JPS61191047A - Semiconductor integrated circuit device - Google Patents

Semiconductor integrated circuit device

Info

Publication number
JPS61191047A
JPS61191047A JP60033119A JP3311985A JPS61191047A JP S61191047 A JPS61191047 A JP S61191047A JP 60033119 A JP60033119 A JP 60033119A JP 3311985 A JP3311985 A JP 3311985A JP S61191047 A JPS61191047 A JP S61191047A
Authority
JP
Japan
Prior art keywords
cell
contact hole
cells
integrated circuit
semiconductor integrated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60033119A
Other languages
Japanese (ja)
Inventor
Yoshinori Watanabe
渡辺 吉規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Electronic Device Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Microelectronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Microelectronics Corp filed Critical Toshiba Corp
Priority to JP60033119A priority Critical patent/JPS61191047A/en
Publication of JPS61191047A publication Critical patent/JPS61191047A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays

Abstract

PURPOSE:To improve the integration degree of the entire chip, by arranging cells so that the parts of the outer frames of the cells agree with the facing sides, and overlapping at least one contact hole of each cell with the other contact hole of another cell. CONSTITUTION:The shapes of metal layers 42 and 52 in P-channel regions 2 and 22 of first and second standard cells 41 and 51 have a U-shape and an L shape. Likewise, the shapes of metal layers 43 and 53 in N-channel regions have an L shape. The cells 41 and 51 are arranged so that the parts of outer frames 44 and 54 of the cells agree with facing sides. Then a contact hole 72 in a P<+> source region 52 of the cell 41 is overlapped with a contact hole 271 in a P<+> type source region 25 of the cell 51. In comparison with a conventional device, the width of the cell line can be shortened by the amount of one source region and by the amount of a gap L between the source regions.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体集積回路装置に関し、複数のスタンダー
ドセルから構成されるものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor integrated circuit device, which is composed of a plurality of standard cells.

〔発明の技術的背景〕[Technical background of the invention]

周知の如く、スタンダード方式の自動配線プログラムを
実行する場合、予めスタンダードセルのマスクパターン
を設計しておきそれらのセルを論理接続記述に従って自
動配置配線プログラムによって配置配線を行う。
As is well known, when a standard type automatic wiring program is executed, mask patterns for standard cells are designed in advance, and those cells are placed and routed by an automatic placement and wiring program according to logical connection descriptions.

ここで、スタンダードセルのマスクツ母ターンの従来例
を第4図、第5図に示す。但し、例は相補型(C) M
OS回路を用いる。
Here, conventional examples of mask-shaped mother turns of standard cells are shown in FIGS. 4 and 5. However, the example is complementary type (C) M
Uses an OS circuit.

第4図において、図中の1はPチャネル領域2とNチャ
ネル領域3からなるNANDゲートを構成する第1のス
タンダードセルで、外枠4によシ囲まれている。前記P
チャネル領域2には、電源電位(VDD)に接続された
Plのソース領域5□ 、5□が夫々設けられていると
ともに p+型のドレイン領域6が設けられている。前
記ソ−ス領域51p52には一定幅のコンタクト孔71
p72が、かつドレイン領域6には同幅のコンタクト孔
73が夫々設けられている。前記ソース領域5□ 、5
2は、コンタクト孔’1+72を介して電源電位又は接
地電位となる金属層8によって接続されている。一方、
前記Nチャネル領域3には、接地電位となるN1のノー
ス領域9が設けられているとともに、前記ドレイン領域
6に接続したN”Wのドレイン領域10が設けられてい
る。前記ノース領域9、ドレイン領域10にはコンタク
ト孔74#75が夫々設けられている。また、前記Pチ
ャネル領域2及びNチャネル領域3には、多結晶シリコ
ンからなるダート電極11,11がセル1の長手方向に
沿って投げられている。なお、図中の12はドレイン領
域10とコンタクト孔74を介して接続する金属層、1
3は拡散層領域である。
In FIG. 4, reference numeral 1 denotes a first standard cell constituting a NAND gate consisting of a P channel region 2 and an N channel region 3, and is surrounded by an outer frame 4. As shown in FIG. Said P
In the channel region 2, Pl source regions 5□ and 5□ connected to a power supply potential (VDD) are provided, respectively, and a p+ type drain region 6 is provided. A contact hole 71 with a constant width is provided in the source region 51p52.
Contact holes 73 having the same width are provided in p72 and drain region 6, respectively. The source regions 5□, 5
2 are connected through a contact hole '1+72 by a metal layer 8 that is at a power supply potential or a ground potential. on the other hand,
The N channel region 3 is provided with a N1 north region 9 that is at ground potential, and is also provided with an N''W drain region 10 connected to the drain region 6. Contact holes 74 #75 are provided in the region 10, respectively. Also, in the P channel region 2 and the N channel region 3, dart electrodes 11, 11 made of polycrystalline silicon are formed along the longitudinal direction of the cell 1. Note that 12 in the figure is a metal layer connected to the drain region 10 via a contact hole 74;
3 is a diffusion layer region.

第5図において、図中の21はPチャネル領−域22と
Nチャネル領域23からなるインバータを構成する第2
のスタンダードセルで、外枠24より囲まれている。前
記Pチャネル領域22には電源電位に接続されたP+型
のソース領域25、及びP+型のドレイン領域26が夫
々設ゆられている。前記ソース、ドレイ/領域25゜2
6には、一定幅のコンタクト孔271..2y2が夫々
設けられている。また、前記ソース領域25には、電源
電位又は接地電位となる金属層28がコンタクト孔21
1を介して接続されている。一方、前記Nチャネル領域
23には接地電位に接続された継型のソース領域29、
及び継型のドレイン領域30が設けられている。前記ソ
ース、ドレイン領域29.30には、一定幅のコンタク
ト孔273,274が設けられている。また、前記Pチ
ャネル領域22及びNチャネル領域23には、多結晶シ
リコンからなるr−ト電極31がセル21の長手方向に
溢って設けられている。なお、図中の32はソース領域
29とコンタクト孔273を介して接続する金属層であ
る。
In FIG. 5, reference numeral 21 indicates a second inverter comprising a P channel region 22 and an N channel region 23.
This standard cell is surrounded by the outer frame 24. The P channel region 22 is provided with a P+ type source region 25 and a P+ type drain region 26, which are connected to a power supply potential. The source, drain/region 25°2
6 has a contact hole 271.6 having a constant width. .. 2y2 are provided respectively. Further, in the source region 25, a metal layer 28 having a power supply potential or a ground potential is formed in the contact hole 21.
1. On the other hand, the N-channel region 23 includes a joint-shaped source region 29 connected to the ground potential;
and a joint type drain region 30 are provided. Contact holes 273 and 274 having a constant width are provided in the source and drain regions 29 and 30. Further, in the P channel region 22 and the N channel region 23, an r-to electrode 31 made of polycrystalline silicon is provided overflowing in the longitudinal direction of the cell 21. Note that 32 in the figure is a metal layer connected to the source region 29 via the contact hole 273.

従来1例えば第1のセル1の外枠4と第2のセル2ノか
ら構成される半導体集積回路装置は、第6図に示す如く
、第1のセル1の外枠4と第2のセル2ノの外枠24の
一部が重な)、しかも同タイプのチャネル領域Z、XZ
(あるいは3.23)が横に一列に並ぶように配置され
る。
Conventional 1 For example, a semiconductor integrated circuit device composed of an outer frame 4 of a first cell 1 and a second cell 2, as shown in FIG. (a part of the outer frame 24 of 2 overlaps), and channel regions Z and XZ of the same type
(or 3.23) are arranged horizontally in a row.

〔背景技術の問題点〕[Problems with background technology]

しかしながら、第1のセル1の外枠4と第2のセル21
の外枠24の一部が重なるように配置された構造となっ
ているため、隣接するPチャネル領域2,22で夫々2
つのコンタクト孔72.271を並設することになる。
However, the outer frame 4 of the first cell 1 and the second cell 21
Since the structure is such that a part of the outer frame 24 of the
Two contact holes 72.271 are arranged in parallel.

また、隣接する。Pチャネル領域2,22の各ソース領
域52.25において、これらソース領域5z 。
Also adjacent. In each source region 52.25 of the P channel regions 2, 22, these source regions 5z.

25の設計基準に基づいた間隙りを空ける必要が生じる
。以上より、チップ全体の集積度が低下する。
It becomes necessary to leave a gap based on the design criteria of No. 25. As a result, the degree of integration of the entire chip decreases.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、従来の自動
配置配線プログラムを変更することなく、自動配置によ
って生じる無駄な領域を少なくし、チップ全体の集積度
の向上をなし得る半導体集積回路装置を提供することを
目的とする。
The present invention has been made in view of the above circumstances, and is a semiconductor integrated circuit device that can reduce wasted areas caused by automatic placement and improve the degree of integration of the entire chip without changing the conventional automatic placement and routing program. The purpose is to provide

〔発明の概要〕[Summary of the invention]

本発明は、左右の少なくとも一方側に設けられた電源電
位となる拡散層と、この拡散層に少なくとも一つのコン
タクト孔を介して接続する電源電位又は接地電位となる
金属層と、前記コンタクト孔の中心を通る外枠とを具備
したセルを、複数個各セルの外枠の一部が対向する辺側
で一致するように配置することにより、各セルの少なく
とも一つのコンタクト孔を重ね合わせ、もりてチップ全
体の集積度の向上を図ったものである。
The present invention provides a diffusion layer provided on at least one of the left and right sides and serving as a power supply potential, a metal layer connected to the diffusion layer through at least one contact hole and serving as a power supply potential or a ground potential, and By arranging a plurality of cells having an outer frame passing through the center so that a portion of the outer frame of each cell coincides with the opposite side, at least one contact hole of each cell is overlapped and The aim is to improve the degree of integration of the entire chip.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図を参照して説明する。 An embodiment of the present invention will be described below with reference to FIG.

ここで、第1図の半導体集積回路装置は、第2図の第1
のスタンダードセルと第3図の第2のスタンダードセル
とから構成されている。なお、第2図は第4図(従来)
にかつ第3図は第5図に対応するため、同部材は同符号
を付して説明を省略し、相違点のみを説明する。
Here, the semiconductor integrated circuit device shown in FIG.
The standard cell shown in FIG. 3 and the second standard cell shown in FIG. In addition, Figure 2 is Figure 4 (conventional)
Furthermore, since FIG. 3 corresponds to FIG. 5, the same members are given the same reference numerals, explanations thereof will be omitted, and only the differences will be explained.

第2図において、第1のスタンダードセル41のPチャ
ネル領域2の金属層42はコ字型の形状をなし、Nチャ
ネル領域3の金属層43はL字型の形状をなす。また、
外枠(一点鎖(2)44はP+型のソース領域51*5
tのコンタクト孔71r72の中心及びf塁のソース領
域9のコンタクト孔74の中心を夫々通過するように設
けられている。
In FIG. 2, the metal layer 42 in the P-channel region 2 of the first standard cell 41 has a U-shape, and the metal layer 43 in the N-channel region 3 has an L-shape. Also,
The outer frame (single-dot chain (2) 44 is a P+ type source region 51 * 5
It is provided so as to pass through the center of the t-base contact hole 71r72 and the center of the contact hole 74 of the f-base source region 9, respectively.

第3図において、第2のスタンダードセル51のPチャ
ネル領域22の金属層52及びNチャネル領域23の金
属層53は夫々L字型の形状をなしている。また、外枠
(一点鎖線)54は、P”聾のソース領域25のコンタ
クト孔27!の中心及び!型のソース領域29のコンタ
クト孔274の中心を夫々通過するように設けられてい
る。なお、ソース領域とコンタクト孔を介して接続する
金属層の接続の方法は従来と同様である。
In FIG. 3, the metal layer 52 of the P channel region 22 and the metal layer 53 of the N channel region 23 of the second standard cell 51 each have an L-shape. Further, the outer frame (dotted chain line) 54 is provided so as to pass through the center of the contact hole 27! of the P" deaf source region 25 and the center of the contact hole 274 of the ! type source region 29. The method of connecting the metal layer to the source region via the contact hole is the same as the conventional method.

本発明の装置は、第2図の第1のスタンダードセル41
と第3図の82のスタンダードセル51を、第1図に示
す如く、夫々のセル41゜51の外枠44.54の一部
が対向する辺側で一致するように配置したものである。
The device of the present invention includes a first standard cell 41 in FIG.
82 standard cells 51 shown in FIG. 3 are arranged so that parts of the outer frames 44 and 54 of the cells 41 and 51 coincide with each other on opposing sides, as shown in FIG.

しかして、本発明によれば、各スタンダードセル41,
51をこれらセル41,51の夫々の外枠44,54の
一部が対向する辺側で一致するように配置された構造と
なっているため、セル41のP+型のソース領域5zの
コンタクト孔1zとセル51のP+型のソース領域25
のコンタクト孔271とが重なり、従来と比ベソース領
域1個分とソース領域同志の間l!l!Lの分、セル行
の幅を短縮できる。事実、例えば第4図のセルを50個
、第5図のセルを50個計重00個のセルを従来技術に
よシー列に配置したセル行の幅、及び本提案に基づいて
改善した第2図、第3図のセルを同様の割合で計100
個−列に配置したセル行の幅を比較した。その結果、並
べ方によシ多少違いが出るが、ソース領域の幅に)で2
5〜40W分、幅が減少する。また、セルの数で表わす
と第2図のセルで7〜14個分の幅が、百分率で示すと
従来方式に対し本提案は19〜35%セル列の幅が減少
する。以上よシ、本発明が従来技術と比べ著しく優れ、
チップ全体の集積度を向上できることが確認できる。
According to the present invention, each standard cell 41,
51 are arranged so that parts of the outer frames 44 and 54 of the cells 41 and 51 coincide with each other on opposite sides, so that the contact hole of the P+ type source region 5z of the cell 41 is 1z and P+ type source region 25 of cell 51
The contact holes 271 overlap, and the distance between one source region and the source regions is 1! compared to the conventional method. l! The width of the cell row can be reduced by L. In fact, for example, the width of a cell row in which 50 cells in FIG. 4 and 50 cells in FIG. A total of 100 cells in Figures 2 and 3 in the same proportion.
The widths of cell rows arranged in individual columns were compared. As a result, there will be some differences in how they are arranged, but the width of the source area) will be 2
The width decreases by 5 to 40W. Furthermore, when expressed in terms of the number of cells, the width of the cell row is reduced by 7 to 14 cells in FIG. 2, and expressed as a percentage, the width of the cell row is reduced by 19 to 35% compared to the conventional method. In conclusion, the present invention is significantly superior to the conventional technology.
It can be confirmed that the degree of integration of the entire chip can be improved.

なお、上記実施例では、第1のスタンダードセル31の
ソース領域52と第2のスタンダードセル44のソース
領域25とが夫々同形状である場合について述べたが、
これに限らず、はぼ形状が同じであればよい。
Incidentally, in the above embodiment, a case has been described in which the source region 52 of the first standard cell 31 and the source region 25 of the second standard cell 44 have the same shape.
The shape is not limited to this, as long as the shape of the dovetails is the same.

上記実施例では、2種のスタンダードセルから構成され
る場合について述べたが、これに限らず、3種以上のス
タンダードセルから構成される場合でもよい。但し、隣
接するセルの対向側にはほぼ同形状のソース領域が対称
に設けられる必要がある。
In the above embodiment, a case has been described in which the cell is composed of two types of standard cells, but the present invention is not limited to this, and the cell may be composed of three or more types of standard cells. However, source regions having substantially the same shape must be symmetrically provided on opposite sides of adjacent cells.

上記実施例では、第1のスタンダードセルに係るPチャ
ネル領域のソース領域がセルの両側に設けられている場
合に一ついて述べたが、これに限らず、セルの右側に設
けられている場合でもよい、同様にして、第2のスタン
ダードセルの右側(もソース領域が設けられている場合
でもよい。
In the above embodiment, a case has been described in which the source regions of the P-channel region related to the first standard cell are provided on both sides of the cell, but the present invention is not limited to this, and even when the source regions are provided on the right side of the cell. Similarly, a source region may also be provided on the right side of the second standard cell.

上記実施例では、2種のスタンダードセルなこれらセル
の夫々の外枠の一部が対向する辺側で一致するように配
置した場合について述べたが、例えば従来例と本発明の
中間的々構造の半導体集積回路装置として第7図に示す
ものが挙げられる。同装置は、第2図の第1のスタンダ
ードセル31と第3図の第2のスタンダードセル41を
夫々の外枠34.44が対向する辺側で距離り分離間さ
せ、ソース領域s2,2sを密着てせたものである。第
7図の装置によれば、上記実施例に比べて劣るものの、
従来と比べて空隙り分、セル幅を縮少できる。
In the above embodiment, a case was described in which two types of standard cells are arranged so that a part of their respective outer frames coincide with each other on opposite sides. An example of the semiconductor integrated circuit device is the one shown in FIG. In this device, the first standard cell 31 shown in FIG. 2 and the second standard cell 41 shown in FIG. It is a close-up of the According to the apparatus shown in FIG. 7, although it is inferior to the above embodiment,
Compared to the conventional method, the cell width can be reduced by the amount of void.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、チップ全体の集積度
を向上し得る半導体集積回路装置を提供できる。
As described in detail above, according to the present invention, it is possible to provide a semiconductor integrated circuit device that can improve the degree of integration of the entire chip.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例に係る半導体集積回路装置の
パターン平面図、第2図は同装置に係る第1のスタンダ
ードセルのノ4ター/平面図。 第3図は同装置に係る第2のスタンダードセルのパター
ン平面図、第4図は従来の半導体集積回路装置に係る第
1のスタンダードセルのノ+ターン平面図、第5図は同
装置に係る第2のスタンダードセルの79タ一ン平面図
、第6図は従来の半導体集積回路装置のパターン平面図
、第7図は改良された半導体集積回路装置のl?ターン
平面図である。 2・・パPチャネル領域、3・・・Nチャネル領域、5
、.52.9,25,29・・・ソース領域、6゜70
.26.30・・・ドレイン領域、21〜7.。 271〜274・・・コンタクトホール、 11,3 
J・・・”’  ) % 極、41 * 51・・・ス
タンダードセル、44.54・・・外枠、42,43,
52.53・・・金用層。 第1図 43    ′33 @2図   第3図 第4図   第5図 12     3z 第6図 Ii!7図
FIG. 1 is a pattern plan view of a semiconductor integrated circuit device according to an embodiment of the present invention, and FIG. 2 is a top view of a first standard cell according to the same device. FIG. 3 is a pattern plan view of a second standard cell related to the same device, FIG. 4 is a no+turn plan view of a first standard cell related to a conventional semiconductor integrated circuit device, and FIG. 5 is a pattern plan view related to the same device. FIG. 6 is a pattern plan view of a conventional semiconductor integrated circuit device, and FIG. 7 is a pattern plan view of an improved semiconductor integrated circuit device. It is a turn top view. 2...P channel area, 3...N channel area, 5
,.. 52.9,25,29...source area, 6°70
.. 26.30...Drain region, 21-7. . 271-274...Contact hole, 11,3
J..."') % pole, 41 * 51... standard cell, 44.54... outer frame, 42, 43,
52.53... Gold layer. Fig. 1 43 '33 @2 Fig. 3 Fig. 4 Fig. 5 Fig. 12 3z Fig. 6 Ii! Figure 7

Claims (2)

【特許請求の範囲】[Claims] (1)図形処理装置上に予め登録されている論理ブロッ
クからなるMOS回路のセルライブラリーを用い、所定
の接続情報に基づいて電子計算器によって自動配置配線
を施して形成する半導体集積回路装置において、左右の
少なくとも一方側に設けられた電源電位となる拡散層と
、この拡散層に少なくとも一つのコンタクト孔を介して
接続する電源電位又は接地電位となる金属層と、前記コ
ンタクト孔の中心を通る外枠とを具備したスタンダード
セルを、複数個各セルの外枠の一部が対向する辺側で一
致するように配置したことを特徴とする半導体集積回路
装置。
(1) In a semiconductor integrated circuit device formed by using a cell library of MOS circuits consisting of logic blocks registered in advance on a graphic processing device, and performing automatic placement and wiring by an electronic computer based on predetermined connection information. , a diffusion layer serving as a power supply potential provided on at least one of the left and right sides, a metal layer serving as a power supply potential or a ground potential connected to this diffusion layer via at least one contact hole, and passing through the center of the contact hole. 1. A semiconductor integrated circuit device comprising a plurality of standard cells each having an outer frame arranged so that a part of the outer frame of each cell coincides with the opposite side.
(2)スタンダードセルの両側に電源電位となる拡散層
を設けたことを特徴とする特許請求の範囲第1項記載の
半導体集積回路装置。
(2) A semiconductor integrated circuit device according to claim 1, characterized in that diffusion layers serving as a power supply potential are provided on both sides of the standard cell.
JP60033119A 1985-02-20 1985-02-20 Semiconductor integrated circuit device Pending JPS61191047A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60033119A JPS61191047A (en) 1985-02-20 1985-02-20 Semiconductor integrated circuit device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60033119A JPS61191047A (en) 1985-02-20 1985-02-20 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
JPS61191047A true JPS61191047A (en) 1986-08-25

Family

ID=12377741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60033119A Pending JPS61191047A (en) 1985-02-20 1985-02-20 Semiconductor integrated circuit device

Country Status (1)

Country Link
JP (1) JPS61191047A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278743A (en) * 1988-05-02 1989-11-09 Nec Corp Cmos integrated circuit
JP2007134577A (en) * 2005-11-11 2007-05-31 Toshiba Corp Semiconductor device
JP2011199034A (en) * 2010-03-19 2011-10-06 Toshiba Corp Semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114734A (en) * 1984-06-29 1986-01-22 Fujitsu Ltd Manufacture of semiconductor integrated circuit device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114734A (en) * 1984-06-29 1986-01-22 Fujitsu Ltd Manufacture of semiconductor integrated circuit device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01278743A (en) * 1988-05-02 1989-11-09 Nec Corp Cmos integrated circuit
JP2007134577A (en) * 2005-11-11 2007-05-31 Toshiba Corp Semiconductor device
US7915688B2 (en) 2005-11-11 2011-03-29 Kabushiki Kaisha Toshiba Semiconductor device with MISFET
JP2011199034A (en) * 2010-03-19 2011-10-06 Toshiba Corp Semiconductor device

Similar Documents

Publication Publication Date Title
KR20190019952A (en) Standard cell architecture for spreading based on pin count
US20150048425A1 (en) Gate array architecture with multiple programmable regions
JPH0527981B2 (en)
US8788984B2 (en) Gate array architecture with multiple programmable regions
JP2021061278A (en) Semiconductor integrated circuit device
JP3647323B2 (en) Semiconductor integrated circuit
JPH04216668A (en) Semiconductor integrated circuit
JPS61191047A (en) Semiconductor integrated circuit device
JPH0794682A (en) Wiring for integrated circuit
JPH09321152A (en) Semiconductor device
JPH0969577A (en) Sram cell
JPH04164371A (en) Semiconductor integrated circuit
JPS59117132A (en) Master slice lsi substrate
JPH02280353A (en) Semiconductor integrated circuit
JP2659970B2 (en) Semiconductor integrated circuit
JP2004179184A (en) Semiconductor integrated circuit
JPH10261781A (en) Semiconductor device and system
JPH05198680A (en) Semiconductor integrated circuit device
JPH11260925A (en) Semiconductor integrated circuit device and method for automatic arranging and wiring method
JPH01152642A (en) Semiconductor integrated circuit
JPS6226853A (en) Complementary mos semiconductor integrated circuit device
EP0495990A1 (en) Semiconductor device
JPS6272143A (en) Pattern formation of semiconductor integrated circuit
JPH11135724A (en) Semiconductor integrated circuit, automatic arranging and designing method thereof and manufacture of the circuit
JP3236745B2 (en) LSI chip layout method