JPS6216241B2 - - Google Patents
Info
- Publication number
- JPS6216241B2 JPS6216241B2 JP57051512A JP5151282A JPS6216241B2 JP S6216241 B2 JPS6216241 B2 JP S6216241B2 JP 57051512 A JP57051512 A JP 57051512A JP 5151282 A JP5151282 A JP 5151282A JP S6216241 B2 JPS6216241 B2 JP S6216241B2
- Authority
- JP
- Japan
- Prior art keywords
- sintering
- sintered
- present
- light energy
- light
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 238000005245 sintering Methods 0.000 claims description 36
- 238000000034 method Methods 0.000 claims description 25
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 2
- 238000000465 moulding Methods 0.000 claims 1
- 238000004663 powder metallurgy Methods 0.000 description 7
- 238000009770 conventional sintering Methods 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000000203 mixture Substances 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000001000 micrograph Methods 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 239000000919 ceramic Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000010453 quartz Substances 0.000 description 2
- 239000004020 conductor Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005485 electric heating Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 238000009699 high-speed sintering Methods 0.000 description 1
- 238000007731 hot pressing Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000002076 thermal analysis method Methods 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Mechanical Engineering (AREA)
- Powder Metallurgy (AREA)
Description
本発明は粉末冶金の焼結方法、特に効率の良い
焼結法に関する。従来この分野における焼結法と
しては、抵抗発熱によるもの、誘導加熱によるも
の、ホツトプレス法等が通常採用されている。こ
れ等はその焼結サイクルが104〜105秒であり、焼
結以外の工程例えばプレス工程が10゜秒であるの
に較べて極めて長い時間を要する工程である。 更にまた上述の従来の焼結法ではその炉体が焼
結される成型体の大きさに較べて過大であり加熱
効率が極めて悪く数%に過ぎない。また炉体構成
部材として断熱材等種々の材料で構成され特に高
温で使用する場合は被焼結体にとつて好ましくな
い雰囲気を形成することがあり高品質の焼結体を
得るためには種々の工夫が必要であり設備コスト
が過大となる。 上記の問題のうち、焼結サイクルに関しては被
焼結体である成型体に直接通電して発熱する通電
加熱法が提案されているが、これは導電性材料に
のみ適応されセラミツクのような絶縁物には応用
できず、さらに表面と内部の組織が不均一になる
欠点があり超硬合金の如く組織によつて特性が著
しく影響される製品には適用されない。 本発明はかゝる従来の焼結法の問題を解消する
もので高速で焼結でき、しかも高品質の焼結体を
得ることのできる焼結法を提供するのが目的であ
る。 第1図は粉末冶金の一般的な製造工程を示す図
であり、数100μから0.1μの範囲の原料粉末を所
定組成に配合し、これに潤滑材、有機結合剤を2
〜10%添加混合、粉砕したものを所定寸法の金型
に充填し、0.5〜8t/cm2の圧力でプレス成型す
る。次に400〜800℃の温度で上記潤滑材、結合剤
を除去する脱バインダー工程を経て焼結し、必要
によつて所定寸法に加工として製品とする。最近
の粉末冶金製品はセラミツク、サーメツト、超硬
合金、ダイヤモンド等種々広範な工業用途に普及
しており量産性が重要視され自動化、連続化が進
んでいるが、前述の如くこれらの工程のうち焼結
工程が1〜10時間のサイクルで行われており最も
遅れていると云わざるを得ない。 本発明はこの焼結を光エネルギーを利用し短時
間に行うものである。従来光エネルギーの利用と
しては太陽エネルギーをパラボラ集光板により1
点に集中して加熱する方法が知られているが上記
の粉末冶金製品の焼結には雰囲気調整、量産性の
点で実用的でない。本発明は赤外線ランプ等の光
源を密閉炉体の所定箇所に設置し、炉体内壁は断
面放物線状又は楕円状のAlまたは金の反射板と
なつており上記ランプの光が炉体中心に全て集光
し、中心に焼結すべき成型体を照射し急速加熱す
ることによつて焼結を短時間に完了せしめるもの
である。 第1図は本発明の焼結に用いる焼結炉の一例の
断面図であり、被焼結体2は炉体1の中央部に石
英板等の上に設置し、光源ランプ3の光は反射板
4に反射し、5で示す光線に示す如く全て被焼結
体に集光し、被焼結物は製品の大きさ、材料によ
つて異るが1〜10分で昇温焼結が完了する。 上記の光源としては赤外線ランプが最も適す
る。この赤外線ランプは透明石英ガラス管にタン
グステンフイラメントを封入し、内部にハロゲン
ガスを入れて密閉されたものであり、その放射波
長はほゞ1.15ミクロンにピークをもつ近赤外線放
射スペクトルをもつている。従つて輻射効率も高
く、電力密度は100ワツト/cm2前後であり、従来
の抵抗発熱体に較べ2〜10倍の電力密度をもつて
いる。この赤外線ランプは従来主として、熱分析
熱的性能試験や半導体の熱処理等に使用されてい
るが、本発明の如く粉末冶金の焼結に用いた例は
無い。本発明者らは種々の検討の結果粉末冶金へ
の実用を可能にしたものである。 第3図は本発明の焼結における焼結サイクルの
一例であり、昇温6が2分、焼結キープ7が1.5
分、冷却が1.5分であり、従来104〜105秒であつ
た焼結工程は102秒に極端に短縮された。 本発明の場合、昇温速度は10℃/秒以上150
℃/秒以下であり、焼結温度1200〜1600℃の範囲
のものが最も効率良く焼結され、焼結サイクルは
20分以下で大抵の場合すんだ。 本発明の効果は単に焼結時間の短縮のみでな
く、加熱時間が短いことにより成型体の雰囲気に
よる汚染が少く、またもし一部が酸化していても
初期段階で還元除去されるため真空や特殊な雰囲
気が不要となつた。また短時間で焼結されてしま
うため特に焼結中に液相の生ずるものについては
高温での変形が少く、形状効果の影響が少ないな
どの効果があつた。 一般に焼結される前の成型体は多孔質であり、
熱伝導が悪いため、これに光エネルギーが投入さ
れると熱の完全吸収が可能となるため短時間で焼
結されるものと思われる。 本発明の方法であれば熱効率は20〜50%と高
く、被焼結体の大きさに対し、過大な設備が不要
であり省エネルギー効果が大きい。又、従来の方
法と異り炉体から悪影響を及ぼすガスの発生も少
く高品質の焼結体が得られるし、逆に高精度の雰
囲気制御も可能となる。 次に実施例によつて説明する。 実施例 第1表に示す組成、寸法の成型体を準備し、石
英管内に成型体を載せ、これにN2ガスを200c.c./
min.流した状態で20KWのパワーで赤外線ランプ
にて光エネルギーを集光照射せしめ各々2〜10分
で昇温焼結を行つた。いずれも得られた焼結体は
変形も少く良好な焼結体が得られた。第4図イは
従来の真空焼結炉で昇温1時間、キープ1時間、
冷却5時間で焼結したものの1500倍拡大の断面顕
微鏡写真であり、第4図ロが本発明の実施例No.1
の同倍率の顕微鏡写真である。この写真でわかる
ように充分緻密な組織を示し、かつWC粒子は従
来のものに較べて微細であつた。これは短時間で
液相が発生凝固するためにCo相への溶解析出に
よる粒成長が抑制されるものと思われる。
焼結法に関する。従来この分野における焼結法と
しては、抵抗発熱によるもの、誘導加熱によるも
の、ホツトプレス法等が通常採用されている。こ
れ等はその焼結サイクルが104〜105秒であり、焼
結以外の工程例えばプレス工程が10゜秒であるの
に較べて極めて長い時間を要する工程である。 更にまた上述の従来の焼結法ではその炉体が焼
結される成型体の大きさに較べて過大であり加熱
効率が極めて悪く数%に過ぎない。また炉体構成
部材として断熱材等種々の材料で構成され特に高
温で使用する場合は被焼結体にとつて好ましくな
い雰囲気を形成することがあり高品質の焼結体を
得るためには種々の工夫が必要であり設備コスト
が過大となる。 上記の問題のうち、焼結サイクルに関しては被
焼結体である成型体に直接通電して発熱する通電
加熱法が提案されているが、これは導電性材料に
のみ適応されセラミツクのような絶縁物には応用
できず、さらに表面と内部の組織が不均一になる
欠点があり超硬合金の如く組織によつて特性が著
しく影響される製品には適用されない。 本発明はかゝる従来の焼結法の問題を解消する
もので高速で焼結でき、しかも高品質の焼結体を
得ることのできる焼結法を提供するのが目的であ
る。 第1図は粉末冶金の一般的な製造工程を示す図
であり、数100μから0.1μの範囲の原料粉末を所
定組成に配合し、これに潤滑材、有機結合剤を2
〜10%添加混合、粉砕したものを所定寸法の金型
に充填し、0.5〜8t/cm2の圧力でプレス成型す
る。次に400〜800℃の温度で上記潤滑材、結合剤
を除去する脱バインダー工程を経て焼結し、必要
によつて所定寸法に加工として製品とする。最近
の粉末冶金製品はセラミツク、サーメツト、超硬
合金、ダイヤモンド等種々広範な工業用途に普及
しており量産性が重要視され自動化、連続化が進
んでいるが、前述の如くこれらの工程のうち焼結
工程が1〜10時間のサイクルで行われており最も
遅れていると云わざるを得ない。 本発明はこの焼結を光エネルギーを利用し短時
間に行うものである。従来光エネルギーの利用と
しては太陽エネルギーをパラボラ集光板により1
点に集中して加熱する方法が知られているが上記
の粉末冶金製品の焼結には雰囲気調整、量産性の
点で実用的でない。本発明は赤外線ランプ等の光
源を密閉炉体の所定箇所に設置し、炉体内壁は断
面放物線状又は楕円状のAlまたは金の反射板と
なつており上記ランプの光が炉体中心に全て集光
し、中心に焼結すべき成型体を照射し急速加熱す
ることによつて焼結を短時間に完了せしめるもの
である。 第1図は本発明の焼結に用いる焼結炉の一例の
断面図であり、被焼結体2は炉体1の中央部に石
英板等の上に設置し、光源ランプ3の光は反射板
4に反射し、5で示す光線に示す如く全て被焼結
体に集光し、被焼結物は製品の大きさ、材料によ
つて異るが1〜10分で昇温焼結が完了する。 上記の光源としては赤外線ランプが最も適す
る。この赤外線ランプは透明石英ガラス管にタン
グステンフイラメントを封入し、内部にハロゲン
ガスを入れて密閉されたものであり、その放射波
長はほゞ1.15ミクロンにピークをもつ近赤外線放
射スペクトルをもつている。従つて輻射効率も高
く、電力密度は100ワツト/cm2前後であり、従来
の抵抗発熱体に較べ2〜10倍の電力密度をもつて
いる。この赤外線ランプは従来主として、熱分析
熱的性能試験や半導体の熱処理等に使用されてい
るが、本発明の如く粉末冶金の焼結に用いた例は
無い。本発明者らは種々の検討の結果粉末冶金へ
の実用を可能にしたものである。 第3図は本発明の焼結における焼結サイクルの
一例であり、昇温6が2分、焼結キープ7が1.5
分、冷却が1.5分であり、従来104〜105秒であつ
た焼結工程は102秒に極端に短縮された。 本発明の場合、昇温速度は10℃/秒以上150
℃/秒以下であり、焼結温度1200〜1600℃の範囲
のものが最も効率良く焼結され、焼結サイクルは
20分以下で大抵の場合すんだ。 本発明の効果は単に焼結時間の短縮のみでな
く、加熱時間が短いことにより成型体の雰囲気に
よる汚染が少く、またもし一部が酸化していても
初期段階で還元除去されるため真空や特殊な雰囲
気が不要となつた。また短時間で焼結されてしま
うため特に焼結中に液相の生ずるものについては
高温での変形が少く、形状効果の影響が少ないな
どの効果があつた。 一般に焼結される前の成型体は多孔質であり、
熱伝導が悪いため、これに光エネルギーが投入さ
れると熱の完全吸収が可能となるため短時間で焼
結されるものと思われる。 本発明の方法であれば熱効率は20〜50%と高
く、被焼結体の大きさに対し、過大な設備が不要
であり省エネルギー効果が大きい。又、従来の方
法と異り炉体から悪影響を及ぼすガスの発生も少
く高品質の焼結体が得られるし、逆に高精度の雰
囲気制御も可能となる。 次に実施例によつて説明する。 実施例 第1表に示す組成、寸法の成型体を準備し、石
英管内に成型体を載せ、これにN2ガスを200c.c./
min.流した状態で20KWのパワーで赤外線ランプ
にて光エネルギーを集光照射せしめ各々2〜10分
で昇温焼結を行つた。いずれも得られた焼結体は
変形も少く良好な焼結体が得られた。第4図イは
従来の真空焼結炉で昇温1時間、キープ1時間、
冷却5時間で焼結したものの1500倍拡大の断面顕
微鏡写真であり、第4図ロが本発明の実施例No.1
の同倍率の顕微鏡写真である。この写真でわかる
ように充分緻密な組織を示し、かつWC粒子は従
来のものに較べて微細であつた。これは短時間で
液相が発生凝固するためにCo相への溶解析出に
よる粒成長が抑制されるものと思われる。
【表】
本発明の方法による焼結体の硬度、抗折力等の
機械的強度は従来のものと遜色無いことは勿論で
ある。また本発明の焼結法は超硬合金の如く液相
を生ずる焼結体組成のものに特に有効である。
機械的強度は従来のものと遜色無いことは勿論で
ある。また本発明の焼結法は超硬合金の如く液相
を生ずる焼結体組成のものに特に有効である。
第1図は粉末冶金の通常の工程を示す工程図、
第2図は本発明の方法に用いる焼結炉の1例を示
す断面図、第3図は本発明の焼結サイクルを示す
昇温、キープ、冷却曲線であり、第4図は本発明
による焼結品の実施例の1500倍拡大顕微鏡組織写
真であり、イが従来の焼結によるものロが本発明
の焼結によるものである。 1:炉体、2:被焼結体、3:光源、4:反射
面、5:光線路、6:昇温、7:焼結キープ、
8:冷却。
第2図は本発明の方法に用いる焼結炉の1例を示
す断面図、第3図は本発明の焼結サイクルを示す
昇温、キープ、冷却曲線であり、第4図は本発明
による焼結品の実施例の1500倍拡大顕微鏡組織写
真であり、イが従来の焼結によるものロが本発明
の焼結によるものである。 1:炉体、2:被焼結体、3:光源、4:反射
面、5:光線路、6:昇温、7:焼結キープ、
8:冷却。
Claims (1)
- 【特許請求の範囲】 1 粉末を加圧成型した成型体を断面放物線状又
は楕円状の反射集光板と赤外線ランプ等の光源を
有する炉室の焦点位置に設置し、上記光源の光エ
ネルギーを集中照射せしめ短時間で昇温して焼結
せしめることを特徴とする光エネルギー焼結法。 2 特許請求の範囲第1項において、昇温速度が
10℃/秒以上150℃/秒以下であり焼結温度が
1200℃〜1600℃であり焼結キープ時間が20分以下
であることを特徴とする光エネルギー焼結法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57051512A JPS58167702A (ja) | 1982-03-29 | 1982-03-29 | 光エネルギ−焼結法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP57051512A JPS58167702A (ja) | 1982-03-29 | 1982-03-29 | 光エネルギ−焼結法 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS58167702A JPS58167702A (ja) | 1983-10-04 |
JPS6216241B2 true JPS6216241B2 (ja) | 1987-04-11 |
Family
ID=12889053
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP57051512A Granted JPS58167702A (ja) | 1982-03-29 | 1982-03-29 | 光エネルギ−焼結法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS58167702A (ja) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU643700B2 (en) * | 1989-09-05 | 1993-11-25 | University Of Texas System, The | Multiple material systems and assisted powder handling for selective beam sintering |
JP6211775B2 (ja) * | 2013-03-12 | 2017-10-11 | 学校法人慶應義塾 | 焼結体の製造方法 |
JP2020520410A (ja) * | 2017-05-12 | 2020-07-09 | ヘレウス ドイチェラント ゲーエムベーハー ウント カンパニー カーゲー | 金属ペーストの手段によりコンポーネントを接続する方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4824179U (ja) * | 1971-07-29 | 1973-03-20 | ||
JPS5390033A (en) * | 1977-01-19 | 1978-08-08 | Hitachi Ltd | Heat treatment equipment |
JPS5653278U (ja) * | 1979-09-29 | 1981-05-11 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5822077Y2 (ja) * | 1979-06-12 | 1983-05-11 | 東海高熱工業株式会社 | 高温高純度ガス雰囲気炉 |
-
1982
- 1982-03-29 JP JP57051512A patent/JPS58167702A/ja active Granted
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4824179U (ja) * | 1971-07-29 | 1973-03-20 | ||
JPS5390033A (en) * | 1977-01-19 | 1978-08-08 | Hitachi Ltd | Heat treatment equipment |
JPS5653278U (ja) * | 1979-09-29 | 1981-05-11 |
Also Published As
Publication number | Publication date |
---|---|
JPS58167702A (ja) | 1983-10-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6512216B2 (en) | Microwave processing using highly microwave absorbing powdered material layers | |
Fang et al. | Fabrication of transparent hydroxyapatite ceramics by ambient-pressure sintering | |
CN110438386A (zh) | 一种高熵合金钎料的制备方法及用途 | |
US4690797A (en) | Method for the manufacture of large area silicon crystal bodies for solar cells | |
CN102260802A (zh) | 一种靶材制备装置及其靶材加工方法 | |
JP6714044B2 (ja) | 窒化ケイ素焼結体の製造方法、窒化ケイ素焼結体及びそれを用いた放熱基板 | |
CN109207762A (zh) | 一种以微波烧结制备钨钼铜复合材料的方法 | |
JPS6216241B2 (ja) | ||
JPS6036351A (ja) | シ−ルガラス | |
JPS5947302A (ja) | 焼結炉 | |
US3476690A (en) | Optically useful elements of hot pressed lithium fluoride doped magnesium oxide and method of forming same | |
CN100549216C (zh) | 晶质化SiO2-Al2O3混合氧化物蒸镀材料的制备方法 | |
CN115433007B (zh) | 一种太阳能光谱宽频吸收材料及其制备方法 | |
Resnina et al. | Influence of pre-heating temperature and ultrasonic vibration treatment on the structure and martensitic transformations in NiTi foams produced by SHS | |
JPS6223042B2 (ja) | ||
CN106381432B (zh) | 一种高导热金刚石/多金属复合材料制备方法 | |
JPS6320573B2 (ja) | ||
CN1101633A (zh) | 陶瓷注射成型体快速脱脂方法及其装置 | |
JPS606307B2 (ja) | セレン化亜鉛多結晶体の製造方法 | |
Nanko et al. | Pulsed electric current sintering of transparent alumina ceramics | |
JPH05140613A (ja) | タングステン焼結体の製造方法 | |
CN111393182B (zh) | 一种基于超快激光重熔的陶瓷纳米晶化方法 | |
JPH1050473A (ja) | 粒状発熱体及びそれを用いる加熱方法 | |
JPS5450290A (en) | Production of target for x-ray tube | |
JP2013253308A (ja) | Cigsスパッタリングターゲットの製造方法 |