JPS603178A - Semiconductor laser device - Google Patents

Semiconductor laser device

Info

Publication number
JPS603178A
JPS603178A JP11137383A JP11137383A JPS603178A JP S603178 A JPS603178 A JP S603178A JP 11137383 A JP11137383 A JP 11137383A JP 11137383 A JP11137383 A JP 11137383A JP S603178 A JPS603178 A JP S603178A
Authority
JP
Japan
Prior art keywords
layer
type
active layer
current
active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11137383A
Other languages
Japanese (ja)
Inventor
Naoto Mogi
茂木 直人
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP11137383A priority Critical patent/JPS603178A/en
Publication of JPS603178A publication Critical patent/JPS603178A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/20Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
    • H01S5/22Structure or shape of the semiconductor body to guide the optical wave ; Confining structures perpendicular to the optical axis, e.g. index or gain guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
    • H01S5/223Buried stripe structure
    • H01S5/2231Buried stripe structure with inner confining structure only between the active layer and the upper electrode

Abstract

PURPOSE:To obtain a laser having excellent electrical characteristics by making the band-gap of an n type GaAlAs current stopping layer smaller than that of an un-doped GaAlAs active layer on the side close by the active layer and larger than that of the active layer on the side far from the active layer when a p type GaAlAs clad layer, an n type GaAs light absorption layer and the current stopping layer are formed on the active layer. CONSTITUTION:An n type Ga0.55Al0.45As clad layer 12, an un-doped Ga0.85Al0.15 As active layer 13 and a p type Ga0.55Al0.45As clad layer 14 are laminated on an n type GaAs substrate 11 and grown in a liquid phase in an epitaxial manner, and an n type GaAs light absorption layer 15 and an n type Ga0.55Al0.45As current stopping layer 16 from which striped sections are removed are formed on the layer 14 and the layer 16 is coated with a p type Ga0.55Al0.45As coating layer 17. In the constitution, the band-gap of the current stopping layer 16 is made smaller than that of the layer 13 on the side close by the active layer 13 and larger than that of the layer 13 on the side far from the layer 13. Accordingly, the layer 16 is given independently two functions of light absorption and current constriction, and current-optical output characteristics are improved.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、つくシつけ導波路構造を備えた半導体レーザ
装置の改良に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to an improvement in a semiconductor laser device having a solid waveguide structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ディジタル・オーディオ・ディスク(DAD ) 。 Digital Audio Disc (DAD).

ビデオ・ディスク、ドキュメント・7アイル等の光デイ
スク装置や光通信用光源として半導体レーザの応用が開
けるにつれ、半導体レーザの量産化技術が必要となって
いる。従来、半導体レーデ用の澹膜多層へテロ接合結晶
製作技術としては、スライディング・ボート方式による
液相エピタキシャル成長法(LPE法)が用いられてい
るが、LPE法ではウェハ面積の大型化に限度がある。
2. Description of the Related Art As semiconductor lasers are increasingly being used as light sources for optical disk devices such as video disks and document 7-isle devices and for optical communication, techniques for mass production of semiconductor lasers are becoming necessary. Conventionally, the liquid phase epitaxial growth method (LPE method) using a sliding boat method has been used as a manufacturing technology for multilayer heterojunction crystals for semiconductor radars, but the LPE method has a limit in increasing the wafer area. .

このため、大面積で均−性及び制御性に優れた有機金属
気相成長法(MOCVD法)や分子線エピタキシー法(
MBE法)等の結晶成長技術が注目されている。
For this reason, metal organic chemical vapor deposition (MOCVD) and molecular beam epitaxy (MOCVD), which have excellent uniformity and controllability over large areas, have been developed.
Crystal growth techniques such as MBE (MBE) are attracting attention.

MOCVD法の特徴を住かした作9付は導波路レーザと
言えるものに、(アプライド・フィソックスレター誌、
第37号3号262頁、1980年)に発表さtた第1
図に示す如き半導体レーザがある。なお、図中1はN 
−GaAs基板、2はN−GaAtAsクラッド層、3
はGaAtAs活性層、4はP−GaAtAsクラッド
層、5はN−GaAs itj流阻流層止層はP−Ga
AtAs被覆層、7はP−GaA++コンタクト層、8
.9は金属?1.極を示している。この構造においては
、i=電流阻止層によシ活性層への電流注入がストライ
プ状に限定されると同時に、活性層に導波芒れた光が電
流阻止層5及び′tJ!;、覆層まで滲み出し、その結
果ストライプ直下とそれ以外の部分とで異った複屈折率
差を生じ、これによりストライプ直下HaS分に導波さ
れたモードが形成されることになる。すなわち、電流阻
止層5によって、電流狭窄による利得導波路構造と作シ
付は届す1率導波路構造とが自己整合的に形成されるこ
とになる。そして、著名等の報告によれは、室温パルス
発振では50 [mA :I程度とかなp低いしきい値
か得られ、誠だ単一モード発振が達成され横モードが十
分良く制御はれることが示されている。
The work 9, which takes advantage of the characteristics of the MOCVD method, can be called a waveguide laser (Applied Physics Letter Magazine,
No. 37, No. 3, p. 262, 1980).
There is a semiconductor laser as shown in the figure. In addition, 1 in the figure is N
-GaAs substrate, 2 is N-GaAtAs cladding layer, 3
is a GaAtAs active layer, 4 is a P-GaAtAs cladding layer, 5 is an N-GaAs flow blocking layer is a P-Ga
AtAs covering layer, 7 is P-GaA++ contact layer, 8
.. Is 9 a metal? 1. It shows the pole. In this structure, the i=current injection into the active layer is limited to a stripe pattern by the current blocking layer, and at the same time, the light guided into the active layer passes through the current blocking layer 5 and 'tJ! , seeps out to the overlayer, and as a result, a different birefringence difference occurs between the portion directly below the stripe and the other portion, resulting in the formation of a guided mode in the HaS portion directly below the stripe. In other words, the current blocking layer 5 forms a gain waveguide structure due to current confinement and a 1-rate waveguide structure due to current confinement in a self-aligned manner. According to reports by famous authors, a low threshold value of about 50 [mA:I] can be obtained in room temperature pulse oscillation, and a truly single mode oscillation can be achieved and the transverse mode can be controlled sufficiently well. It is shown.

なお、上記構造のレーザは基板lから電流阻11−J頓
5″!、での第1回目の結晶成長と、電流阻止層5の一
部をストライプ状にエツチングしたのちの被覆層6及び
コンタクト層7を形成する第2回目の結晶成長とち52
段階の結晶成長プロセスによシ作成される。ここで、g
PJ2回目の結晶成長の開始時点におりるクラッド層7
への成長は、一旦表面が空気中に晒されたGaAtAg
面上への成長である。このため、従来のLPE法では成
長が難しく、GaAtAs面上への成長が容易なMOC
VD法によって始めて制もJ住良く制作できるようにな
ったものである。
Note that the laser with the above structure is produced by the first crystal growth from the substrate 1 to the current blocking layer 11-J to 5''!, and by etching a part of the current blocking layer 5 in a stripe shape, followed by the coating layer 6 and the contact layer. Second crystal growth forming layer 7 52
Created by a step-by-step crystal growth process. Here, g
Cladding layer 7 at the start of PJ second crystal growth
The growth of GaAtAg occurs once the surface is exposed to air.
This is growth on the surface. For this reason, it is difficult to grow MOC using the conventional LPE method, and it is easy to grow on GaAtAs surfaces.
For the first time, the VD method made it possible to produce video in a convenient manner.

ところで、この釉のレーザではGaAs基板としてN型
基板が用いら、fしるが、こねは電流阻止効果の点で電
流狭窄層5がN型と外る方が有利なためである。すなわ
ち、第1図に示す構造のレーザにおいては、電極部に垂
直なKlr ririについて見たとき、電流狭窄層が
欠損したストライブ部分には単なるPN接合があるのみ
であるのに対し、ストライプ部分両側にはPNPN&合
が形成されている。このため、順方向電圧を印加したと
き、PNPN接合の1つのPN接合には逆バイアスが印
加されることになJ、PNPN接合部を通して電流が流
れることは殆んどなく、ストライプ部分にのみ電流が流
れることになる。しかしながら、PNPN接合は一種の
サイリスタ構造となってお勺電流阻止層5が活性N3の
発光によって励起されたり、或いは高バイアス状態では
電流阻止層5に多数キャリアが注入されサイリスタがO
N状態となシ、電流阻止効果が消失する事態が発生する
。これを抑制するには、電流阻止層5における少数キャ
リアの拡散長に比べて電流阻止層5の厚みが十分大きい
条件が満たされる必侠がある。この場合、少数キャリア
が正孔で拡散長が1〔μm〕以下であるN−GaAg層
の方が、少数キャリアがt子で拡散長が数〔μm〕と長
いp −GaAg層よシも上記条件を満たし易い。以上
よシ、電流阻止層5がP型となるPM基板を用いるより
もN型基板を用いた方が有利だと1える。
Incidentally, in this glazed laser, an N-type substrate is used as the GaAs substrate, but this is because it is advantageous for the current confinement layer 5 to be different from the N-type in terms of the current blocking effect. That is, in the laser with the structure shown in FIG. 1, when looking at Klr riri perpendicular to the electrode part, there is only a simple PN junction in the stripe part where the current confinement layer is missing, whereas in the stripe part there is only a PN junction. PNPN & joints are formed on both sides. Therefore, when a forward voltage is applied, a reverse bias is applied to one of the PNPN junctions.Therefore, almost no current flows through the PNPN junction, and current only flows through the stripe portion. will flow. However, the PNPN junction becomes a kind of thyristor structure, and the current blocking layer 5 is excited by the emission of active N3, or in a high bias state, majority carriers are injected into the current blocking layer 5, and the thyristor becomes O.
In the N state, a situation occurs in which the current blocking effect disappears. In order to suppress this, it is necessary to satisfy the condition that the thickness of the current blocking layer 5 is sufficiently larger than the diffusion length of minority carriers in the current blocking layer 5. In this case, the N-GaAg layer where the minority carriers are holes and the diffusion length is 1 [μm] or less is better than the p-GaAg layer where the minority carriers are t-tons and the diffusion length is several [μm] and long. Easy to meet the conditions. Based on the above, it can be concluded that it is more advantageous to use an N-type substrate than to use a PM substrate in which the current blocking layer 5 is P-type.

しかしながら、N型基板を用いた場合でも、確実な電流
狭窄効果を得ることは必ずしも容易ではない。これは、
上述した如く活性層の発光によって光励起されるGaA
sを飛流狭窄層として弔いているからである。この観点
から、電流阻止層を活性層の発光に対して透明な結晶で
あるN −Ga o 、5sAto、45A 8層で置
き換えた構造が考えられる。しかし、この構造では前記
第1図の構造に比較すれば電流狭窄効果は明らかになる
ものの、作シ付は導波路効果は全く異なったものとなる
。すなわち、第1図の構造では活性層に導波婆れた光が
クラッド層を通して電流明止層まで滲み出し吸収を受け
ることによって、接合面に水平方向に等測的複屈折率の
虚数分部分に差が形成され光がガイドされるわけである
が、電流阻止層を活性層の発光に対し透明な結晶とする
と、活性層に導波された光がクラッド層を通して電流阻
止層まで参み出し感じるのは複素屈折率の実数部分であ
り、その実数部分の差によって光がガイドされるが導波
路効果は電流限光層が光を吸収する場合とは大きく異な
る。例えは、電流阻止層が透明な場合には、ストライプ
状溝側面のへテロ界面の凹凸のために散乱されたレーザ
光が電流阻止層を通して放射され、レーザから出射され
たビームパターンに乱れを生じせしめる原因となってい
た。電流阻止層が光を吸収する場合にはこうした乱れは
生じない。
However, even when an N-type substrate is used, it is not necessarily easy to obtain a reliable current confinement effect. this is,
As mentioned above, GaA is photoexcited by light emission from the active layer.
This is because s is treated as a flying current constriction layer. From this point of view, a structure can be considered in which the current blocking layer is replaced with eight layers of N-Gao, 5sAto, and 45A, which are crystals that are transparent to light emission from the active layer. However, in this structure, although the current confinement effect becomes clear when compared with the structure shown in FIG. 1, the waveguide effect becomes completely different when the structure is constructed. In other words, in the structure shown in Figure 1, the light guided in the active layer leaks through the cladding layer to the current-stopping layer and is absorbed, so that the imaginary part of the isometric birefringence is distributed horizontally to the junction surface. However, if the current blocking layer is made of a crystal that is transparent to the light emitted by the active layer, the light guided by the active layer will pass through the cladding layer to the current blocking layer. What is felt is the real part of the complex refractive index, and light is guided by the difference in the real parts, but the waveguide effect is very different from the case where a current limiting layer absorbs light. For example, when the current blocking layer is transparent, the scattered laser light is emitted through the current blocking layer due to the unevenness of the hetero interface on the side surface of the striped groove, causing disturbance in the beam pattern emitted from the laser. It was causing a lot of trouble. Such disturbances do not occur when the current blocking layer absorbs light.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、複素屈拓率差による作シ付は導波効果
及び電流Ij1止層による電流狭窄効果の双方を確実に
得ることができ、しきい値電流の低下や電流−光出力特
性の向上等をはかシ得る半導体レーザ装置m’lr&供
することにある。
The purpose of the present invention is that cropping using the complex refractive index difference can reliably obtain both the waveguide effect and the current confinement effect due to the current Ij1 stop layer, and reduce the threshold current and the current-light output characteristics. It is an object of the present invention to provide a semiconductor laser device m'lr& which can achieve improvements in performance, etc.

〔発明の概要〕[Summary of the invention]

本発明の骨子は、クラッド層と被覆層との間に挿入する
電流阻止層を2層に分け、それぞれの層に光吸収と電流
狭窄との作用を独立に持たせることにめる。
The gist of the present invention is to divide the current blocking layer inserted between the cladding layer and the covering layer into two layers, and to make each layer independently have the functions of light absorption and current confinement.

すなわち木兄BIJは、活性層に対し基板と反対側のク
ラッド層上に電流狭窄及び光吸収のための異種層をスト
ライプ状部分を除いて形成し、かつこの上に被覆層を形
成してなシ、電流狭窄効果及び作シ付は導波効果を持た
せた半導体レーザ装置において、上記異利・層を少なく
とも2層に形成し、その活性層に近い側を該活性層よシ
パンド・ギヤソゲの小さい半導体層とし、かつ活性層に
遠い側を該活性層よシパンド・ギャップが大きく上記ク
ラッド層と導電型の異なる半導体層とするようにしたも
のである。
In other words, in Kinei BIJ, a heterogeneous layer for current confinement and light absorption is formed on the cladding layer on the side opposite to the substrate from the active layer, excluding the striped portion, and a covering layer is formed on this. In a semiconductor laser device having a waveguide effect, the current confinement effect and the current confinement effect are achieved by forming at least two layers of the above-mentioned disparate layers, with the side closer to the active layer being connected to the active layer in a semiconductor laser device having a waveguide effect. The semiconductor layer is a small semiconductor layer, and the side far from the active layer is a semiconductor layer that has a larger shunt gap than the active layer and has a different conductivity type from the cladding layer.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、異種層の活性層に近い側にクラッド層
とは複素屈折率が異なる層、つ1シ光吸収層が形成され
、活性層に遠い側にはクラッド層と逆導電型の層、つま
シ箪M(、阻止層が形成きれる。このため、活性層に導
波された光は上記光吸収層に滲み出すことになる。した
がつで、前記第1図に示す電流阻止層を活性層の発光に
対し透明な結晶層とした場合のように不要な反射光が放
射され、ビームパターンが乱れることもなく、第1図の
レーザと比較しても作シ付は導波効果が小きく力ること
もない。
According to the present invention, a light absorption layer, which is a layer having a complex refractive index different from that of the cladding layer, is formed on the side near the active layer of the different types of layers, and a light absorption layer having a conductivity type opposite to that of the cladding layer is formed on the side far from the active layer. layer, the blocking layer is completely formed. Therefore, the light guided by the active layer leaks into the light absorption layer. Therefore, the current blocking layer shown in FIG. Unlike when the layer is a crystalline layer that is transparent to the light emitted by the active layer, unnecessary reflected light is not emitted and the beam pattern is not disturbed, and compared to the laser shown in Figure 1, the generation method is waveguided. The effect is small and it does not require much force.

また、本発明では活性層に遠い側の電流阻止層のバンド
・ギャソfを活性層のそれより大きくしているので、活
性層の発光波長に対し透明な電流阻止層が光励起される
ことはない。このため、電流狭窄効果がよシ確実となシ
、しきい値電流の低下や高注入レベルでの電流−光出力
特性の異常現象を抑えることができる。
Furthermore, in the present invention, the band f of the current blocking layer on the side far from the active layer is made larger than that of the active layer, so the current blocking layer, which is transparent to the emission wavelength of the active layer, is not photoexcited. . Therefore, the current confinement effect is more reliable, and a decrease in threshold current and abnormal phenomena in current-light output characteristics at high injection levels can be suppressed.

〔発明の実施例〕[Embodiments of the invention]

第2図は本発明の一実施例に係わる半導体レーザの概略
構造を示す断面図である。図中11はN−GaAs 、
2+!:、板、12はN’ −Ga o 、s 5At
o、45A8クラッド層、13はアンドープGao 、
asAtg 、15A8活性層、14はP−GaO,5
5AtO,45Asクラッド層、15はN−GaAs光
吸収層、16はN−Ga0055Ato、4sA8 i
1流阻止層、17はP −Ga O,55AZO,45
A 8被am、18はP−GaAs コンタクト層、1
9.20は金h%極全それぞれ示している。
FIG. 2 is a sectional view showing a schematic structure of a semiconductor laser according to an embodiment of the present invention. In the figure, 11 is N-GaAs,
2+! :, plate, 12 is N'-Ga o , s 5At
o, 45A8 cladding layer, 13 is undoped Gao,
asAtg, 15A8 active layer, 14 is P-GaO, 5
5AtO, 45As cladding layer, 15 is N-GaAs light absorption layer, 16 is N-Ga0055Ato, 4sA8 i
1st flow blocking layer, 17 is P-GaO, 55AZO, 45
A 8 am, 18 is P-GaAs contact layer, 1
9.20 indicates the total gold h%, respectively.

上記構造のレーザは第3図(、)〜(c)に示す工程に
よって実現される。ます、第3図(a)に示す如く面方
位(100)のN−GaAs基板1z(stドドーI 
X 101”cm−3)上に厚さ3〔μm〕のN−Ga
0A’i”’n、45A8り7 yド層12(Seドー
f l x I 917cm−3)、厚さ0.1〔μm
〕のGao、B5Ato、15A8活性層13、厚さ0
.4〔μm〕のP ”−Ga o 、5sAZo 、4
5Aaクラッド層14(Znドーf7×1018crr
L−3)、厚さo5〔μm〕のN−GaAs光吸収層J
5(Seドドー5 X 1018cat−3)及び厚さ
0.5〔μm〕のN−Gao、55A/−p、45A8
電流阻止層16(Seドー705×1018Crn−3
)を順次成長形成した。この第1回目の気相成長にはM
OCVD法を用い、成長条件は基板温度750[℃)、
V/m−20,キャリアガス(H2)の流’IJ〜10
 (13/ m1n)、原料はトリメチルガリウム(T
MG : (cH)s Ga )、トリメチルアルミニ
ウム(TMA : (CH3)3ht )、アルシン(
AsF3)、pドーパント:ジエチル亜鉛(DEZ 二
(C2H5)2Zn )、nドーパント:セレン化水素
(H2S e )で、成長速度は0.25 Ckm/ 
min 〕であった。なお、第1回目の結晶成長では必
ずしもMO−CVD法を用いる心太はないが、大面積で
均一性の良い結晶成長が可能なMO−CVD法を用いる
ことは、量産化を考えた場合LPE法に比べて有利であ
る。
The laser having the above structure is realized by the steps shown in FIGS. 3(a) to 3(c). First, as shown in FIG. 3(a), an N-GaAs substrate 1z (st dodo I
N-Ga with a thickness of 3 [μm] on
0A'i'''n, 45A8 layer 12 (Se doped fl x I 917 cm-3), thickness 0.1 [μm
] Gao, B5Ato, 15A8 active layer 13, thickness 0
.. 4 [μm] of P”-Ga o, 5sAZo, 4
5Aa cladding layer 14 (Zn doped f7×1018 crr
L-3), N-GaAs light absorption layer J with thickness o5 [μm]
5 (Se dodo 5
Current blocking layer 16 (Se-doped 705×1018Crn-3
) were formed by sequential growth. In this first vapor phase growth, M
Using the OCVD method, the growth conditions are a substrate temperature of 750 [℃],
V/m-20, carrier gas (H2) flow 'IJ~10
(13/m1n), the raw material is trimethyl gallium (T
MG: (cH)sGa), trimethylaluminum (TMA: (CH3)3ht), arsine (
AsF3), p dopant: diethylzinc (DEZ2(C2H5)2Zn), n dopant: hydrogen selenide (H2S e ), and the growth rate was 0.25 Ckm/
min]. Although it is not always necessary to use the MO-CVD method for the first crystal growth, the use of the MO-CVD method, which allows crystal growth with good uniformity over a large area, is better than the LPE method when considering mass production. It is advantageous compared to

次に、第3図(b)に示す如く電流阻止層16上にフォ
トレジスト21を塗布し、該レジスト21に幅3〔μm
〕のストライプ状窓を形成し、これをマスクとして電流
阻止層16及び光吸収層15からなる異種層を選択エツ
チングし、ストライプ状の溝22を形成した。次いで、
レジスト21を除去し表面洗浄処理を施したのち、第2
回目の結晶成長をMOCVD法で行った。すなわち、第
3図(c)に示す如く全面に厚さ2〔μm〕のP−Ga
 o 、5 sALg 、45 A8被覆層17(zn
ドープ5×1018m−3)及び厚さ2〔μm〕のP 
−GaAsコンタクト層18(ZnドドーlXl0.)
を順次成長形成した。
Next, as shown in FIG. 3(b), a photoresist 21 is coated on the current blocking layer 16, and the resist 21 has a width of 3 μm.
] was formed, and using this as a mask, the different layers consisting of the current blocking layer 16 and the light absorption layer 15 were selectively etched to form striped grooves 22. Then,
After removing the resist 21 and performing surface cleaning treatment, the second
The second crystal growth was performed by MOCVD method. That is, as shown in FIG. 3(c), the entire surface is covered with P-Ga with a thickness of 2 [μm].
o, 5 sALg, 45 A8 coating layer 17 (zn
Doped 5×1018 m−3) and 2 μm thick P
-GaAs contact layer 18 (Zn dodo lXl0.)
were formed by sequential growth.

これ以降は、通常の電極材は工程によシコンタクト層1
8上にCu−Ar’%:極層を、基板11下面にAu−
Get4杉を波光した。かくして得られた試料を、へき
開によシ共振器長250〔μm〕の7アブリペロー型レ
ーザに切シ出した素子の特性は、しきい値電流50 [
mA]と低く微分・i子効果も70〔%〕と良好であっ
た。また、レーザ端面より放射されたレーザ光ビームの
接合面に水平方向、垂直方向のビームウェストの差は5
〔μm〕と小さく、ストライプ部分に良くモードが導波
されていることが確認できた。
From this point on, the contact layer 1 of the normal electrode material is
A Cu-Ar'% electrode layer is formed on the substrate 11, and an Au-
Get4 Cedar wave light. The thus obtained sample was cleaved into a 7 Abry-Perot laser with a cavity length of 250 [μm].The characteristics of the device were as follows: threshold current 50 [μm]
mA], and the differential/i-element effect was also good at 70 [%]. Also, the difference in beam waist in the horizontal and vertical directions of the laser beam emitted from the laser end facet is 5.
It was confirmed that the mode was as small as [μm] and was well guided in the striped portion.

なお、本発明は上述した実施例に限定されるものではな
い。例えは、前記光吸収層は電流阻止の観点からはN型
の方が好ましいが、その上部にN型驚流阻止層が存在す
るためP型であってもよい。また、構成羽科としてはG
aAtAgに限るものではなく、InGaAsP +A
tGaInP等の化合物半導体材料を用いてもよい。さ
らに、結晶成長法として、MOCvD法の代シにMBE
法を用いることも可能である。プだ、基板としてP型基
板を用い、各層の導電型を逆にすることも可能でおる。
Note that the present invention is not limited to the embodiments described above. For example, the light absorption layer is preferably of N type from the viewpoint of current blocking, but may be of P type since an N type current blocking layer is present thereabove. Also, as a member of the feather family, G.
Not limited to aAtAg, but also InGaAsP +A
A compound semiconductor material such as tGaInP may also be used. Furthermore, as a crystal growth method, MBE is used instead of the MOCvD method.
It is also possible to use the method. Alternatively, it is also possible to use a P-type substrate as the substrate and reverse the conductivity type of each layer.

その他、本発明の太旨を逸脱しない範囲で、種々変形し
て実施することができる。
In addition, various modifications can be made without departing from the gist of the present invention.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体レーザの概略構造を示す断面1図
、第2図は本発明の一実施例に係わる半導体レーザの概
略構造葡示す断面図、第3図(−)〜(C)は上記実施
例レーザの製造工程を示す断面図である。 11 ” N−GaAs 表板、12−’ N−Gao
、55Aj、、4.Asクラッド層、l 3−・・アン
ドーグGILo、B5Ato、15kB活性層、14 
”’ P−Gao、55Ato、45Asクラッド層、
15−N−GaAs 光吸収層、16・” N−Gao
 、55AL0.45A8電流阻止層、17 ”’ P
−Gao、55AtO,45A8 被11− 層、18
・・・P−GaAs コンタクト層。 出願人イ(埋入 弁理士 鈴 江 武 彦第1図
FIG. 1 is a cross-sectional view showing a schematic structure of a conventional semiconductor laser, FIG. 2 is a cross-sectional view showing a schematic structure of a semiconductor laser according to an embodiment of the present invention, and FIGS. FIG. 3 is a cross-sectional view showing the manufacturing process of the laser according to the embodiment. 11” N-GaAs top plate, 12-’ N-Gao
,55Aj,,4. As cladding layer, l 3-...Andog GILo, B5Ato, 15kB active layer, 14
”' P-Gao, 55Ato, 45As cladding layer,
15-N-GaAs light absorption layer, 16・”N-Gao
, 55AL0.45A8 current blocking layer, 17'''P
-Gao, 55AtO, 45A8 coated 11- layer, 18
...P-GaAs contact layer. Applicant I (Embedded Patent Attorney Takehiko Suzue Figure 1)

Claims (1)

【特許請求の範囲】[Claims] 活性層に対し基板と反対側のクラッド層上に該クラッド
層とは導電型及び複素屈折率の異なる異種層をストライ
プ状部分を除いて形成し、かつこの上に上記クラッド層
と同導電型の被覆層を形成してなシ、電流狭窄効果及び
作シ付は導波路効果を持たせたダプロ・ヘテロ接合型の
半導体レーザ装置において、前記異種層は少なくとも2
層に形成され、前記活性層に近い側は該活性層よシバン
ドーギャップの/bさい半導体層で、前記活性層に遠い
側は該活性層よシバンド・ギヤラグが大きく前記クラッ
ド層とは逆導電型の半導体層であることを特徴とする半
導体レーザ装置。
On the cladding layer on the side opposite to the substrate with respect to the active layer, a layer of a different type having a conductivity type and a complex refractive index different from that of the cladding layer is formed except for the striped portion, and on this, a layer of a different type having the same conductivity type as the cladding layer is formed. In a Dapro heterojunction type semiconductor laser device in which a coating layer is not formed and a current confinement effect and a waveguide effect are provided, the dissimilar layer has at least two layers.
The side closer to the active layer is a semiconductor layer with a Sibando gap of /b smaller than the active layer, and the side far from the active layer is a semiconductor layer with a larger Sibando gap than the active layer and a conductivity opposite to that of the cladding layer. A semiconductor laser device characterized in that the semiconductor layer is a type semiconductor layer.
JP11137383A 1983-06-21 1983-06-21 Semiconductor laser device Pending JPS603178A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11137383A JPS603178A (en) 1983-06-21 1983-06-21 Semiconductor laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11137383A JPS603178A (en) 1983-06-21 1983-06-21 Semiconductor laser device

Publications (1)

Publication Number Publication Date
JPS603178A true JPS603178A (en) 1985-01-09

Family

ID=14559543

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11137383A Pending JPS603178A (en) 1983-06-21 1983-06-21 Semiconductor laser device

Country Status (1)

Country Link
JP (1) JPS603178A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183196A (en) * 1986-02-07 1987-08-11 Hitachi Ltd Semiconductor laser
JPH01302886A (en) * 1988-05-31 1989-12-06 Matsushita Electric Ind Co Ltd Semiconductor laser apparatus
EP0390995A2 (en) * 1989-04-06 1990-10-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device and method of making same
JPH03206679A (en) * 1990-01-08 1991-09-10 Nec Corp Semiconductor laser
JPH03227090A (en) * 1990-01-31 1991-10-08 Nec Corp Semiconductor laser
JPH03296290A (en) * 1990-04-13 1991-12-26 Sharp Corp Semiconductor laser element and manufacture thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861695A (en) * 1981-10-09 1983-04-12 Hitachi Ltd Semiconductor laser element

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5861695A (en) * 1981-10-09 1983-04-12 Hitachi Ltd Semiconductor laser element

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62183196A (en) * 1986-02-07 1987-08-11 Hitachi Ltd Semiconductor laser
JPH01302886A (en) * 1988-05-31 1989-12-06 Matsushita Electric Ind Co Ltd Semiconductor laser apparatus
EP0390995A2 (en) * 1989-04-06 1990-10-10 Mitsubishi Denki Kabushiki Kaisha Semiconductor laser device and method of making same
JPH03206679A (en) * 1990-01-08 1991-09-10 Nec Corp Semiconductor laser
JPH03227090A (en) * 1990-01-31 1991-10-08 Nec Corp Semiconductor laser
JPH03296290A (en) * 1990-04-13 1991-12-26 Sharp Corp Semiconductor laser element and manufacture thereof
US5111470A (en) * 1990-04-13 1992-05-05 Sharp Kabushiki Kaisha Semiconductor laser device and a method of fabricating the same

Similar Documents

Publication Publication Date Title
US4635268A (en) Semiconductor laser device having a double heterojunction structure
JPH11214788A (en) Gallium nitride type semiconductor laser element
JP3432910B2 (en) Semiconductor laser
JPS6343387A (en) Semiconductor laser device and manufacture thereof
CN110459952A (en) The production method that SAG improves semiconductor laser chip reliability is grown by selective area
JPH067618B2 (en) Semiconductor laser device
JPS603178A (en) Semiconductor laser device
US6639926B1 (en) Semiconductor light-emitting device
JPS6349396B2 (en)
JPS6352479B2 (en)
JPH07254750A (en) Semiconductor laser
JPH09289358A (en) Netride semiconductor laser device and manufacturing method thereof
JPH0644661B2 (en) Semiconductor laser device
JPS6180881A (en) Semiconductor laser device
JP2001223434A (en) Nitride-based semiconductor laser device
JPS621290A (en) Hetero-junction type semiconductor laser
JPH0766992B2 (en) AlGaInP semiconductor laser and manufacturing method thereof
JPS6066891A (en) Semiconductor laser device
JP3903229B2 (en) Semiconductor laser device and manufacturing method thereof
JPH0574957B2 (en)
JPS6262580A (en) Semiconductor laser
JPH0722697A (en) Semiconductor laser element and manufacture thereof
JPH07111967B2 (en) Method for manufacturing compound semiconductor device
JPS6083388A (en) Semiconductor laser
JPS6042885A (en) Semiconductor laser device