JPS6083388A - Semiconductor laser - Google Patents

Semiconductor laser

Info

Publication number
JPS6083388A
JPS6083388A JP19073683A JP19073683A JPS6083388A JP S6083388 A JPS6083388 A JP S6083388A JP 19073683 A JP19073683 A JP 19073683A JP 19073683 A JP19073683 A JP 19073683A JP S6083388 A JPS6083388 A JP S6083388A
Authority
JP
Japan
Prior art keywords
layer
semiconductor layer
layers
band width
forbidden band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP19073683A
Other languages
Japanese (ja)
Inventor
Shinichi Nakatsuka
慎一 中塚
Yuichi Ono
小野 佑一
Takashi Kajimura
梶村 俊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP19073683A priority Critical patent/JPS6083388A/en
Publication of JPS6083388A publication Critical patent/JPS6083388A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode

Abstract

PURPOSE:To prevent leakage current of the photo absorption layers due to an optically pumped minority carrier by a method wherein layers, which perform photo absorption, and layers, which perform current constriction, are separated from each other. CONSTITUTION:An n type semiconductor layer 2; a semiconductor layer 3 having a smaller forbidden band width than that of the layer 2; a p type semiconductor layer 4 having a larger forbidden band width than that of the layer 3; semiconductor layers 8-10, each having a striped groove; and a p type semiconductor layer 6 having a larger forbidden band width than that of the layer 3 are provided on an n type substrate 1. The layer 8 is a p type layer and has a smaller forbidden band width than that of the layer 3. The layer 9 has a p type and the layer 10 has an n type. The layers 9 and 10 have a larger forbidden band width than that of the layer 3. The layer 3 and the layer 8 substantially absorb respectively lights, which are emitted from the laser active layers and the active layers, and both make a control of transverse mode performance. As a result, leakage currnent of the photo absorption layers can be prevented by a p-n junction, which is formed by the layers 9 and 10.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、半導体レーザ装置の構造に係り、特に、横モ
ード安定な単一モードレーザの構造に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to the structure of a semiconductor laser device, and in particular to the structure of a single mode laser with stable transverse mode.

〔発明の背景〕[Background of the invention]

従来の自己整合型半導体レーザは、第1図にその断面図
を示すようにn形GaAs基板1上にn(GaAt)A
sクラッド層2、アンドープ(GiaAt)As活性層
3 % p (GaAt)Asクラッド層4.n−Ga
As 光吸収層5全形成し、光吸収層の一部をエツチン
グによシストライプ状に取りのぞきp−(GaAt)A
s 6及びp−GaAs7で埋め込んだもので光吸収層
によりit流狭窄と導波路の形成を両方性なったもので
あるが、光吸収により発生した少数キャリアによるもれ
電流によるしきい値の増加という問題があった。
A conventional self-aligned semiconductor laser has n(GaAt)A on an n-type GaAs substrate 1, as shown in the cross-sectional view of FIG.
s cladding layer 2, undoped (GiaAt)As active layer 3% p(GaAt)As cladding layer 4. n-Ga
As, the entire light absorption layer 5 is formed, and a part of the light absorption layer is removed in the form of stripes by etching, and p-(GaAt)A is formed.
It is filled with s6 and p-GaAs7, and has both IT flow constriction and waveguide formation due to the light absorption layer, but the threshold value increases due to leakage current due to minority carriers generated by light absorption. There was a problem.

〔発明の目的〕[Purpose of the invention]

夕 本発明の目的は、横モード安定なレーザ発振を行ない自
己整合的に制作可能で、特に活性層全平坦に形成できる
ことから、MOCVD法(MetalOrgano C
hemical Vapour Deposition
)による制作に適した半導体レーザ構造を提供すること
にある。
Another object of the present invention is to perform stable laser oscillation in transverse mode, to be able to produce it in a self-aligned manner, and in particular, to form an active layer entirely flat.
chemical vapor deposition
) to provide a semiconductor laser structure suitable for production.

〔発明の概要〕[Summary of the invention]

従来構造の自己整合形半導体レーザで問題でおった。光
励起された少数キャリアによる光吸収層の電流もれを防
止する目的で、光吸収全行う層と電流狭窄を行なう層を
分離した。これによp1従来この種の構造で問題でめっ
たもれ電流によるしきい値の増加が完全に解決された。
This has been a problem with conventional self-aligned semiconductor lasers. In order to prevent current leakage in the light absorption layer due to photoexcited minority carriers, the layer that performs all light absorption and the layer that performs current confinement are separated. This completely solves the problem of increasing the threshold voltage due to leakage current, which was a problem in conventional P1 structures of this type.

具体的構成を述べれば下記の如くでおる。The specific configuration is as follows.

第1の導電型を有する半導体基板上に、該基板と同一導
電型を有する第1の半導体層と、第1の半導体層より小
さい禁制帯幅を有する第2の半導体層と、第1の導電型
と反対導電型の第2の導電型を有し、且第2の半導体層
の禁制帯幅より大きい禁制帯幅を有する第3の半導体層
と、第3の半、褌体層上にストライプ状の溝を有する第
4.第5および第6の半導体層と、第2の導電型を有し
、少なくとも第2の半導体層より大きな禁制帯幅會有す
る第7の半導体層と金少なくとも有し、前記第4の半導
体層は第2の導電型を有し且第2の半導体層より小さい
禁制帯幅を有し、前記第5の半導体層は第2の導電m全
層し、前記第6の半導体層は第1の導電型を有すること
を特徴とするものである。更に通常、前記第5および第
6の半導体層は前記第2の半導体層よυ大なる禁制帯幅
を有する如く設けられる。
A first semiconductor layer having the same conductivity type as the substrate, a second semiconductor layer having a forbidden band width smaller than that of the first semiconductor layer, and a first conductivity layer on a semiconductor substrate having a first conductivity type. a third semiconductor layer having a second conductivity type opposite to the conductivity type and having a forbidden band width larger than the forbidden band width of the second semiconductor layer; The fourth groove has a groove shaped like this. the fourth semiconductor layer comprises fifth and sixth semiconductor layers, a seventh semiconductor layer having a second conductivity type and a forbidden band width larger than at least the second semiconductor layer, and at least gold; The fifth semiconductor layer has a second conductivity type and has a smaller forbidden band width than the second semiconductor layer, the fifth semiconductor layer has a second conductivity, and the sixth semiconductor layer has a first conductivity. It is characterized by having a mold. Furthermore, the fifth and sixth semiconductor layers are usually provided to have a forbidden band width υ larger than that of the second semiconductor layer.

又、よシ実際的には第6の半導体層上に多くの半導体レ
ーザで用いられているキャップ層が設けられる。
Also, more practically, a cap layer, which is used in many semiconductor lasers, is provided on the sixth semiconductor layer.

前記第2の半導体層がレーザの活性層、第4の半導体層
が活性層で発光した光音実質的に吸収し横モードの制御
を行なわしめるだめの層でアシ、又、第5および第6の
半導体層が形成するp −n接合によって電流もれを防
止するものである。
The second semiconductor layer is an active layer of the laser, the fourth semiconductor layer is a layer that substantially absorbs the optical sound emitted by the active layer, and controls the transverse mode; The p-n junction formed by the semiconductor layer prevents current leakage.

この様に光吸収のための層と電流狭窄のだめの層を分離
して設けるに本願発明の要点がある。
The key point of the present invention is to provide the layer for light absorption and the layer for current confinement separately in this way.

この電流狭窄のための層は更に多数の層として構成して
も良い。
The layer for current confinement may be configured as a larger number of layers.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図によシ説明する。n−
GaAs基板(1)上に1周知のMOCVD法によりn
 −G a6.s s ALo、4s A sクラッド
j組2) (8e v−プ、n=5X1017crn−
” 、1μm)、ノンドープGao、5aAto、+<
 As活性層(3) (0,06〜0.1μm)、p 
Q a6.BB kL6.45 Asクラッド;組4)
 (Z nドープ、p = 3 X 1017cm−3
,0,4μm ) p−Ga、As光吸収層(8) (
Z nドープp = 3 X 10” an−” 、 
0.5 am )り G ao、ss Ato、4s 
As 層(9) (Z flドープp=3 X 10”
 cm−30,2μm ) n −Gao、ss At
O,46As電流ブロック層(10) (S eドープ
n=5X10I7’ tyn−” 0.3μm)を結晶
成長した後、通常のフォトリングラフ技術によシ、光吸
収層以上の層をストライプ状にエツチングした。以上の
ようにして形成した構造上に再びMOCVD法によ、b
bp−(Flo、ss Ato、4s人5 層(6) 
(Z nドープp=3×10” cm−” 1μm)及
び基板と反対導電型を持つp−GaASキャップ層7(
Znドープp=IX1σ80−30,5μm )を形成
し、p側電極(11)としてAu/Cri、n側電極(
12〕としてAu@Ge・Ni/Cr/Auを真空蒸着
した。最後に結晶をキャビティ長300μmにへき開し
て共振器を構成しレーザチップとした。本実施例の半導
体レーザ構造によれば、従来構造の自己整合形半導体レ
ーザにおいて、光吸収層が行なっていた電流狭窄と光吸
収の機能を、光吸収層と電流ブロック層によ′シ別々に
行なうので、従来構造で問題であった光吸収層中で発生
した少数キャリアによる漏れ電流が発生せず、しきい値
′電流が小さくなる。本実施例の半導体レーザはしきい
値電流20 rnA %波長’780nmで呈温連続発
振し、70Cにおける5品W定出力の寿命試験で500
0時間を超える連続動作後も、顕著な素子劣化は見られ
なかった。
An embodiment of the present invention will be explained below with reference to FIG. n-
n on a GaAs substrate (1) by the well-known MOCVD method.
-G a6. s s ALo, 4s A s clad j group 2) (8e v-pu, n=5X1017crn-
”, 1 μm), non-doped Gao, 5aAto, +<
As active layer (3) (0.06-0.1 μm), p
Q a6. BB kL6.45 As clad; group 4)
(Zn-doped, p = 3 x 1017cm-3
, 0.4 μm) p-Ga, As light absorption layer (8) (
Zn-doped p = 3 x 10"an-",
0.5 am) ri Gao, ss Ato, 4s
As layer (9) (Z fl doped p=3 x 10”
cm-30,2μm) n-Gao, ss At
After crystal-growing the O,46As current blocking layer (10) (S e doped n = 5X10I7'tyn-" 0.3 μm), the layers above the light absorption layer are formed into stripes using normal photolithography technology. Etching was performed on the structure formed in the above manner by MOCVD again.
bp-(Flo, ss Ato, 4s people 5 layers (6)
(Zn-doped p=3×10"cm-" 1 μm) and a p-GaAS cap layer 7 having a conductivity type opposite to that of the substrate (
Zn-doped p=IX1σ80-30,5μm) was formed, Au/Cri was used as the p-side electrode (11), and Au/Cri was used as the n-side electrode (11).
12], Au@Ge.Ni/Cr/Au was vacuum deposited. Finally, the crystal was cleaved to a cavity length of 300 μm to form a resonator and a laser chip. According to the semiconductor laser structure of this example, the current confinement and light absorption functions performed by the light absorption layer in the conventional self-aligned semiconductor laser are now performed separately by the light absorption layer and the current blocking layer. Therefore, leakage current due to minority carriers generated in the light absorption layer, which was a problem in the conventional structure, does not occur, and the threshold current becomes small. The semiconductor laser of this example has a threshold current of 20 rnA and a temperature continuous oscillation at a wavelength of 780 nm, and a lifetime test of 5 products with a constant output of 500 nm at 70C.
No significant device deterioration was observed even after continuous operation for more than 0 hours.

上述の例はn導電型基板の例−+a明したが、p導電型
基板を用いても良く、この場合半導体各層94電型を反
対導電型とすることはいうまでもない。更にGaAs−
QaAAAs 系に限らず化合物半導体を用いた半導体
レーザでも本発明の構造を実現し得る。
Although the above-mentioned example is an example of an n-conductivity type substrate, a p-conductivity type substrate may also be used, and it goes without saying that in this case, the semiconductor layers 94 are of opposite conductivity type. Furthermore, GaAs-
The structure of the present invention can be realized not only in QaAAAs-based semiconductor lasers but also in semiconductor lasers using compound semiconductors.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、活性層’を平坦に形成できるため、M
OCVD法によるレーザで問題であった溝のある基板上
への成長の際の角状部分に生じる欠陥による信頼性の低
下がなくなる上に、従来この種の構造のレーザで問題で
ちった、光吸収層で発生した少数キャリアによるフォト
サイリスク効果によるもれ電流がなくなるため、しきい
値も低下した。
According to the present invention, since the active layer' can be formed flat, M
In addition to eliminating the reduction in reliability due to defects that occur at the corners when growing on grooved substrates, which was a problem with OCVD lasers, the optical Since there is no leakage current due to the photo-silisk effect caused by minority carriers generated in the absorption layer, the threshold value has also been lowered.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来構造の自己整合形半導体レーザの断面図、
第2図は本発明による半導体レーザのレーザ光の進行方
向からみた断面図を示す。 1−・−nQaAs基板、 2 ・−・n (GaAt
)Asクラッド層、3・・・活性層、4・・・p(Ga
A、lAsクラッド層、5・・・n光吸収層、6−1)
 (GaAtl A s層、7・・・pQaAsキャッ
プ層、8 ・・・I)GaAs、光吸収層、9− p(
GaAA) As層、10−・・n (GaAA)As
層。
Figure 1 is a cross-sectional view of a self-aligned semiconductor laser with a conventional structure.
FIG. 2 shows a cross-sectional view of the semiconductor laser according to the present invention, viewed from the direction in which laser light travels. 1--n QaAs substrate, 2--n (GaAt
)As cladding layer, 3...active layer, 4...p(Ga
A, lAs cladding layer, 5...n light absorption layer, 6-1)
(GaAtlAs layer, 7...pQaAs cap layer, 8...I) GaAs, light absorption layer, 9-p(
GaAA) As layer, 10-...n (GaAA)As
layer.

Claims (1)

【特許請求の範囲】 1、第1の導電型金有する半導体基板上に、該基板と同
一導電型を有する第1の半導体層と、第1の半導体層よ
シ小さい禁制帯幅を有する第2の半導体層と、第1の導
電型と反対導電型の第2の導電型を有し、且第2の半導
体層の禁制帯幅よシ大きい禁制帯幅を有する第3の半導
体層と、第3の半導体層上にストライプ状の溝を有する
第4.第5および第6の半導体層と、第2の導電型を有
し、少なくとも第2の半導体層よシ大きな禁制帯幅を有
する第7の半導体層とを少なくとも有し、前記第40半
轡体層は@2の導電型を有し且第2の半導体層より小さ
い禁制帯幅を有し、前記第5の半導体層は第2の導電型
を有し、前記第6の半帰体1171は第1の導電型を有
することを特徴とする半導体レーザ装置。 2 前記第5および第6の半導体層は前記第2の半導体
層より犬なる禁制帯幅を有することを特徴とする特許請
求の範囲第1項記載の半導体レーザ装置。
[Claims] 1. On a semiconductor substrate having a first conductivity type metal, a first semiconductor layer having the same conductivity type as the substrate, and a second semiconductor layer having a smaller forbidden band width than the first semiconductor layer. a third semiconductor layer having a second conductivity type opposite to the first conductivity type and having a forbidden band width larger than the forbidden band width of the second semiconductor layer; A fourth semiconductor layer having stripe-shaped grooves on the semiconductor layer No.3. The 40th semiconductor layer includes at least a fifth and a sixth semiconductor layer, and a seventh semiconductor layer having a second conductivity type and having a larger forbidden band width than at least the second semiconductor layer; The layer has a conductivity type @2 and has a forbidden band width smaller than that of the second semiconductor layer, the fifth semiconductor layer has a second conductivity type, and the sixth semicircular body 1171 has A semiconductor laser device having a first conductivity type. 2. The semiconductor laser device according to claim 1, wherein the fifth and sixth semiconductor layers have a narrower band gap than the second semiconductor layer.
JP19073683A 1983-10-14 1983-10-14 Semiconductor laser Pending JPS6083388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19073683A JPS6083388A (en) 1983-10-14 1983-10-14 Semiconductor laser

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19073683A JPS6083388A (en) 1983-10-14 1983-10-14 Semiconductor laser

Publications (1)

Publication Number Publication Date
JPS6083388A true JPS6083388A (en) 1985-05-11

Family

ID=16262918

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19073683A Pending JPS6083388A (en) 1983-10-14 1983-10-14 Semiconductor laser

Country Status (1)

Country Link
JP (1) JPS6083388A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147794A (en) * 1985-12-20 1987-07-01 Mitsubishi Electric Corp Semiconductor laser device
JPS62183196A (en) * 1986-02-07 1987-08-11 Hitachi Ltd Semiconductor laser

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62147794A (en) * 1985-12-20 1987-07-01 Mitsubishi Electric Corp Semiconductor laser device
JPH0587035B2 (en) * 1985-12-20 1993-12-15 Mitsubishi Electric Corp
JPS62183196A (en) * 1986-02-07 1987-08-11 Hitachi Ltd Semiconductor laser

Similar Documents

Publication Publication Date Title
JPH06112594A (en) Surface emission semiconductor light emission device and fabrication thereof
JPH07263798A (en) Semiconductor laser and its manufacture
CN110459952A (en) The production method that SAG improves semiconductor laser chip reliability is grown by selective area
JP2997573B2 (en) Semiconductor laser device
KR20020018137A (en) Semiconductor laser device and manufacturing method thereof
JPH0856045A (en) Semiconductor laser device
JPH09205249A (en) Semiconductor laser
JP2812273B2 (en) Semiconductor laser
JPS6083388A (en) Semiconductor laser
JPS603178A (en) Semiconductor laser device
JPH02116187A (en) Semiconductor laser
JPH0671121B2 (en) Semiconductor laser device
JPH01184972A (en) Semiconductor laser device
JPH1154834A (en) Semiconductor laser element
JPS61253882A (en) Semiconductor laser device
JPS61112392A (en) Semiconductor laser and manufacture thereof
JP2973215B2 (en) Semiconductor laser device
JPH0256836B2 (en)
JP2001077475A (en) Semiconductor laser
JP2912775B2 (en) Semiconductor laser device
JPS60224291A (en) Semiconductor laser elememt
JPS6190489A (en) Semiconductor laser device and manufacture thereof
JP2001332811A (en) Semiconductor laser element and its manufacturing method
JPH1174603A (en) Semiconductor laser element
JP2806695B2 (en) Semiconductor laser device