JPS6074477A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6074477A
JPS6074477A JP18114083A JP18114083A JPS6074477A JP S6074477 A JPS6074477 A JP S6074477A JP 18114083 A JP18114083 A JP 18114083A JP 18114083 A JP18114083 A JP 18114083A JP S6074477 A JPS6074477 A JP S6074477A
Authority
JP
Japan
Prior art keywords
conductivity type
semiconductor layer
electrode
region
base
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18114083A
Other languages
Japanese (ja)
Inventor
Motoo Nakano
元雄 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP18114083A priority Critical patent/JPS6074477A/en
Priority to EP84110211A priority patent/EP0137992A3/en
Priority to KR1019840005403A priority patent/KR890003474B1/en
Publication of JPS6074477A publication Critical patent/JPS6074477A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To augment current amplification degree improving accuracy by a method wherein impurities are introduced utilizing a pattern edge making off the sides of heat resistant base electrode and thermally diffused to specify the base width. CONSTITUTION:A base region 16 and an emitter region 17 are formed by means of diffusion self matching process making reference to a pattern edge of an insulating film 15 formed on the sides of a base electrode 14 or another edge of the insulating film 15 formed on the base electrode 14 and the sides of the base electrode 14. Therefore the base width may be formed narrower than convertional base width since the width of said regions 16, 17 in the lateral direction may be controlled accurately. Resultantly, any carrier implanted from the emitter region 17 may be effectively absorbed into a collector region.

Description

【発明の詳細な説明】[Detailed description of the invention]

(al 発明の技術分野 本発明は2チラル・バイポーラt・ジ/ジスク及びその
製造方法に係り、特に拡散自己整合(1) 1r −f
usion−8clf−AIJ’ig+旬により形成さ
れるラテラル・バイポーラトランジスタ及びその製造方
法に関する。 (b) 技術の背景 ラテラル・バイポーラトランジスタは基板をベースとし
、エミッタとコレクタ゛をその表面に形成したものであ
る。従って1ランジスク動作も横方向になるのでラテラ
ル(横方向)トランジスタと呼ばれている。この構造の
利点は、−導電型のパイボー2トランジスタを主として
用いて形成されるICに2.必要な逆導電型トランジス
タを形成すること、更にMIS)ジンゾスタを用いて形
成されるICに、必要なバイポーラトランジスタを形成
すること等を容易ならしめたことにある。 (C)従来技術と問題点 しかし従来のシチジル・パイボーラトシンジ;1りは、
第1図に示す模式断面図のように、半導体基板Sの一部
に分離形成された例えはP型ベース領域Bの上面部にI
+’ 、$型エミ・ツタ領域Etll!:n”pyJコ
レクタ領域Cとが所定の間隔て並んで配設される構造で
あったために、エミッタ領域Eからのキャリヤ(e’−
+9注入はコ
TECHNICAL FIELD OF THE INVENTION The present invention relates to a 2-chiral bipolar t-disc and a method for manufacturing the same, and particularly to a diffusion self-alignment (1) 1r -f
The present invention relates to a lateral bipolar transistor formed by USION-8CLF-AIJ'ig+J and a method for manufacturing the same. (b) Background of the Technology A lateral bipolar transistor is based on a substrate and has an emitter and a collector formed on its surface. Therefore, since one transistor operates in the lateral direction, it is called a lateral transistor. This structure has the advantage of 2. The purpose of this invention is to make it easier to form the necessary opposite conductivity type transistors and also to form the necessary bipolar transistors in an IC formed using a MIS (Dinzoster). (C) Prior art and problems However, the conventional Cytidyl Paiborato Shinji;
As shown in the schematic cross-sectional view shown in FIG. 1, for example, an I
+', $ type Emi Tsuta area Etll! :n''pyJ Since the structure is such that the collector regions C are arranged side by side at a predetermined interval, carriers from the emitter region E (e'-
+9 injection is

【/フタ領域Cに向う方向以外lこもなさ
れ、コレクタ領域Cに向う方向に注入されるキャリヤ以
外の大部分のキトリヤf;t、、T−ミッタ領域に到達
せずにベース領域B内ζこ於て再結合によって失われて
いた、従って従来(ハシチラルトランジスタには、キャ
リヤの¥’6i送効率炉効率電流増幅率が大きくとれな
いとい一〕欠点があ−・た1、又ベース領域Bと基板S
との間の接合容fiが大きく、スイッチング速度が低下
するいう欠点もあった。そこで3QJ (Si l 1
cO1I Qll lll5旧;1tor)基板上に該
ラテラルトランジスタを描成することにより、ベース領
域の寄生容量を除去し、且つ前記エミッタ領域及びコレ
クタ領域より]に位置するベース領域を取り除くことに
よ−フてキャリ・ヤの輸送効率を高める構造が考えられ
た。しかしこの構造に於てはベース電極をベース領域の
上面から導出しなければならないので、該電極の導出を
3+′+1゜常のように電極コンタクト窓を介して行っ
た際にはエミッタ領域とコレクタ領域間の距離即ノ:1
べ・−ス幅が大幅に広がり電流増幅率か低下しで使いも
のにならない。 そこで提案されたのが第2図に示す模式断面図のように
、SOI基板の単結晶シリコン層領域3を均一な不純物
濃度を有する例えばP型ベース領域4となし、該ベース
領域4のほぼ中央部上に7オトリソグラフイ技術を用い
°Cベース電極5を形成し、該ベース電極5をマスクに
し不純物のイオン注入を行うことにより該P型ベース領
域4内に該ベース電極5に整合し且つベース領域4の底
部に達するn十型エミッタ領域6及びn+手型コレクタ
領域7を形成してなる構造であった。(図中。 1は絶縁物基体、2は分離絶縁膜)しかし該従来構造に
於ては、ベース幅はベース電極5を形成する際のフォ)
 IJソグラフィ技術の限界寸法(2C#m〕程度)に
よって制限されるのでベース幅を極端に狭めることがで
きない。そして通常ベース領域4の深さは0.4〜05
〔μm〕程度に形成されるのでこのように浅く(薄く)
且つ前記のように広い幅を持ったベース領域の場合、該
ベース領域4を移動するキャリヤの上下界面に於ける再
結合が利いて来る。 これらの点から該従来のラテラル・バイポーラトランジ
スタに於ては1通常の縦形のバイポーラトランジスタに
近い大きさの電流増幅率が期待できず、且つ上記リソグ
ラフィ技術の精度によって電流増幅率の値が大きく変動
する七いう問題もあった。 (dl 発明の目的 そこで本発明に於ては、ベース電極lこ多結晶/リコン
等の高温に耐え得る電極材料を使用し、ベース領域及び
エミッタ領域の形成に当って、ベース電極の側面若しく
は該ベース電極の側面に被着させた絶縁膜によって画定
されるバター7エツジを利用し、該パターンエツジに整
合させてP型不純物及びn型不純物を導入し、且つ熱拡
散手段によりベース領域を形成する例えはP型不純物を
より奥へ拡散させることによりベース幅をサブミクロン
寸法で精度よく規定するいわゆる拡散自己整合(Dif
fusion Self−41ign)型のラテラル・
バイポーラトランジスタ及びその製造方法を提供するも
のであり2その目的とするところはラテラル・バイポー
ラトランジスタの電流増幅率を高めると同時にその精度
を向上せしめ、半導体ICの回路構成を容易ならしめる
ことにある。 (e) 発明の構成 即ち本発明は絶縁物よりなる基体上の絶縁膜によって画
定された領域に、第1の一導電型半導体層、逆導電型半
導体層、第1の一導電型半導体層より低不純物濃度を有
する第2の一導電型半導体層及び ′ ゛ 塘≠瀞モわ
不飼吻−投饗を拍ti第3の一導電型半導体層を片側か
ら順番に有し、該逆導電型半導体層と第2の一導電型半
導体層の上部にこれら両層にまたがって接する逆導電型
の電極層が設けられてなることを特徴とする半導体装置
と、絶縁物基体上に画定分離された単結晶半導体層を設
け、該半導体層を均−tj−導電型となし、該−導電型
半導体層上に該−導電型半導体層を横切る帯状電極を形
成し、該電極の7方側に表出する該−導電型半導体層に
選択的に該電極側面若しくは該電極側面に配設した絶縁
膜の端面に整合させて逆導電型不純物を導入注入し。 該通導′Wt型不純物を拡散せしめて該−導電型半導体
層に該−導電型半導体層の底面に達し且つ該電極に向う
端面が該電極の直下領域に達する逆導電型拡散領域を形
成し、該逆導電型拡散領域と該電極の他方側に表出しC
いる一導電型半導体層に該電極のそれぞれの側面に配設
した絶縁膜の端面に整合させて一導電型不純物を導入し
、該−導電型不純物を拡散せしめて、該逆導電型拡散領
域内に該逆導電型拡散領域の底面に達し且つ該電極に向
う端面が該方向の電極側面に配設された絶縁膜の直下領
域に達する一導電型拡散領域を、該−導電型半導体層に
該−導電型半導体層の底面に達し月つ該電極ζこ向う端
面が該方向の電極側面に配設された絶縁膜の直下領域に
達する一導電型拡散領域をそれぞれ形成し、しかる後肢
電極に逆導電型を付与する工程を有することを特徴とす
る半導体装置の製造方法に関するものである。 (f) 発明の実施例 以下本発明を実施例について1図を用いC説明する。 第3図は本発明の2チラル・バイボーラトランジスクの
一実施例に於ける要部を示ヂ模式上面図(イ)及び模式
断面図(ロ)で、第4図(イ)乃至(ヌノ及び第5図(
イ)乃主に)は本発明の製造方法に於ける異なる一実施
例の工程断面図である。なお上記第4図及び第5図に於
て同一部位は回付刃で示づ一0本発明のラテラル・バイ
ポーラi−ン/ジスタは例えば第3図(イ)及び(ロ)
に示すよう)こ、シリジノ基板(図示せずン上に形成さ
れ7ご二酸化ノリコン(S102)膜よりなるS I0
2絶縁基俸11土に素子間分離5102膜12によっC
画定分離された厚さ0.4〜0.5〔μm’l程度のn
型7937層よりなるn型コレクタ領域13を有し、該
n lJリコレクタ領域13上に、該コレクタ領域J3
に直に接し。 且つ該コレクタ領域13を横切る幅1〜2〔μm〕程度
の例えばP1+型多結晶シリコン(Sl ) よりIS
るベース電極14が配設され、該ベース電極14の側面
に選択的に例えば厚さ0.6〜1〔μmal程度の化学
気相成長(CVD)−8Io、絶縁膜15が配設され2
該ベース電極14の一方側に表出するIIn型コレクタ
領域13内、該方向の例え(Aベース電極14の側面に
形成されたCVD−5io2絶縁膜15の端面(パター
ンエツジ)に整合してP型不純物が導入され、且つ熱拡
散によつC縦方向が該コレクタ領域13の底面に達し横
方向が該ベース電極14の直下領域に達するように形成
されたJ)型ベース領域16を有し、該ベース領域16
内に前記ベース領域形成の際に用いたCVD−8i02
絶縁膜15の端面に整合しく7n型不純物を導入し。 且つ熱拡散によって縦方向が該ベース領域16の底面に
達し横方向が上記cvp−sio□絶縁膜15の直下領
域に達するように形成されたn゛十型エミンタ領域17
を有し、該ベース電極14の他方側に表出するn型コレ
クタ領域13内に、該方向のベース電極側面のCvI)
−8in、膜13の端面に整合してn型不純物を導入し
、且つ熱拡散1こよって縦方向が該コレクタ領域13の
底面に達し横方向が上記CVD−8Io、絶縁膜15の
直下領域に達するようtこ形成された01矛型コレクタ
・コンタクト領域工8を有してなっている。 なお上記構造に於てベース電極14はP型不純物が導入
された高融点金属若しくはその珪化物であってもよい3
.そしてP型不純物が導入されていることにより、該ベ
ース電極14力伽型コレクタ領域13上に直に接しても
2通常動作に於てベース・コレクタ間が短絡することは
ない。 父上記構造を形成する際、ベース領域16を形成するP
型不純物はベース電極14の側面に整合させて導入して
もよい。更に又ベース電極14の側面に被着されるC 
V ]’J絶縁膜は上記5I02膜に限らない。 次に本発明のラテラル・バイポーラトランジスタを形成
する際の二種類の製造方法を、それぞれの一実施例につ
いて図を参照して説明する。 第4図(イ)参照 本発明のラテラル・バイポーラトランジスタを形成する
に際しては2例えばシリコン(Sl)基板(図示せず)
上の5i02膜よりなる絶縁基体21上tこ04〜05
〔μm〕程度の厚さを有するノンドープ単結晶SiJ脅
22が形成されてf、iるSOI 基板を用意し2例え
ば通常の選択酸化法(LOCO8法)を用いて該単結晶
81層22に素子形成領域を分離画定し、該単結晶S1
層22の底部まで達する素子間分離S’02膜23を形
成した後、該単結晶Si層22に例えばりんイlン(P
”’)をドーズ是−10” (atmメメ]、加速エネ
ルギー80 = ](+1 Q(ev:1程度の条件で
注入する。。 なおここて用(ハるSOI基板は、多結晶S1をレーザ
、電子ビーフ4.ランプ等で加熱溶融し7再結晶ぜしめ
たもの、Si基板中に酸素イオン(0” )を深くイオ
ン注入し、その後の熱処理で81基板内部に5Io2を
形成したもの、のいずれでもしく又SO8基板であって
もさしつかえハ′い。fjお又SOI、 SO8上に単
結晶81層を更((エビクー\ノヤル成長しだらのでも
良い。 又該実施例では選択酸化によるS’02膜23膜上3て
素子間分離を行ったが、該素子間分離は素子形成領域以
外の領域の81層を選択的に除去したエアーアイソレー
ンヨン構造であってもよい。 第4図(ロ)参照 次いで該基板を1,050〜1.1 iJ OCc )
程匪の温度で30〜60分程贋熱処理し、前記注入りん
(P)を均一に再分布せしめて該単結晶Si層と!】型
S i層22nとし1次いで該基板上に化学気相成長(
CVD)法を用いて厚さO,#1−0.5 (/I r
o )程度のノンドープ多結晶S1層24を形成し、更
に該多結晶81層24上にCVD法により厚さ0.2 
(tr+r1〕程度のsi、N、膜25を形成する。 第4図(ハ)参照 次いでレジスト膜26をマスクにし1.′す゛イドエツ
チングの少いエツチング手段2例えはりアクティブ・イ
オノエソナ/グ< 1t I E >法てS ’ 3N
4膜25及び多結晶S’ h24を選択エツチングし。 上部にS’sNt膜25を有する多結晶sIベース電極
24Bを形成する。上記1えIEに於けるエンチング・
ガスはS夏sN<に対しては四ふり化炭素(CF4 ン
等か、又多結晶S +に対しては四塩化炭素(CCl2
.)等が用いられる。 第4図に)参照 次いでレジスト膜26をlci:去した後10〜D法を
用いて該基板上に例えばJv、さ1)+1・−1〔)・
:r1N’l“度の5ho2膜27を形成する。 第4図(ホ)参照 次いで基板面に対しC画伯方向にtv−9) 7−y 
17・1工ツチ/グ手段であるR I Eを用い前記C
:VI−j−ja’02膜27を上面から順次素子領域
(・、+;;i 面がしく出Jるま−(エンチング除去
する。これ1こJ、1.7見掛り−に厚く形成されてい
た多結晶Si ベース電極′、−11の側面に、前記厚
さにほぼ等しい(1,6= I (/1111 J程度
0)m (XV)を有するCVJ)−:3 +02股Z
7が残留する。なお上記RIE処理に於けるニッチ/り
・ガスにはcb゛、、三ふっ化ツク” (L J+ !
・8)夜゛ンが用いられる。図中点線Sて示しフ、二の
はR」J・: 4g、1.、f)1!前のcvD−si
o2膜面である。 第4図(へ)参照 次いてベース電極2411カ一方の(illl即ちコレ
クタとなる側に表出しているn型(’= r 1帖22
11面をレジスト膜28で選択的に覆った後、ベース1
1祇24Bのもう一方の側に表出しCいるn型S1層2
211面に、ベース電極24Bの側面に形成されている
CVD 5102膜27の端面(パターン1−ノジンに
整合させてベースを形成するための不純物である硼素(
J3)のイオン注入を行う(Bトは硼素イオン)。注入
条件は1例えばドース量3 X I 01“(atm/
/7al、注入エネルギー30(Key:1程度である
。 第4図(ト)参照 次いでレジスト膜28を除去した後1例えば1ρbO〔
°0〕程度の温度で所定の時間熱処理を施し、前記注入
硼素(B)を拡散させてP型ベース領域2つを形成する
。なおこの拡散深さは2 P型領域7J”n型S1層2
2nの底面lこ達し、且つ横方向に形成される接合がベ
ース電極24Bの直ド領域内1こ形成される深さであっ
て、更に所望の増幅率に対応した値に選ばれる。ここで
は2例えばベース電極z 4 B ノ側面R:形成され
ているC VD −S 102i27の端面(パター/
エツジ)から横方向に2(、+c+n)程度の拡散深さ
にする。なおこのように拡散形成されたP型ベース領域
29は前記cvD−sIot換27のパター/エツジか
ら接合に向・う濃度分布を有している。 第4図(1)参照 次いでベース電極24I3のそれぞれの側面1・こ形成
されているCVD −S ’ Ot膜27 iC% ’
?S’ c! −1’: ”−。 該ベース電極24Bの一方の側に表出しC−いるIJ型
ベース領域29面及び他方の側に表出し′Cいるn型S
’ In 22 n面に、エミッタ及υJレクタ・コン
タクトとなるN型不純物例えばりん(P)を高濃度にイ
対/注入しくI〕1はりんイメ/)1次いで例えは95
0〜1.0 (l O(’0 :l程度の偏成0づi定
(])時間熱処理を行い注入されたりん(P)を拡散さ
せ−c、pmベース領域29内にII” d型エミッタ
領域30を、コレクタ領域とf4るn型si IM 2
2 n内ζこn″d〜型コレクタ・コノタクト領域31
をそれぞれ形成する。なおここて前記りんのイメ/注入
条件は2例えばドース5.5 x ]、 Q Inl 
(at IIyud ]。 注入エネルギー60(Kcv)程度とする。又該りんの
拡散深さは、ベース領域29の底面にぷし力。 つ横方向に形成される接合かCV’D ’−S I O
□膜27の直下領域内(ベース電極に接してはならない
)lこ形成される深さに選ばれ、ここではcvo−si
o2膜27のパターンエツジから例えばO15〔μ+n
]程度とする。なお前記のようにベース領域29の深さ
は該パターンエツジから2〔μm〕程度に形成されてい
るのでベース幅wnは1.5〔μm〕となる。 第4図(I刀参照 次いで多結晶81ペース電極24B上のS’3 N4膜
25をりん酸(H3PO4> ボイル等の方法で除去し
1次いで該多結晶SIベース電極24BにP型不純物例
えば硼素(B)をイオン注入する(B゛十は硼素イオン
)。注入条件は9例えばドース量8x 1014(a 
tm/m)、注入エネルギー30[:KeV)程度とす
る。なお該イオン注入に際しCエミッタ領域30及びコ
レクタ・コンタクト領域31面にも硼素(B)が注入さ
れるが、これら領域に注入したN型不純物より注入量を
充分に低くしであるので、これら領域がP型に反転する
ことはなく。 又コンタクトにも支障を生じるこおはない。続いて90
0〜950自01 程度の温度で熱処理を行い。 前記ベース電極24Bに注入された硼素(13)を該多
結晶SI内部に拡散せしめ、該ベース電極2・1BをP
型化する。γSお該拡散処理に於て、多結晶81中での
拡散係数は単結晶層中のそれよく・)1桁近く大きいの
で、ベース電極24Bの下部に(3(殆んど硼素(B)
は拡散されず、又単結晶層中の不純物が再分布すること
もない。 第4図(ヌ)参照 次いで通常の方法により絶縁膜の形成、電極コiノタク
i・窓の形成、電極配線の形成等かf、8;され′C本
発明のラテラル・バイボーノトランジスタが完成する。 図に於て732は絶縁膜、33は工ζツタ電極配線、3
4はコレクタ電極配線を示している。なおベース電極2
4Bに対する配線は、該r曲以外−ご接続されるので図
示してない。 次に本発明のラテラル・パイボージトンノジスタの他の
製造方法を、一実施例について第5図※L参照して説明
する。 第5図(イ)参照 この方法が前記した方法と異なる点は、ベース電極の側
面に整合させてベース領域を形成した後ベース電極の側
面にCVD絶縁膜を形成し、そのパターンエツジに整合
させてベース領域内にエミッタ領域を形成する工程を有
していることである。 即ち前記実施例と同様の方法により例えばSiO□絶縁
基体21上に素子間分離5i02膜23によって画定分
離されたn’H1単結晶Si層22nが形成されてなる
SOI基板基板上に、前記同様の方法により該n型巣結
晶SiM22n領域を横切り。 且つ上面に5isN4膜25を有する多結晶Si ベー
ス電極24Bを形成した後2本方法に於てはベース電極
240の一方の側に表出するII型Si層2りn上をレ
ジスト膜28で選択的に覆い、ゲート電極24Bの他の
一方側に表出するn型Si層22nにベース電極24B
の側面に整合させて。 例えば前記実施例と同様の注入条件て硼素(I3)のイ
オン注入を行う。(B+は硼素イオン及びイオン注入領
域) 第5図(ロ)参照 次いで前記実施例同様の温度で所定の時間熱処理を行っ
て、該n型5il(W22nの底面に達し。 且つベース電極74nの直下領域内に接合を有するP型
ベース領域29を形成する。 第5図(ハ)参照 次いて前記実施例同様の方法により−\−ス電極24B
の側面に所望の厚さを有す4・CVD−5+02膜27
を形成する。 第5図に)参照 次いで前記実施例同様ベース電極2411の側面に形成
されたcvo −8i o□膜27のバクー/コーノジ
に整合させてP型ベース領域29及びコレクタ領域とな
る11型S1層22nにn型不純物例えはりん(1))
を高濃度にイオン注入し、所定の熱処理を施し、P壓ベ
ース領域29内に該ベース領域29の底面に達し、且つ
該CVD−3i02膜27の直下領域内1こ接合を有す
るn” 十Hj4エミッタ領域30を、又コレクタ領域
となj、 rl型Si層22n内にnt 4型コレクタ
・コノタクト領域31を形成する。 (P+はりんイオン) そして以後図示しないが、前記実施例同様の工程を経て
本発明の2テンル・バイポーラトランジスタが完成する
。 (g) 発明の効果 上記実施例1こ示したように本発明のラテラル・バイポ
ーラトランジスタに於ては、ベース領域とエミッタ領域
が、ベース電極の側面((二形成された絶縁膜のパター
ンエツジ、若しくはベース電極と該ベース電極の側面に
形成2された絶縁膜のパターンエツジを基準にして拡散
自己整合(1)iffu −5ion Self−Al
ign)により形成される。便ってこれらの領域の横方
向−\υ〕広がり寸法が例えば100(A:I程度の精
度で正確に制御できるの゛Cペース幅を従来の比べて著
しく狭く(サブミクロ7幅も可能)形成することができ
、従っCエミッタ領域から注入されたキャリヤは効率よ
く、コレクタ領域へ吸収される。 又本発明の2チラル・バイポーラトラ/7スタに於ては
ベース領域が拡散によって形成されるので、ベース領域
内部に不純物の濃度分布に対応した電界を生じ、これが
注入されたキャリー\゛をコレクタ方向へ加速するので
キャリー1゛の1i1f送効率が上がる。(ドリフト型
となる) 更に又全有効ベース領域に接してベース電極か設けられ
ており、更にベース電極にコレクタ領域と逆導電型が付
与されているのでベース電極をコそして又エミッタ・ベ
ース間及0・コレクタ・\−ス間の容量をほぼ必要最小
限とすることかできるので、素子の高速化が図れる。 以上説明したよう1こ本発明によれは、ギ?1ル〜・の
輸送効率が高く従って高電流増幅率を有し、]」つ寄生
容量が小さく従っ(−高速のラテラル・/“イボーラト
ランジスタが提供される。。 しかも本発明のラテラル・バイポーラトラ/7スタは構
造が簡単なので、同一チノブ上にpAIS+ランジスタ
ないしは縦型のパイボークトラノ/・“。 りと共存せしめることが可能である。従っC本発明は半
導体ICの回路構成を容易ならしめる効果を有する。 なお本発明のラテラル・バイポーラトランジスタは、上
記実施例と逆の導電型で形成することもできる。
Most of the carriers other than the carriers that are injected in the direction other than the direction toward the lid region C and the direction toward the collector region C; Therefore, conventional transistors have drawbacks (such as the inability to obtain a large carrier efficiency current amplification factor), and the base region B and substrate S
There is also the disadvantage that the junction capacitance fi between the two is large and the switching speed is reduced. Therefore, 3QJ (Si l 1
By drawing the lateral transistor on the substrate (cO1I Qll llll5 old; 1tor), the parasitic capacitance of the base region is removed, and by removing the base region located [from the emitter region and the collector region] A structure was devised to improve carrier transport efficiency. However, in this structure, the base electrode must be led out from the upper surface of the base region, so when the electrode is led out through the electrode contact window as usual, the emitter region and the collector must be led out. Distance between areas: 1
The base width widens significantly and the current amplification factor decreases, making it unusable. Therefore, as shown in the schematic cross-sectional view shown in FIG. A base electrode 5 is formed on the base electrode 5 using a 7 otolithography technique, and impurity ions are implanted into the P-type base region 4 by using the base electrode 5 as a mask and implanting impurity ions that are aligned with the base electrode 5 and The structure was formed by forming an n+ type emitter region 6 and an n+ type collector region 7 reaching the bottom of the base region 4. (In the figure. 1 is an insulating substrate, 2 is an isolation insulating film) However, in this conventional structure, the base width is the width of the base when forming the base electrode 5).
The base width cannot be extremely narrowed because it is limited by the critical dimension of IJ lithography technology (approximately 2C#m). The depth of the base area 4 is usually 0.4 to 0.5
It is formed in the order of [μm], so it is shallow (thin) like this.
In addition, in the case of a base region having a wide width as described above, recombination of carriers moving in the base region 4 at the upper and lower interfaces becomes effective. From these points, the conventional lateral bipolar transistor cannot be expected to have a current amplification factor close to that of a normal vertical bipolar transistor, and the value of the current amplification factor varies greatly depending on the accuracy of the lithography technology. There were also seven problems. (dl Purpose of the Invention) Therefore, in the present invention, an electrode material that can withstand high temperatures, such as polycrystalline/licon, is used for the base electrode, and when forming the base region and emitter region, the side surface of the base electrode or the corresponding Utilizing the butter 7 edge defined by the insulating film deposited on the side surface of the base electrode, P-type impurities and n-type impurities are introduced in alignment with the pattern edge, and a base region is formed by thermal diffusion means. For example, the so-called diffusion self-alignment (Diffusion
fusion Self-41ign) type lateral
The present invention provides a bipolar transistor and a method for manufacturing the same, and its purpose is to increase the current amplification factor of a lateral bipolar transistor, improve its accuracy, and facilitate the circuit configuration of a semiconductor IC. (e) Structure of the Invention In other words, the present invention includes a first one-conductivity type semiconductor layer, an opposite conductivity type semiconductor layer, and a first one-conductivity type semiconductor layer in a region defined by an insulating film on a substrate made of an insulator. a second semiconductor layer of one conductivity type having a low impurity concentration and a third semiconductor layer of one conductivity type having a low impurity concentration, and a third semiconductor layer of one conductivity type having the opposite conductivity type; A semiconductor device characterized in that an electrode layer of an opposite conductivity type is provided on top of a semiconductor layer and a second semiconductor layer of one conductivity type, and the electrode layer is of an opposite conductivity type and is in contact with both layers. A single crystal semiconductor layer is provided, the semiconductor layer is of homogeneous -tj-conductivity type, a strip-shaped electrode is formed on the -conductivity type semiconductor layer to cross the -conductivity type semiconductor layer, and a strip electrode is formed on seven sides of the electrode. An opposite conductivity type impurity is selectively introduced and implanted into the negative conductivity type semiconductor layer to be produced in alignment with the side surface of the electrode or the end surface of an insulating film disposed on the side surface of the electrode. Diffusing the conductive Wt type impurity to form an opposite conductivity type diffusion region in the -conductivity type semiconductor layer that reaches the bottom surface of the -conductivity type semiconductor layer and whose end face facing the electrode reaches a region immediately below the electrode. , C exposed on the other side of the opposite conductivity type diffusion region and the electrode.
One conductivity type impurity is introduced into the one conductivity type semiconductor layer aligned with the end face of the insulating film disposed on each side of the electrode, and the - conductivity type impurity is diffused into the opposite conductivity type diffusion region. A diffusion region of one conductivity type that reaches the bottom surface of the diffusion region of the opposite conductivity type and whose end face facing the electrode reaches a region immediately below an insulating film disposed on the side surface of the electrode in the direction is connected to the -conductivity type semiconductor layer. - forming one conductivity type diffusion region that reaches the bottom surface of the conductivity type semiconductor layer and whose end face opposite to the electrode ζ reaches a region directly under the insulating film disposed on the side surface of the electrode in the direction; The present invention relates to a method for manufacturing a semiconductor device, which includes a step of imparting a conductivity type. (f) Embodiments of the Invention The present invention will be explained below with reference to FIG. FIG. 3 is a schematic top view (A) and a schematic cross-sectional view (B) showing the main parts of an embodiment of the 2-chiral bibolar transistor of the present invention, and FIGS. and Figure 5 (
A) Mainly) is a process sectional view of a different embodiment of the manufacturing method of the present invention. Note that the same parts in FIGS. 4 and 5 above are shown with rotating blades.
As shown in Figure 1), this is a silicon dioxide (S102) film formed on a silidino substrate (not shown).
2 Insulating base layer 11 C by inter-element isolation 5102 film 12
Defined and separated thickness of 0.4 to 0.5 μm'l
It has an n-type collector region 13 made of a type 7937 layer, and on the nlJ collector region 13, the collector region J3
in direct contact with. Further, the IS is made of, for example, P1+ type polycrystalline silicon (Sl) with a width of about 1 to 2 [μm] across the collector region 13.
A base electrode 14 is disposed, and an insulating film 15 made of chemical vapor deposition (CVD)-8Io having a thickness of about 0.6 to 1 μmal is selectively disposed on the side surface of the base electrode 14.
In the IIn type collector region 13 exposed on one side of the base electrode 14, P is aligned with the end surface (pattern edge) of the CVD-5io2 insulating film 15 formed on the side surface of the A base electrode 14 (for example, in this direction). J) type base region 16 into which a type impurity is introduced and formed by thermal diffusion so that the C vertical direction reaches the bottom surface of the collector region 13 and the horizontal direction reaches the region immediately below the base electrode 14; , the base region 16
CVD-8i02 used in forming the base region in
A 7n type impurity is introduced into the end face of the insulating film 15 in a matching manner. In addition, the n-type emitter region 17 is formed by thermal diffusion so that the vertical direction reaches the bottom surface of the base region 16 and the horizontal direction reaches the region immediately below the CVP-SIO□ insulating film 15.
CvI) on the side surface of the base electrode in the direction in the n-type collector region 13 exposed on the other side of the base electrode 14.
-8 inch, n-type impurity is introduced in alignment with the end surface of the film 13, and thermal diffusion 1 reaches the bottom surface of the collector region 13 in the vertical direction and directly under the CVD-8Io insulating film 15 in the horizontal direction. It has a 01 lance-shaped collector contact area 8 formed to reach the contact area. Note that in the above structure, the base electrode 14 may be a high melting point metal into which a P-type impurity is introduced or a silicide thereof3.
.. Since the P-type impurity is introduced, even if the base electrode 14 comes into direct contact with the Rika type collector region 13, there will be no short circuit between the base and the collector during normal operation. When forming the above structure, P forming the base region 16
The type impurity may be introduced in alignment with the side surface of the base electrode 14. Furthermore, carbon coated on the side surface of the base electrode 14
V]'J insulating film is not limited to the above-mentioned 5I02 film. Next, two types of manufacturing methods for forming the lateral bipolar transistor of the present invention will be described with reference to the drawings, with reference to one embodiment of each method. Refer to FIG. 4(A) When forming the lateral bipolar transistor of the present invention, for example, a silicon (Sl) substrate (not shown) is used.
On the insulating base 21 made of the upper 5i02 film t04-05
An SOI substrate on which a non-doped single crystal SiJ layer 22 having a thickness of about [μm] is formed is prepared, and devices are formed on the single crystal 81 layer 22 using, for example, a normal selective oxidation method (LOCO8 method). A formation region is separated and defined, and the single crystal S1
After forming the element isolation S'02 film 23 that reaches the bottom of the layer 22, the single crystal Si layer 22 is coated with, for example, phosphorus (P).
"') is implanted at a dose of -10" (ATM meme) and an acceleration energy of 80 = ](+1 Q(ev: 1). , electronic beef 4. 7 recrystallized by heating and melting with a lamp, etc., 81 oxygen ions (0'') were deeply ion-implanted into the Si substrate, and 5Io2 was formed inside the 81 substrate by subsequent heat treatment. Any method is possible, or even an SO8 substrate can be used. Although element isolation was performed on the '02 film 23 film 3, the element isolation may be an air isolation structure in which the 81 layer in the area other than the element formation area is selectively removed. (b) Then, the substrate was heated to 1,050 to 1.1 iJ OCc)
The injected phosphorus (P) is uniformly redistributed by heat treatment at a temperature of approximately 30 to 60 minutes, and the monocrystalline Si layer is formed. ] type Si layer 22n and then chemical vapor deposition (
Thickness O, #1-0.5 (/I r
A non-doped polycrystalline S1 layer 24 of approximately
(tr+r1) Si, N, film 25 of about (tr+r1) is formed. Refer to FIG. I E > Houte S' 3N
4 film 25 and polycrystalline S' h 24 are selectively etched. A polycrystalline sI base electrode 24B having an S'sNt film 25 on top is formed. Enching in IE above 1.
The gas is carbon tetrafluoride (CF4, etc.) for S/sN<, and carbon tetrachloride (CCl2, etc.) for polycrystalline S+.
.. ) etc. are used. Referring to FIG. 4), after removing the resist film 26, the resist film 26 is coated on the substrate using the 10-D method, for example, Jv, 1)+1・-1[)・
:A 5ho2 film 27 of 1N'l" degree is formed. Refer to FIG.
17.1 The above C
:VI-j-ja'02 film 27 is removed sequentially from the top surface of the element region (・, +;; On the sides of the polycrystalline Si base electrode', -11, CVJ with a thickness approximately equal to the thickness (1,6 = I (/1111 J about 0) m (XV)) -:3 +02 crotch Z
7 remains. In addition, the niche gas in the above RIE process is cb゛, trifluoride (L J+!).
・8) Night time is used. In the figure, the dotted line S indicates F, and the second one is R'J.: 4g, 1. , f) 1! previous cvD-si
o2 membrane surface. Refer to FIG. 4(v) Next, the base electrode 2411 has an n-type ('= r 1 22
After selectively covering the 11th surface with the resist film 28, the base 1
1 n-type S1 layer 2 exposed on the other side of 24B
On the 211 plane, the end face of the CVD 5102 film 27 formed on the side surface of the base electrode 24B (pattern 1 - boron, which is an impurity for forming the base in alignment with the nozzle)
J3) ion implantation is performed (B is boron ion). The implantation conditions are 1, for example, a dose of 3
/7al, the implantation energy is about 30 (Key: 1).See FIG.
A heat treatment is performed at a temperature of about 0°C for a predetermined time to diffuse the implanted boron (B) and form two P-type base regions. Note that this diffusion depth is 2 P-type region 7J”n-type S1 layer 2
The depth is selected to reach the bottom surface of the base electrode 2n and to form a junction formed in the lateral direction within the direct region of the base electrode 24B, and also to a value corresponding to a desired amplification factor. Here, for example, the side surface R of the base electrode z 4 B: the end surface of the formed CVD-S 102i27 (the pattern/
The diffusion depth is set to about 2(,+c+n) in the lateral direction from the edge). The P-type base region 29 thus formed by diffusion has a concentration distribution from the pattern/edge of the cvD-sIot conversion 27 toward the junction. Referring to FIG. 4(1), a CVD-S'Ot film 27 iC%' is then formed on each side surface 1 of the base electrode 24I3.
? S'c! -1': ``-. IJ type base region 29 surface with C exposed on one side of the base electrode 24B and n type S with 'C exposed on the other side.
' In 22 N-type impurity, such as phosphorus (P), which will become the emitter and υJ rectifier contact, should be implanted at a high concentration on the n-plane.
0 to 1.0 (lO('0:l) heat treatment is performed for a constant period of time to diffuse the implanted phosphorus (P) and form II" d into the pm base region 29. An n-type Si IM 2 with type emitter region 30 as collector region f4
2 Inner ζ n″d~ type collector/contact region 31
form each. Here, the phosphorus image/implantation conditions are 2, for example, dose 5.5 x ], Q Inl
(at IIyud]. The implantation energy is about 60 (Kcv). Also, the diffusion depth of the phosphorus is determined by the force exerted on the bottom surface of the base region 29. If the junction formed in the lateral direction is CV'D'-S I O
□The depth is selected to be within the area immediately below the membrane 27 (which must not be in contact with the base electrode), and here the cvo-si
From the pattern edge of the O2 film 27, for example, O15 [μ+n
] degree. Note that, as described above, the depth of the base region 29 is formed to be about 2 [μm] from the pattern edge, so the base width wn is 1.5 [μm]. FIG. 4 (See I) Next, the S'3N4 film 25 on the polycrystalline 81 space electrode 24B is removed by a method such as phosphoric acid (H3PO4) boiling, and then P-type impurities such as boron are added to the polycrystalline SI base electrode 24B. (B) is ion-implanted (B゛1 is boron ion).The implantation conditions are 9, for example, a dose of 8x 1014 (a
tm/m), and the implantation energy is about 30 [:KeV]. During the ion implantation, boron (B) is also implanted into the surfaces of the C emitter region 30 and collector contact region 31, but the implantation amount is sufficiently lower than that of the N-type impurity implanted into these regions. does not reverse to P type. Also, there is no risk of interference with contact. followed by 90
Heat treatment is performed at a temperature of about 0 to 950°C. The boron (13) implanted into the base electrode 24B is diffused into the polycrystalline SI, and the base electrodes 2 and 1B are made of P.
form a model. In the diffusion process of γS, the diffusion coefficient in the polycrystalline 81 is nearly one order of magnitude larger than that in the single crystal layer, so the
is not diffused, nor is the impurity in the single crystal layer redistributed. Refer to FIG. 4 (N). Next, by the usual methods, an insulating film is formed, an electrode is formed, a window is formed, an electrode wiring is formed, etc., and the lateral bi-bonotransistor of the present invention is completed. do. In the figure, 732 is an insulating film, 33 is an engineered ζ ivy electrode wiring, 3
4 indicates collector electrode wiring. Note that base electrode 2
The wiring for 4B is not shown because it is connected to songs other than the R song. Next, another method of manufacturing the lateral piston resistor of the present invention will be described with reference to FIG. 5 *L for one embodiment. Refer to FIG. 5(a). This method is different from the above-mentioned method in that after the base region is formed by aligning it with the side surface of the base electrode, a CVD insulating film is formed on the side surface of the base electrode, and the CVD insulating film is aligned with the pattern edge. The method also includes the step of forming an emitter region within the base region. That is, the same method as described above is applied on an SOI substrate in which an n'H1 single crystal Si layer 22n defined and separated by an element isolation 5i02 film 23 is formed on a SiO□ insulating substrate 21 by a method similar to that of the above embodiment. The method traverses the n-type nest crystal SiM22n region. In addition, after forming a polycrystalline Si base electrode 24B having a 5isN4 film 25 on the upper surface, in the two-layer method, the top of the II type Si layer 2 exposed on one side of the base electrode 240 is selected with a resist film 28. The base electrode 24B covers the n-type Si layer 22n exposed on the other side of the gate electrode 24B.
Align it with the sides of. For example, boron (I3) ions are implanted under the same implantation conditions as in the previous embodiment. (B+ is boron ion and ion implantation region) Refer to FIG. 5(b) Next, heat treatment is performed for a predetermined time at the same temperature as in the above embodiment, and the bottom surface of the n-type 5il (W22n) is reached and directly below the base electrode 74n. A P-type base region 29 having a junction is formed in the region. Refer to FIG.
4.CVD-5+02 film 27 with desired thickness on the side surface of
form. Referring to FIG. 5), the 11-type S1 layer 22n, which will become the P-type base region 29 and the collector region, is aligned with the base/contour of the CVO-8I O□ film 27 formed on the side surface of the base electrode 2411 as in the previous embodiment. n-type impurity (e.g. phosphorus (1))
Ions are implanted at a high concentration and subjected to predetermined heat treatment to form a 1-layer junction in the P base region 29 that reaches the bottom surface of the base region 29 and is directly under the CVD-3i02 film 27. The emitter region 30 is also used as a collector region, and an nt4 type collector/contact region 31 is formed in the rl type Si layer 22n.(P+ is a phosphorus ion) Then, although not shown in the drawings, the same steps as in the previous embodiment are carried out. (g) Effects of the Invention As shown in Example 1 above, in the lateral bipolar transistor of the present invention, the base region and the emitter region are connected to the base electrode. (1) Ifu-5ion Self-Al
ign). As a result, the lateral spread dimension of these regions can be precisely controlled with an accuracy of, for example, 100 (A:I), and the C pace width can be formed to be significantly narrower than conventional methods (sub-micro 7 width is also possible). Therefore, carriers injected from the C emitter region are efficiently absorbed into the collector region.Also, in the bichiral bipolar transistor/seven star of the present invention, the base region is formed by diffusion. , an electric field corresponding to the impurity concentration distribution is generated inside the base region, and this accelerates the injected carry \゛ toward the collector, increasing the 1i1f transfer efficiency of carry 1. (It becomes a drift type) Furthermore, the total effective A base electrode is provided in contact with the base region, and the base electrode is given a conductivity type opposite to that of the collector region. As explained above, according to the present invention, the transport efficiency of 1 to 1 μL is high, and therefore the device has a high current amplification factor. A high-speed lateral bipolar transistor with small parasitic capacitance and a low parasitic capacitance is provided. Moreover, since the lateral bipolar transistor of the present invention has a simple structure, a pAIS+transistor or It is possible to coexist with a vertical bipolar transistor. Therefore, the present invention has the effect of simplifying the circuit configuration of a semiconductor IC. It can also be formed with the opposite conductivity type.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は従来の2チラル・バイポーラトラン
ジスタの模式断面図、第3図は本発明の2チラル・バイ
ポーラトランジスタの一実施例に於ける要部を示す模式
上面図(イ)及び模式断面図(ロ)で、第4図(イ)乃
至(ヌ)及び第5図(イ)乃至に)は本発明の製造方法
に於ける異なる実施例の工程断面図である。 図に於て、11はslo、絶縁基体、12は素子間分離
5I02膜、13はn型コレクタ領域、14はP型多結
晶/リコンベース電極、15は化学気相成長SIO□絶
縁膜216はP型ベース領域、17はn″ヂ型エミッタ
領域、18はn″z型コレクタ・コンタクト領域、21
はsio、絶縁基体、22は単結晶シリコン層、22n
はn型単結晶シリコン層、23は素子間分離5io2膜
、24はノンドープ多結晶シリコン層、24Bは多結晶
シリコン・ペース電極、25は窓化シリコン膜、26.
28はレジスト膜、27は化学気相成長5iot膜、2
9はP型ベース領域、30(まn″pfjlpfjlエ
ミツタ領域中型コレクク・コンタクト領域2Wは化学気
相成長5ift膜の幅+ ’W’l+はベース幅を示す
。 第 1 図 第 4 図 271 27L 第 411121 第 4 図
1 and 2 are schematic cross-sectional views of a conventional 2-chiral bipolar transistor, and FIG. 3 is a schematic top view (A) showing the main parts of an embodiment of the 2-chiral bipolar transistor of the present invention. In the schematic sectional view (B), FIGS. 4(A) to 4(N) and FIGS. 5(A) to 5) are process sectional views of different embodiments of the manufacturing method of the present invention. In the figure, 11 is slo, an insulating substrate, 12 is an element isolation 5I02 film, 13 is an n-type collector region, 14 is a P-type polycrystalline/recon base electrode, and 15 is a chemical vapor grown SIO□ insulating film 216. P-type base region, 17 is n'' type emitter region, 18 is n''z type collector contact region, 21
is sio, an insulating substrate, 22 is a single crystal silicon layer, 22n
23 is an n-type single crystal silicon layer, 23 is an element isolation 5io2 film, 24 is a non-doped polycrystalline silicon layer, 24B is a polycrystalline silicon paste electrode, 25 is a windowed silicon film, 26.
28 is a resist film, 27 is a chemical vapor deposition 5iot film, 2
9 is a P-type base region, 30 (n''pfjlpfjl emitter region, medium-sized collector contact region 2W is the width of the chemical vapor grown 5ift film + 'W'l+ is the base width. 411121 Figure 4

Claims (1)

【特許請求の範囲】 1 絶縁物よりなる基体上に、第1の一導電型半導体層
、逆導電型半導体層、第1の一導電型半導体層より低不
純物濃度を有する第2の一導電型半導体層及び第3の一
導電型半導体層を片側から順番に有し、該逆導電型単導
体層と第2の一導電型半導体層の上部にこれら両層にま
たがって直接接する逆導電型の電極層が設けられてなる
ことを特徴とする半導体装置。 2、絶縁物基体上に画定分離された単結晶半導体層を設
け、該半導体層を均一な一導電型となし。 該−導電型半導体層上に該−導電型半導体層を横切る帯
状電極を形成し、該N極の一方側lこ表出する該−導電
型半導体層に選択的に、該電極側面若しくは該電極側面
に配設した絶縁膜の端面に整合させて逆導電型不純物を
導入し、該逆導電型不純物を拡散せしめて該−導電型半
導体層に、該−導電型半導体層の底面に達し且つ該電極
に向う端面が該電極の直下領域に達する逆導電型拡散領
域を形成し、該逆導電型拡散領域と該電極の他方(11
11iこ表出している一導電型半導体層に、該電極のそ
れぞれ側面に配設した絶縁膜の端面に整合させて一導電
型不純物を導入し、該−導電型不純物を拡散せしめて、
該逆導電型拡散領域内に該逆導電型拡散領域の底面に達
し且つ該電極に向う端面が該方向の電極側面に配設され
た絶縁膜の直下領域に達する一導電型拡散領域を、該−
導電型半導体層に該−導電型半導体層の底面に達し且つ
該電極に向う端面が該方向の電極側面に配設された絶縁
膜の直下領域に達する一導電型拡散領域をそれぞれ形成
し、しかる後該電極に逆導電型を付Jうする工程を有す
ることを特徴とする半導体装置の製造方法1.
[Scope of Claims] 1. A first one-conductivity type semiconductor layer, an opposite conductivity type semiconductor layer, and a second one-conductivity type semiconductor layer having a lower impurity concentration than the first one-conductivity type semiconductor layer, on a substrate made of an insulator. A semiconductor layer having a semiconductor layer and a third semiconductor layer of one conductivity type in order from one side, and a semiconductor layer of opposite conductivity type that is directly in contact with the single conductivity type semiconductor layer and the second semiconductor layer of one conductivity type on the top of the opposite conductivity type single conductor layer and the second semiconductor layer of one conductivity type. A semiconductor device comprising an electrode layer. 2. A defined and separated single-crystal semiconductor layer is provided on an insulating substrate, and the semiconductor layer is of a uniform conductivity type. A strip-shaped electrode crossing the -conductivity type semiconductor layer is formed on the -conductivity type semiconductor layer, and a band-shaped electrode is formed on the -conductivity type semiconductor layer that is exposed on one side of the N-pole, and is selectively attached to the side surface of the electrode or the electrode. An opposite conductivity type impurity is introduced in alignment with the end face of the insulating film disposed on the side surface, and the opposite conductivity type impurity is diffused into the -conductivity type semiconductor layer until it reaches the bottom surface of the -conductivity type semiconductor layer and the opposite conductivity type impurity is introduced. A reverse conductivity type diffusion region whose end face facing the electrode reaches a region immediately below the electrode is formed, and the opposite conductivity type diffusion region and the other side of the electrode (11
Introducing impurities of one conductivity type into the exposed semiconductor layer of one conductivity type in alignment with the end faces of the insulating films disposed on the respective sides of the electrodes, and diffusing the -conductivity type impurities,
A diffusion region of one conductivity type that reaches the bottom surface of the diffusion region of the opposite conductivity type within the diffusion region of the opposite conductivity type, and whose end face facing the electrode reaches a region immediately below the insulating film disposed on the side surface of the electrode in the direction. −
forming one conductivity type diffusion region in the conductivity type semiconductor layer, each reaching the bottom surface of the conductivity type semiconductor layer and having an end face facing the electrode reaching a region immediately below an insulating film disposed on a side surface of the electrode in the direction; 1. A method for manufacturing a semiconductor device, which further comprises the step of imparting a reverse conductivity type to the electrode.
JP18114083A 1983-09-29 1983-09-29 Semiconductor device and manufacture thereof Pending JPS6074477A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP18114083A JPS6074477A (en) 1983-09-29 1983-09-29 Semiconductor device and manufacture thereof
EP84110211A EP0137992A3 (en) 1983-09-29 1984-08-28 Lateral bipolar transistor formed in a silicon on insulator (soi) substrate
KR1019840005403A KR890003474B1 (en) 1983-09-29 1984-09-03 Lateral bipolar tr forming on soi plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18114083A JPS6074477A (en) 1983-09-29 1983-09-29 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6074477A true JPS6074477A (en) 1985-04-26

Family

ID=16095585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18114083A Pending JPS6074477A (en) 1983-09-29 1983-09-29 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6074477A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57100763A (en) * 1980-10-23 1982-06-23 Fairchild Camera Instr Co Lateral transistor with self-aligning base and base contact and method of producing same
JPS57184249A (en) * 1978-11-03 1982-11-12 Ibm Method of forming double dispersion type fet device
JPS5852817A (en) * 1981-09-25 1983-03-29 Hitachi Ltd Semiconductor device and manufacture thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57184249A (en) * 1978-11-03 1982-11-12 Ibm Method of forming double dispersion type fet device
JPS57100763A (en) * 1980-10-23 1982-06-23 Fairchild Camera Instr Co Lateral transistor with self-aligning base and base contact and method of producing same
JPS5852817A (en) * 1981-09-25 1983-03-29 Hitachi Ltd Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
JPS63147368A (en) Double side gate electrostatic induction thyristor and manufacture thereof
US4168999A (en) Method for forming oxide isolated integrated injection logic semiconductor structures having minimal encroachment utilizing special masking techniques
JPS60170257A (en) Semiconductor device
US4343080A (en) Method of producing a semiconductor device
KR900005123B1 (en) Bipolar transistor manufacturing method
US3972754A (en) Method for forming dielectric isolation in integrated circuits
JPS63200568A (en) Bipolar transistor employing cmos technology and manufacture of the same
KR860001586B1 (en) Semiconductor device and method of its manufacturing
JPS6074477A (en) Semiconductor device and manufacture thereof
JPS624339A (en) Semiconductor device and manufacture thereof
JPS6143858B2 (en)
JPS61204979A (en) Manufacture of insulated gate fe device
JP2594697B2 (en) Method for manufacturing semiconductor device
JP2615707B2 (en) Method for manufacturing semiconductor device
JPH0271526A (en) Semiconductor integrated circuit and manufacture thereof
KR890004971B1 (en) Semiconductor manufacturing method
JPS6188543A (en) Manufacture of semiconductor device
JPH0621077A (en) Semiconductor device and manufacture thereof
JPS6129171A (en) Manufacture of semiconductor device
JPS63144567A (en) Manufacture of semiconductor device
JPH01187868A (en) Semiconductor device
JPS61202464A (en) Manufacture of semiconductor device
JPH01272153A (en) Manufacture of guard ring
JPS6149469A (en) Manufacture of semiconductor device
JPH0637097A (en) Semiconductor device and manufacture thereof