JPH0560275B2 - - Google Patents

Info

Publication number
JPH0560275B2
JPH0560275B2 JP22531483A JP22531483A JPH0560275B2 JP H0560275 B2 JPH0560275 B2 JP H0560275B2 JP 22531483 A JP22531483 A JP 22531483A JP 22531483 A JP22531483 A JP 22531483A JP H0560275 B2 JPH0560275 B2 JP H0560275B2
Authority
JP
Japan
Prior art keywords
layer
superlattice
current blocking
current
blocking layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP22531483A
Other languages
Japanese (ja)
Other versions
JPS60116188A (en
Inventor
Toshiro Hayakawa
Naohiro Suyama
Saburo Yamamoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP22531483A priority Critical patent/JPS60116188A/en
Publication of JPS60116188A publication Critical patent/JPS60116188A/en
Publication of JPH0560275B2 publication Critical patent/JPH0560275B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/2205Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers
    • H01S5/2222Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties
    • H01S5/2227Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure comprising special burying or current confinement layers having special electric properties special thin layer sequence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode

Landscapes

  • Physical Deposition Of Substances That Are Components Of Semiconductor Devices (AREA)
  • Semiconductor Lasers (AREA)

Description

【発明の詳細な説明】 <技術分野> 本発明は半導体レーザ素子に関するもので、特
にレーザ発振の横モード制御及び閾値電流の低減
に有効な構造を有し、MBEあるいはMO−CVD
等の新しい成長技術によつて製造可能な半導体レ
ーザ素子構造に関するものである。
Detailed Description of the Invention <Technical Field> The present invention relates to a semiconductor laser device, which has a structure that is particularly effective in controlling the transverse mode of laser oscillation and reducing the threshold current, and which is suitable for MBE or MO-CVD.
The present invention relates to a semiconductor laser device structure that can be manufactured using new growth techniques such as the following.

<従来技術> 近年、分子線エピタキシー(MBE)法あるい
は有機金属を用いた気相成長(MO−CVD)法
などの薄膜単結晶成長技術の進歩は著しく、これ
らの成長技術を用いれば10Å程度の薄いエピタキ
シヤル成長層を得ることが可能となつている。こ
のような製造技術の進歩は、半導体レーザにおい
ても従来の液相エピタキシヤル成長法(LPE)
では製作が困難であつた極めて薄い層を有する素
子構造に基く新しい効果を利用したレーザ素子の
製作を可能とした。その代表的なものは量子井戸
(Quautum Well;略してQW)レーザである。
このQWレーザは従来の二重ヘテロ接合(DH)
レーザでは数百Å以上あつた活性層厚を100Å程
度あるいはそれ以下とすることによつて、活性層
中に量子化準位が形成されることを利用してお
り、従来のDHレーザに比べて閾値電流が下が
る、温度特性が良い、あるいは過渡特性に優れて
いる等の数々の利点を有している。
<Prior art> In recent years, there has been remarkable progress in thin film single crystal growth techniques such as molecular beam epitaxy (MBE) and metal organic vapor deposition (MO-CVD). It has become possible to obtain thin epitaxially grown layers. These advancements in manufacturing technology have also led to improvements in the conventional liquid phase epitaxial growth (LPE) method for semiconductor lasers.
This made it possible to manufacture a laser device that utilizes a new effect based on a device structure with extremely thin layers, which was difficult to manufacture. A typical example is a quantum well (QW) laser.
This QW laser is a conventional double heterojunction (DH)
Lasers take advantage of the fact that quantization levels are formed in the active layer by reducing the thickness of the active layer from several hundred Å or more to around 100 Å or less, which makes it more efficient than conventional DH lasers. It has many advantages such as lower threshold current, good temperature characteristics, and excellent transient characteristics.

(参考文献) 1 W.T.T sang,Applied Physics Letters,
vol.39,No.10 pp.786(1981)。
(References) 1 WTT sang, Applied Physics Letters,
vol.39, No.10 pp.786 (1981).

2 N.K.Dutta,Journal of Applied Physics,
vol.53,No.11,pp.7211(1982)。
2 NKDutta, Journal of Applied Physics,
vol.53, No.11, pp.7211 (1982).

3 H.Iwamura,T.Saku,T.Ishibashi,K.
Otsuka,Y.Horikoshi,Electronics Letters,
vol.19,No.5,pp.180(1983). このように、MBEやMO−CVDなどの薄膜単
結晶成長技術を用いることにより、新しい多層構
造を有する高性能半導体レーザの実用化への道が
開けてきた。
3 H. Iwamura, T. Saku, T. Ishibashi, K.
Otsuka, Y. Horikoshi, Electronics Letters,
vol.19, No.5, pp.180 (1983). In this way, the use of thin film single crystal growth techniques such as MBE and MO-CVD has opened the way to the practical application of high-performance semiconductor lasers with new multilayer structures.

一方、従来の半導体レーザも多くの改良が積み
重ねられて実用化に至つているが、その中でも特
に重要な改良点として横モードの安定化がある。
ストライプ状の電極を形成することにより電流の
みを制限した初期の電極ストライプ型半導体レー
ザにおいては、レーザ発振の閾値電流のわずか上
の電流領域ではストライプ直下の活性領域でのみ
発振に必要な利得が損失を上まわるので零次ある
いは基本横モードで発振する。しかし駆動電流を
増加していくと活性層への注入キヤリアはしだい
にストライプ領域の両側へ拡がるため、高利得領
域が拡がり、横モードの拡がりや高次横モード発
振を招く。このような横モードの不安定性と駆動
電流依存性は駆動電流とレーザ出力の直線性を悪
化させパルス電流により変調を行なつた場合、レ
ーザ出力に不安定な変動を生じ信号対雑音比を劣
化させる。また出力光の指向性を不安定にするの
でレーザ出力を光フアイバ等の光学系に効率よく
安定に導くことを困難にするなど実用上多くの障
害があつた。この点に関して、電流のみでなく光
も横方向に閉じ込めることにより横モードを安定
化させる多くの構造がLPEにより作製したGaA
As系及びInGaAsP系の半導体レーザについて
提案されてきた。
On the other hand, conventional semiconductor lasers have undergone many improvements and have been put into practical use, but one of the most important improvements is the stabilization of the transverse mode.
In early electrode stripe type semiconductor lasers, which limited only the current by forming striped electrodes, in the current region slightly above the threshold current for laser oscillation, the gain necessary for oscillation was lost only in the active region directly below the stripe. , so it oscillates in the zero-order or fundamental transverse mode. However, as the drive current increases, the carriers injected into the active layer gradually spread to both sides of the stripe region, which spreads the high gain region, leading to spread of the transverse mode and higher-order transverse mode oscillation. Such transverse mode instability and drive current dependence deteriorate the linearity of the drive current and laser output, and when modulated by pulsed current, unstable fluctuations in the laser output occur and the signal-to-noise ratio deteriorates. let In addition, since the directivity of the output light becomes unstable, it becomes difficult to efficiently and stably guide the laser output to an optical system such as an optical fiber, which causes many problems in practical use. In this regard, many structures that stabilize the transverse mode by laterally confining not only the current but also the light have been found in GaAs fabricated by LPE.
As-based and InGaAsP-based semiconductor lasers have been proposed.

第1図はMO−CVD法により作製された従来
のGaAAs系横モード安定化半導体レーザの断
面図である。n−GaAs基板11上にn−Ga0.55
0.45Asクラツド層(1μm厚)12,アンドー
プGa0.850.15As活性層(0.05μm厚)13,p
−Ga0.550.45Asクラツド層(1μm厚)14、
n−GaAs電流阻止層(0.8μm厚)15をMO−
CVD法により連続的に成長させてレーザ動作用
多層結晶構造を形成する。次に、GaAsを選択的
にエツチングする過酸化水素水とアンモニア水を
H2O2:NH4OH=5:1の比に混合したエツチ
ング液で電流阻止層15をストライプ状にエツチ
ング除去し、ストライプ状の溝(5μm幅)を形成
する。その後、p−Ga0.550.45Asクラツド層
(0.6μm厚)18,p−GaAsキヤツプ層(0.5μm
厚)19を成長させ、更にn側電極21,p側電
極22を形成する。このようにして作製したレー
ザ素子は比較的安定な特性を示すが、溝20外の
電流阻止層15によるレーザ光の吸収によつて横
モードが安定化されているために余分の内部損失
が発生し、従つて閾値電流が増加するあるいは微
分効率が減少する等の欠点が内在されている。
FIG. 1 is a cross-sectional view of a conventional GaAAs-based transverse mode stabilized semiconductor laser manufactured by the MO-CVD method. n-Ga 0.55 on n-GaAs substrate 11
A 0.45 As clad layer (1 μm thick) 12, undoped Ga 0.85 A 0.15 As active layer (0.05 μm thick) 13, p
-Ga 0.55 A 0.45 As cladding layer (1 μm thick) 14,
The n-GaAs current blocking layer (0.8 μm thickness) 15 is MO-
It is grown continuously using the CVD method to form a multilayer crystal structure for laser operation. Next, hydrogen peroxide and ammonia water were added to selectively etch GaAs.
The current blocking layer 15 is etched away in stripes using an etching solution mixed in a ratio of H 2 O 2 :NH 4 OH=5:1 to form striped grooves (width 5 μm). After that, p-Ga 0.55 A 0.45 As cladding layer (0.6 μm thick) 18, p-GaAs cap layer (0.5 μm thick)
19 (thickness) is grown, and further an n-side electrode 21 and a p-side electrode 22 are formed. Although the laser device manufactured in this way exhibits relatively stable characteristics, extra internal loss occurs because the transverse mode is stabilized by the absorption of laser light by the current blocking layer 15 outside the groove 20. However, there are inherent drawbacks such as an increase in threshold current or a decrease in differential efficiency.

<発明の目的> 本発明は、以上のような問題に鑑み、MBEあ
るいはMO−CVDの層厚制御性を活用して閾値
の低いかつ横モードが安定化された半導体レーザ
の素子構造を提供することを目的とする。
<Object of the Invention> In view of the above-mentioned problems, the present invention provides a semiconductor laser element structure with a low threshold and stabilized transverse mode by utilizing the layer thickness controllability of MBE or MO-CVD. The purpose is to

<実施例> 第2図は本発明の一実施例を示す半導体レーザ
素子の断面構成図である。n−GaAs基板11上
にn−Ga0.550.45Asクラツド層(1μm厚)1
2,アンドープGa0.850.15As活性層(0.05μm
厚)13,p−Ga0.550.45Asクラツド層
(0.1μm厚)14,n−GaAs/n−Ga0.30.7
As超格子電流阻止層(0.8μm厚)16をMO−
CVD法により連続的に成長する。超格子層16
は例えば第3図に示すようにn−GaAs(100Å
厚)30とn−Ga0.30.7As(100Å厚)31を
交互に40組積層したものである。各層30,31
の厚さは500Å程度以下とすることが望ましい。
次にこの超格子電流阻止層16をストライプ状に
エツチング除去し、電流通路となるストライプ溝
(5μm幅)20を形成する。エツチングは、フオ
トリソグラフイ法により、最初A混晶比に対す
る選択性の少ないリン酸系あるいは硫酸系の化学
エツチング法またはイオンビームエツチング法を
用いて超格子電流阻止層16の途中までエツチン
グし、その後、GaAsを選択的にエツチングする
過酸化水素水とアンモニア水をH2O2:NH4OH
=5:1の比に混合したエツチング液とGa0.3
0.7Asを選択的にエツチングするフツ酸(HF)
を交互に用いて超格子各層を順次選択的にエツチ
ング除去することにより行なう。エツチングの
後、p−Ga0.550.45Asクラツド層(0.6μm厚)
18,p−GaAsキヤツプ層19を順次成長さ
せ、Au.Zn.Ni等の金属を蒸着してn側電極21,
p側電極22を形成する。本実施例においては超
格子電流阻止層16の屈折率はGaAsとGa0.3
0.7Asの中間のA混晶比であるGa0.650.35As
とほぼ等しくなり有効な屈折率導波作用によつて
横モードが安定化される。また、Ga0.650.35
層を用いた場合と異なり、超格子中のGaAsの吸
収により高次モードの損失が大きくなつて高出力
まで基本モード発振が得られるようになるが、第
1図に示した従来の半導体レーザ素子構造に比べ
てその吸収係数は半減するため、閾値電流が低く
抑えられるとともに微分効率が向上する。また、
超格子電流阻止層16は全てを超格子とする必要
はなく第4図に示すように活性層に近い側を超格
子として屈折率及び吸収係数の制御を行い、その
上にGaAsあるいはGaAAs等の半導体を積層し
て電流阻止層としても良い。
<Example> FIG. 2 is a cross-sectional configuration diagram of a semiconductor laser device showing an example of the present invention. n-Ga 0.55 A 0.45 As cladding layer (1 μm thick) 1 on n-GaAs substrate 11
2. Undoped Ga 0.85 A 0.15 As active layer (0.05 μm
Thickness) 13, p-Ga 0.55 A 0.45 As clad layer (0.1 μm thickness) 14, n-GaAs/n-Ga 0.3 A 0.7
As superlattice current blocking layer (0.8μm thickness) 16 is MO−
Continuously grows using CVD method. superlattice layer 16
For example, as shown in Figure 3, n-GaAs (100 Å
30 (thick) and n-Ga 0.3 A 0.7 As (100 Å thick) 31 are laminated alternately. Each layer 30, 31
It is desirable that the thickness of the layer be approximately 500 Å or less.
Next, this superlattice current blocking layer 16 is etched away in stripes to form stripe grooves (5 μm width) 20 that will serve as current paths. Etching is carried out by photolithography. First, the superlattice current blocking layer 16 is etched to the middle using a phosphoric acid-based or sulfuric acid-based chemical etching method or an ion beam etching method that has low selectivity to the A mixed crystal ratio, and then , to selectively etch GaAs, hydrogen peroxide and ammonia water are mixed with H 2 O 2 :NH 4 OH
= Etching solution and Ga 0.3 A mixed in a ratio of 5:1
0.7 Hydrofluoric acid (HF) selectively etches As
This is done by selectively etching and removing each layer of the superlattice one after another by alternately using the following methods. After etching, p-Ga 0.55 A 0.45 As cladding layer (0.6 μm thick)
18. A p-GaAs cap layer 19 is sequentially grown, and a metal such as Au.Zn.Ni is deposited to form an n-side electrode 21.
A p-side electrode 22 is formed. In this embodiment, the refractive index of the superlattice current blocking layer 16 is GaAs and Ga 0.3 A.
Ga 0.65 A 0.35 As, which has an A mixed crystal ratio between 0.7 As and
The transverse mode is stabilized by the effective refractive index waveguide effect. Also, unlike the case of using a Ga 0.65 A 0.35 single layer, the absorption of GaAs in the superlattice increases the loss of higher-order modes, making it possible to obtain fundamental mode oscillation up to high output power, but as shown in Figure 1. Since the absorption coefficient is halved compared to the conventional semiconductor laser device structure shown, the threshold current can be suppressed low and the differential efficiency can be improved. Also,
The superlattice current blocking layer 16 does not need to be made entirely of a superlattice; as shown in FIG. 4, the side near the active layer is made a superlattice to control the refractive index and absorption coefficient. A current blocking layer may be formed by stacking semiconductors.

上記構造の半導体レーザ素子に於いて、p側電
極22及びn側電極21を介してキヤリアを注入
すると超格子電流阻止層16の部分ではキヤリア
が流れず、超格子電流阻止層16の除去されたス
トライプ溝20のみに集中してキヤリアが流れ
る。従つて、このストライプ溝20に対応する活
性層13内でレーザ発振が開始される。活性層1
3は両接合界面がクラツド層12,14との二重
ヘテロ接合で限定されており、光はこのヘテロ接
合によつて閉じ込められる。また超格子電流阻止
層16は前述した如く屈折率導波作用を有し、こ
れによつてレーザ出力ビームのスポツトはストラ
イプ溝20内に固定化される。
In the semiconductor laser device having the above structure, when carriers are injected through the p-side electrode 22 and the n-side electrode 21, the carriers do not flow in the superlattice current blocking layer 16, and the superlattice current blocking layer 16 is removed. The carrier flows concentrated only in the stripe grooves 20. Therefore, laser oscillation is started within the active layer 13 corresponding to this stripe groove 20. active layer 1
3, both junction interfaces are defined by a double heterojunction with the cladding layers 12 and 14, and light is confined by this heterojunction. Furthermore, the superlattice current blocking layer 16 has a refractive index waveguide function as described above, whereby the spot of the laser output beam is fixed within the stripe groove 20.

以上の実施例はMO−CVDにより作製した
GaAAs系半導体レーザについて示したが、
MBEやあるいは一部LPEを用いても本発明の半
導体レーザ素子構造を作製することは可能であ
り、製造方法や半導体材料を限定するものではな
い。GaAAs系以外の半導体材料としては例え
ばInGaAP,InGaAsP等の半導体混晶を組み
合わせて構成することができる。
The above examples were fabricated by MO-CVD.
Although the GaAAs semiconductor laser was shown,
It is possible to fabricate the semiconductor laser device structure of the present invention using MBE or a portion of LPE, and the manufacturing method and semiconductor material are not limited. As a semiconductor material other than GaAAs, for example, a combination of semiconductor mixed crystals such as InGaAP and InGaAsP can be used.

尚、活性領域に量子井戸構造等を用いることに
より、さらに素子特性の向上が計れることは当然
である。
It goes without saying that device characteristics can be further improved by using a quantum well structure or the like in the active region.

<発明の効果> 本発明によれば、つくり付けの等価屈折率分布
を制御する電流阻止層に超格子を用いることで、
超格子内各層の組成及び層厚比を変えることによ
り単層の半導体では得られない屈折率と吸収係数
の組み合わせ得ることができ、つくり付けの屈折
率分布及び損失分布を独立に制御することが可能
となり、半導体レーザの構造パラメータの最適化
が容易に計れる。また、MBEやMO−CVDのよ
うな層厚及び組成の制御性の良い製造方法によつ
て作製することができるため、設計通りの素子が
再現性良く得られる。
<Effects of the Invention> According to the present invention, by using a superlattice in the current blocking layer that controls the built-in equivalent refractive index distribution,
By changing the composition and layer thickness ratio of each layer in the superlattice, combinations of refractive index and absorption coefficient that cannot be obtained with a single layer semiconductor can be obtained, and the built-in refractive index distribution and loss distribution can be independently controlled. This makes it possible to easily optimize the structural parameters of a semiconductor laser. Furthermore, since it can be manufactured by a manufacturing method such as MBE or MO-CVD that allows good control of layer thickness and composition, a designed device can be obtained with good reproducibility.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体レーザを説明する断面構
成図である。第2図は本発明の一実施例を示す半
導体レーザの断面構成図である。第3図は電流阻
止層の構成の1実施例を説明する断面構成図であ
る。第4図は電流阻止層の構成の他の実施例を説
明する断面構成図である。 11……n−GaAs基板、12……n−GaA
Asクラツド層、13……GaAAs活性層、1
4,18……p−GaAAsクラツド層、16…
…電流阻止層、19……p−GaAsキヤツプ層。
FIG. 1 is a cross-sectional configuration diagram illustrating a conventional semiconductor laser. FIG. 2 is a cross-sectional configuration diagram of a semiconductor laser showing an embodiment of the present invention. FIG. 3 is a cross-sectional configuration diagram illustrating one embodiment of the configuration of the current blocking layer. FIG. 4 is a cross-sectional configuration diagram illustrating another example of the configuration of the current blocking layer. 11... n-GaAs substrate, 12... n-GaA
As clad layer, 13...GaAAs active layer, 1
4, 18...p-GaAAs cladding layer, 16...
...Current blocking layer, 19...p-GaAs cap layer.

Claims (1)

【特許請求の範囲】[Claims] 1 二重ヘテロ接合を含む発振用多層結晶構造上
に、厚さ500Å程度以下の結晶層を複数種交互に
積層した超格子構造が電流通路となるストライプ
領域を除いて該超格子構造とは異種の電導型の半
導体層により埋設されているとを特徴とする半導
体レーザ素子。
1 A superlattice structure in which multiple types of crystal layers with a thickness of approximately 500 Å or less are alternately laminated on a multilayer crystal structure for oscillation including a double heterojunction is different from the superlattice structure except for the striped region where current passes. A semiconductor laser element, characterized in that it is embedded in a semiconductor layer of a conductivity type.
JP22531483A 1983-11-28 1983-11-28 Semiconductor laser element Granted JPS60116188A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22531483A JPS60116188A (en) 1983-11-28 1983-11-28 Semiconductor laser element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22531483A JPS60116188A (en) 1983-11-28 1983-11-28 Semiconductor laser element

Publications (2)

Publication Number Publication Date
JPS60116188A JPS60116188A (en) 1985-06-22
JPH0560275B2 true JPH0560275B2 (en) 1993-09-01

Family

ID=16827407

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22531483A Granted JPS60116188A (en) 1983-11-28 1983-11-28 Semiconductor laser element

Country Status (1)

Country Link
JP (1) JPS60116188A (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183583A (en) * 1986-02-07 1987-08-11 Fujitsu Ltd Buried-type semiconductor laser
JPH07114301B2 (en) * 1986-02-12 1995-12-06 松下電器産業株式会社 Semiconductor laser device
JPS62186581A (en) * 1986-02-13 1987-08-14 Matsushita Electric Ind Co Ltd Semiconductor laser device
US5282121A (en) * 1991-04-30 1994-01-25 Vari-Lite, Inc. High intensity lighting projectors
US6597717B1 (en) * 1999-11-19 2003-07-22 Xerox Corporation Structure and method for index-guided, inner stripe laser diode structure
JP2001223440A (en) * 2000-02-08 2001-08-17 Fuji Photo Film Co Ltd Semiconductor laser device

Also Published As

Publication number Publication date
JPS60116188A (en) 1985-06-22

Similar Documents

Publication Publication Date Title
EP0142845B1 (en) Method of producing a semiconductor laser device
US4569721A (en) Method for the production of semiconductor lasers
JPH07221392A (en) Quantum thin wire and its manufacture, quantum thin wire laser and its manufacture, manufacture of diffraction grating, and distributed feedback semiconductor laser
JP2558744B2 (en) Semiconductor laser device and manufacturing method thereof
US4694460A (en) Stripe geometry semiconductor laser device
EP0209387B1 (en) Semiconductor laser device
US5420066A (en) Method for producing semiconductor laser device using etch stop layer
JPH0560275B2 (en)
US5304507A (en) Process for manufacturing semiconductor laser having low oscillation threshold current
JPH0697592A (en) Semiconductor laser and manufacture thereof
JPH0799373A (en) Semiconductor laser device
JP3521792B2 (en) Manufacturing method of semiconductor laser
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JPH0677588A (en) Semiconductor laser and manufacture thereof
JPS59145590A (en) Semiconductor laser device
JP2502835B2 (en) Semiconductor laser and manufacturing method thereof
JPH01192184A (en) Manufacture of buried type semiconductor laser
JP3040262B2 (en) Semiconductor laser device
JP3328933B2 (en) Semiconductor laser device and method of manufacturing the same
JPH11126945A (en) Manufacture of strained semiconductor crystal and manufacture of semiconductor laser using it
JPH0256836B2 (en)
JPH05160509A (en) Quantum well structure buried semiconductor laser
JPH06252508A (en) Semiconductor laser
JPH05152680A (en) Semiconductor laser and manufacture thereof
JPH077230A (en) Index counter guide type semiconductor laser

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees