JPS6150908B2 - - Google Patents

Info

Publication number
JPS6150908B2
JPS6150908B2 JP55052680A JP5268080A JPS6150908B2 JP S6150908 B2 JPS6150908 B2 JP S6150908B2 JP 55052680 A JP55052680 A JP 55052680A JP 5268080 A JP5268080 A JP 5268080A JP S6150908 B2 JPS6150908 B2 JP S6150908B2
Authority
JP
Japan
Prior art keywords
sec
powder
silicon nitride
magnesium
added
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP55052680A
Other languages
English (en)
Other versions
JPS56149379A (en
Inventor
Kyoshi Uchida
Masahiko Sugyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP5268080A priority Critical patent/JPS56149379A/ja
Publication of JPS56149379A publication Critical patent/JPS56149379A/ja
Publication of JPS6150908B2 publication Critical patent/JPS6150908B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】
本発明は、ガスタービン部品やデイーゼルエン
ジン部品等の強度部品材料或いは耐熱部品材料と
して重要な窒化珪素焼結体の製造方法に関するも
のである。 窒化珪素焼結体の製造方法としては、ホツトプ
レス法、常圧焼結法、反応焼結法等が知られてい
るが、なかでも常圧焼結法は比較的高強度のもの
を生産性良く製造できるため広く採用されてい
る。この常圧焼結法とは、窒化珪素粉末に適当な
焼結助剤を添加し、これを成形した後窒素ガス雰
囲気等、非酸化雰囲気中常圧下で焼結させるもの
である。ここで添加する焼結助剤は、その種類、
量、添加方法により得られる焼結体の特性が異な
るため非常に重要となる。 焼結助剤を添加する目的は、焼結時に溶融相を
形成させることにあり、即ち焼結助剤自体が低融
点物質であるか、または焼結助剤と窒化珪素粉末
および混入している不純物とが反応して低融点化
合物を形成することにより、溶融相が形成され、
これを介して液相焼結させるために添加する。こ
の際形成される溶融物としては、試料全域にわた
つて均一に分散し、かつ高分散であること、また
同一融体量であるならば比表面積が大であるこ
と、即ち細かく分散していて反応面積が大である
こと等が必要である。従つて、焼結助剤は一般に
できるかぎり微細に分散された粉末状で添加され
るのが望ましく、従来この紛砕はボールミル紛砕
によつて行なわれていた。 しかるに、上記方法では粒度を小さくするには
限度があり、また所定の粒度のものを得るには非
常に長時間を要する等の問題があつた。また紛砕
中に容器からの不純物の混入もかなり多く、この
ことは最終焼結品の特性悪化や特性ばらつきの原
因にもなつている。 一方、いかなる焼結助剤を使用するかというこ
とも優れた焼結体を得る重要な因子である。従来
の焼結助剤としては、Al2O3,MgO,Y2O3,CeO
等があるが、常圧焼結法で緻密で強度特性に優れ
た焼結体を与える焼結助剤として、特に
MgAl2O4(スピネル化合物)を添加する方法が
知られている(特公昭52−3647号参照)。この方
法は、原料窒化珪素粉末にAl2O3粉末とMgO粉末
とから合成したMgAl2O4粉末を所定量添加して
湿式混合し、これにポリビニルアルコール
(PVA)等の結合剤を添加して乾燥造粒したもの
を原料として、これを成形、焼成するものであ
る。 しかしながら、この焼結助剤であるMgAl2O4
は、非常に優れたものでありながら、前記の如く
従来の紛砕工程に難点があるために、望ましい粒
度の粉末が得られず、最終焼結品の特性にばらつ
きが生じるという欠点があつた。 本発明は、以上のような問題を解消するための
もので、焼結助剤の添加量が少なくても優れた特
性を有する焼結体を与え得る製造方法を提供する
ものである。 本発明は、マグネシウム−アルミニウム−第二
ブトキシド{Mg〔Al(sec−OC4H942}3ない
し40モル%を有機溶媒に溶解せしめて、窒化珪素
粉末60〜97モル%に混合し、得られた混合物に水
を加えて上記マグネシウム−アルミニウム−第二
ブトキシドを加水分解した後、乾燥せしめて得る
窒化珪素粉末とスピネル(MgAl2O4)組成超微細
粉末との均一混合物を所定形状に成形し、焼成す
ることを特徴とする窒化珪素焼結体の製造方法に
関するものである。 本発明において、窒化珪素粉末の添加量は、上
記の如く60〜97モル%のであるが、特に好ましく
は85〜95モル%、またマグネシウム−アルミニウ
ム−第二ブトキシドについては3〜40モル%、特
に好ましくは5〜15モル%である。 本発明は、MgAl2O3(スピネル)粉末の代り
に、スピネル組成のアルコレート溶液であるMg
〔Al(sec−OC4H942を用いるものである。この
アルコレートは、水との反応により次式で示され
るように加水分解され、スピネル組成の水酸化物
となることが知られている。 Mg〔Al(sec−OC4H942+8H2O →MgAl2O4・nH2O+8sec−C4H9OH この水酸化物は、ゲル状の超微粒子の沈澱で、
これを加熱分解し、更に高温加熱することにより
MgAl2O4の超微粉末が得られる。即ち、本発明
は窒化珪素粉末と適当な有機溶媒に溶解したMg
〔Al(sec−OC4H942の所定量を混合し、これに
水を添加して加水分解し、更に撹拌を続ける事で
窒化珪素粉末とMgAl2O4・nH2Oの超微粒子が均
一に混合した溶液を作る。これを減圧下100〜200
℃の温度で加熱し、まず加水分解により生成した
アルコール分および水分の一部を揮発除去した
後、300〜1200℃の大気中または真空中で〓焼
し、脱水乾燥するとともに分解反応をさせ、更に
添加成分の結晶化をさせるものである。この結
果、窒化珪素粉末中に、スピネルの超微粒子が高
度に分散した混合粉末が得られる。以上により得
られた混合物を、従来と同様に結合剤としての
PVAを適当に添加して水溶液とし、これを噴霧
乾燥により顆粒化し、成形用原料とする。以降金
型またはゴム型で成形し、500〜600℃酸化雰囲気
でPVAを酸化除去した後、1600〜1750℃で窒素
ガス雰囲気中で焼成し、焼結体を得る。 以上の工程において、特性に影響する工程は、
加水分解のために加える水の添加方法および大気
中または真空中での〓焼温度である。水の添加方
法には、蒸留水を単に添加する方法(1)、霧ふきな
どにより微細な水滴として噴霧して加える方法
(2)、水を微細に溶解したアルコールを加える方法
(3)、更にこのアルコールを噴霧する方法(4)が考え
られ、それぞれ加水分解により生ずる水酸化物の
ゲルの性状が異なる。即ち、微粒の水滴により形
成されたゲルは、微小なゲル集団を作り、ゲルの
大きな凝集がないため、〓焼後に得られる混合粉
末により微小でかつ均一に添加成分が分散した状
態で得られる。従つて、前記の方法では(2),(3),
(4)、特に方法(4)が好ましい。 以上の本発明の製造工程を図面に図式的に表わ
した。尚、本発明において、〓焼温度は300〜
1200℃、好ましくは500〜600℃である。 以下本発明を実施例に従つて更に詳しく説明す
る。 実施例 1 市販のAl(sec−OC4H93(アルミニウム第二
ブトキシド)純度99%と金属マグネシウム粉末と
第二ブタノールとを用いて次式の反応を行なわ
せ、Mg〔Al(sec−OC4H942(マグネシウム−
アルミニウム−第二ブトキシド)を合成した。 次に窒化珪素粉末60〜97モル%と上記により製
造したマグネシウム−アルミニウム−第二ブトキ
シド3〜40モル%を溶解する第二ブタノール溶液
とを混合し、溶液とした。この混合溶液をプロペ
ラ撹拌機などで十分撹拌しスラリーとした後、更
に撹拌しつつ、この中へ超音波ノズルにより5
Kg/cm2のN2ガスで蒸留水を噴霧し、マグネシウ
ム−アルミニウム−第二ブトキシドを加水分解さ
せた。これを減圧下で加熱撹拌可能な装置に入
れ、100〜200℃で減圧乾燥した。この工程では、
加水分解により生じたアルコール分および水酸化
物の分解による水分の一部を揮発除去した。得ら
れた湿潤な粉末を電気炉中で500〜600℃の温度で
〓焼した。これに結合剤としてPVA水溶液を加
えて再びスラリーとした後、スプレードライヤに
より乾燥顆粒化した。これを金型プレスにより5
×50×4(mm)の形状にプレス成形した後約600
℃で1時間加熱してPVAを分解除去し、1600〜
1750の窒素雰囲気中で焼成し、焼結体を得た。こ
の焼結体の表面を#300のダイヤモンド砥石によ
り研削した後、密度、気孔率、曲げ強度の測定を
行なつた。結果を第1表に示した。比較として従
来のアルミナ粉末とマグネシウム粉末とから合成
したスピネル粉末を添加剤とした焼結体の測定値
も示した。ここで気孔率は、真比重を3.18とした
時の値、曲げ強度は支点間距離30mmの3点曲げ試
験による値で、それぞれ10個の試料の平均であ
る。
【表】
【表】 表から分るように、同じ添加剤の量および同じ
焼成温度において、本発明品は比較品と比べ密度
が高く、曲げ強度が大きい。特に本発明品の試料
No.6〜8では、密度が3.12〜3.14、曲げ強度78.3
〜80.5となり、従来品の試料No.106〜108の密度
3.10〜3.12、曲げ強度60.0〜65.2よりも供に大き
い。また添加量の少ない試料No.1,2も従来品の
試料No.101,102と比べ、密度、強度供に大きく、
強度も40Kg/mm2以上を示す。 実施例 2 実施例1において、最も強度の高かつた試料No.
6の配合により、加水分解の方法を検討した。即
ち、実施例1においては、加水分解を超音波ノズ
ルにより5Kg/cm2のN2ガスで蒸留水を噴霧して
行なつたのに対し、実施例2ではこの方法(2)の
他、蒸留水を単に添加する方法(1)、イソプロパノ
ールに蒸留水を飽和させたものを添加する方法
(3)、イソプロパノールに蒸留水を飽和させたもの
を超音波ノズルにより5Kg/cm2のN2ガスで噴霧
しながら添加する方法(4)を夫々行なつて比較し
た。他の条件は、実施例1と同様とした。結果を
第2表に示す。
【表】 表からわかるように、蒸留水を飽和したイソプ
ロパノールを超音波ノズルから噴霧したもので
は、密度、強度供に非常に優れていることが確認
できた。これはイソプロパノールが蒸留水を少量
均一に溶解することに起因すると思われるので、
実際にはブタノール、ヘキサノール等種々の高級
アルコールの適用が可能である。 以上の如く、本発明によれば焼結助剤が窒化珪
素原料粉末中に均一に高分散で分散されるので、
焼結助剤の添加量が少なくても優れた特性を有す
る焼結体を得ることができ、本発明の工業的価値
は極めて大なるものである。
【図面の簡単な説明】
本発明の製造工程を示すフロチヤートである。

Claims (1)

  1. 【特許請求の範囲】 1 マグネシウム−アルミニウム−第二ブトキシ
    ド{Mg〔Al(sec−OC4H942}3ないし40モル
    %を有機溶媒に溶解せしめて窒化珪素粉末60〜97
    モル%に混合し、得られた混合物に水を加えて上
    記マグネシウム−アルミニウム−第二ブトキシド
    を加水分解した後乾燥し、所定形状に成形し、焼
    成することを特徴とする窒化珪素焼結体の製造方
    法。
JP5268080A 1980-04-21 1980-04-21 Manufacture of silicon nitride sintered body Granted JPS56149379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5268080A JPS56149379A (en) 1980-04-21 1980-04-21 Manufacture of silicon nitride sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5268080A JPS56149379A (en) 1980-04-21 1980-04-21 Manufacture of silicon nitride sintered body

Publications (2)

Publication Number Publication Date
JPS56149379A JPS56149379A (en) 1981-11-19
JPS6150908B2 true JPS6150908B2 (ja) 1986-11-06

Family

ID=12921590

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5268080A Granted JPS56149379A (en) 1980-04-21 1980-04-21 Manufacture of silicon nitride sintered body

Country Status (1)

Country Link
JP (1) JPS56149379A (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61256978A (ja) * 1985-05-01 1986-11-14 住友電気工業株式会社 窒化けい素焼結体の製造法
JPH0788258B2 (ja) * 1985-08-01 1995-09-27 ジ−・テイ−・イ−・ラボラトリ−ズ・インコ−ポレイテツド 焼結性の良好な窒化珪素粉末を製造する方法
JPS62158167A (ja) * 1985-12-27 1987-07-14 三菱化学株式会社 窒化珪素混合粉末の製造方法

Also Published As

Publication number Publication date
JPS56149379A (en) 1981-11-19

Similar Documents

Publication Publication Date Title
EP0384603B1 (en) Process for the production of magnesium oxide
US4520114A (en) Production of metastable tetragonal zirconia
JPH06507146A (ja) 安定化酸化ジルコニウム粉末の製造方法
JPS63295405A (ja) 微粉砕された粉末状組成物を製造するための方法
JPS6150907B2 (ja)
KR20100107482A (ko) 티탄산알루미늄계 세라믹스의 제조 방법
JPH0214823A (ja) 酸化イットリウムで安定化された酸化ジルコニウムのサブミクロン粉末の製造法
JPS6150908B2 (ja)
JPWO2003097527A1 (ja) 粒子状窒化アルミニウム及びその製造方法
JPH0651593B2 (ja) 窒化アルミニウム焼結体の製造方法
JPH0788258B2 (ja) 焼結性の良好な窒化珪素粉末を製造する方法
JPH01122964A (ja) イツトリウムで安定化されたジルコニア及びその製造方法
JPH04240166A (ja) 多孔性セラミックス製造用スラリーおよびこのスラリーを用いて得られる多孔性セラミックス
JPS6357383B2 (ja)
JP2577378B2 (ja) 窒化アルミニウム焼結体の製造方法
JPS5969428A (ja) 酸化ジルコニウム超微粉の製造方法
Ivers-tiffée Production of porous piezoelectric ceramic from chemically prepared raw materials
JPH05147924A (ja) アルミナ・シリカ系粉末の製造方法
JPS5926966A (ja) セラミツクスグリ−ン成形体の製造方法
JPS6345118A (ja) アルミナ質焼結砥粒の製造方法
JPH04305052A (ja) α−アルミナ−ジルコニア複合粉末およびその製造法
JP2508541B2 (ja) 透光性アルミナ原料粉の製造方法
EP0267449B1 (en) Synthesis of partially-stabilized tetragonal zirconia
JPH05116929A (ja) MgO−SiO2系酸化物の製造方法
JPS63139008A (ja) 窒化アルミニウム粉末の製造方法