGa、−2A
d2Asクラッド層表面、7・・・・・・ストライプ状
のフォトレジスト膜、8・・・・・・p 5 Ga 1
− Z / A lz t Asクラッド層、9”’ 
”’ n型Ga As電流阻止層、10・・・・・n側
オーミック電極、11・・・・・・p側オーミック電極
、12・・・・ Zn拡散領域又はp m Ga As
領域、13・・・・・活性領域、hI I h21 h
51 h4・・・各位置での各層の膜厚。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 第3図 第6図 屈折中 屈折牢
1, 2, and 3 are diagrams showing the process of manufacturing a semiconductor laser device according to an embodiment of the present invention, and FIGS. 4 and 5 show the refractive index of the cladding layer of a conventional semiconductor laser device. 6 and 7 are diagrams showing the refractive index profile in the cladding layer of the semiconductor laser device in this example. 1... n-type Ga As substrate, 2... n-type Ga As substrate layer, 3... n-type Ga,
-x klxAs cladding layer, 4...Ga,
-y A% As active layer, 5...p type (ra,
-2Ad2As cladding layer, 6-...pgGa, -2A
d2As cladding layer surface, 7...Striped photoresist film, 8...p 5 Ga 1
- Z/A lz t As cladding layer, 9'''
"' N-type Ga As current blocking layer, 10...n-side ohmic electrode, 11...p-side ohmic electrode, 12...Zn diffusion region or p m Ga As
Region, 13...Active region, hI I h21 h
51 h4...Thickness of each layer at each position. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure 3 Figure 6 Refraction middle refraction cell

Claims (1)

【特許請求の範囲】[Claims] 基板上に活性層を含む二重ヘテロ構造を形成する多層薄
膜があり、前記活性層直上のクラッド層が凸部を有する
とともに、前記活性層上のクラッド層中の屈折率が活性
領域の中心から離れるに従い、単調に減少することを特
徴とする半導体レーザ装置。
There is a multilayer thin film forming a double heterostructure including an active layer on a substrate, the cladding layer directly above the active layer has a convex portion, and the refractive index in the cladding layer above the active layer is different from the center of the active region. A semiconductor laser device characterized by decreasing monotonically as the distance increases.
JP21951084A 1984-10-19 1984-10-19 Semiconductor laser Pending JPS6197986A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21951084A JPS6197986A (en) 1984-10-19 1984-10-19 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21951084A JPS6197986A (en) 1984-10-19 1984-10-19 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6197986A true JPS6197986A (en) 1986-05-16

Family

ID=16736588

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21951084A Pending JPS6197986A (en) 1984-10-19 1984-10-19 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6197986A (en)

Similar Documents

Publication Publication Date Title
JPS60192380A (en) Semiconductor laser device
JP2558744B2 (en) Semiconductor laser device and manufacturing method thereof
JPH01239980A (en) Semiconductor laser device
JPH01175285A (en) Semiconductor laser device
Kishino et al. Fabrication and lasing properties of mesa substrate buried heterostructure GaInAsP/InP lasers at 1.3 µm wavelength
JPH02228087A (en) Semiconductor laser element
JPH02156588A (en) Semiconductor laser and its manufacture
JPS6197986A (en) Semiconductor laser
JPH02116187A (en) Semiconductor laser
JPH0560275B2 (en)
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JPS6362292A (en) Semiconductor laser device and manufacture thereof
JPH01192184A (en) Manufacture of buried type semiconductor laser
JPH11145553A (en) Semiconductor laser device and manufacture thereof
JPH03174793A (en) Semiconductor laser
JPS6167285A (en) Semiconductor laser device
JPS61101092A (en) Semiconductor laser device and manufacture thereof
Okajima et al. Transverse-mode stabilized GaAlAs laser with an embedded confining layer on optical guide by MOCVD
JPS6083388A (en) Semiconductor laser
JPS6191990A (en) Semiconductor laser and manufacture thereof
JPH03116991A (en) Semiconductor laser device
JPH05183231A (en) Semiconductor laser and manufacturing method thereof
JPH04120788A (en) Semiconductor laser
JPS63104494A (en) Semiconductor laser device
JPH03263890A (en) Semiconductor laser device and manufacture thereof